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ABSTRACT:

Motivated by the increasing need of rapid characterization of environments in 3D, we designed and built a sensor skid that automates

the work of an operator of terrestrial laser scanners. The system combines terrestrial laser scanning with kinematic laser scanning and

uses a novel semi-rigid SLAMmethod. It enables us to digitize factory environments without the need to stop production. The acquired

3D point clouds are precise and suitable to detect objects that collide with items moved along the production line.

1 INTRODUCTION

The varieties of manufactured cars constantly increases. For ex-

ample in Europe of the 1950s Volkswagen produced the Volkswa-

gen Beetle, Karmann-Ghia Typ 14, and the Volkswagen Type 2.

By 1990 this changed to the Volkswagen Polo Mk2, Golf Mk2,

Jetta Mk2, Passat B3, Scirocco, Corrado, T3, Caddy, Golf Coun-

try, and Taro. Nowadays, Volkswagen produces 17 different mod-

els: up!, Polo Mk5, Beetle, Golf Mk7, Golf Variant, Golf Cabri-

olet, Jetta Mk6, Passat B7, CC, Phaeton, Scirocco, EOS, Golf

Plus, Touran, Sharan II, Tiguan, Tuareg II. On a global scale the

corporate group nowadays produces 280 models. This increase

requires that the production facilities are flexible enough to re-

main competitive. For planning the production lines, a precise

digital 3D model is extremely helpful, as it enables one to de-

tect possible collisions of objects in the production line with the

surrounding environment.

Terrestrial Light Detection and Ranging (LiDAR) systems have

left pre-commercial development and have reached the state of

technically mature systems. Unlike several years ago, these sys-

tems are made available from a number of vendors. Typical ac-

curacies and precisions of laser scanners are in the range of a
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Figure 1: Left: Sensor skid, a.k.a. work-holding fixture, equipped with a FARO Focus3D laser scanner. Right: Skid with a Riegl VZ-400

laser scanner. Both skids are also equipped with a low-price MEMS IMU (xsens MTi).

few millimeters. Terrestrial laser scanning is the state of the art

for digitalization of complex factory environments. When paired

with classical surveying, terrestrial LiDAR delivers accurately

referenced geo-data, which may be used for topographic pur-

poses. However, many applications exist, for example as-built

documentation of industrial plants and factories, ship-building,

interior planning, and applications which either do not require

the reference to a national grid, or do not require a reference at

all.

Terrestrial Laser Scanning (TLS) is a ground based technique to

measure the position and dimension of objects in three dimen-

sional space using either pulsed or phase-modulated-continuous

laser light. Terrestrial laser scanners use a rotating mirror and a

rotating laser head to deflect the laser for measurements. Mobile

laser scanning describes terrestrial data acquisition from moving

platforms (e.g., boats, trains, road and off-road vehicles) and is

also known as kinematic laser scanning. In the mobile scenario,

the scanner operates in profiler mode, i.e., they scan a slice of the

environment. 3D data is then obtained by moving the system and

“unwinding” the obtained measurements.

This paper presents a novel mixture of classical terrestrial and

kinematic laser scanning for an industrial inspection application.



Figure 2: 3D point cloud of the entrance of a dryer tunnel ac-

quired with the FARO Focus3D scanner.

A continuously spinning terrestrial laser scanner is mounted on

a skid and moved along a production line, e.g., through a drying

chamber. The acquired 3D data is processed with a simultane-

ous localization and mapping (SLAM) algorithm to obtain pre-

cise 3D models. A detailed description of the methods can be

found in Elseberg et al. (2013) and Nüchter et al. (2010).

2 CONTINUOUS 3D SCANNING FROM A

SENSORSKID

Commonly, conveyor systems are used for carrying skids and

supporting products to be assembled along the assembly lines.

Skid conveyors are ideally suited for automotive body shops, paint

shops and final assembly operations. The base of our system con-

sists of such a skid. We equipped it with a high-precision laser

scanner, e.g., FARO Focus3D or Riegl VZ-400, with electronics

for connecting either of these scanners to a laptop and with a

MEMS IMU (xsens MTi). Fig. 1 shows the setup.

The 3D laser scanner is configured such that the scanner spins

around the vertical axis. The minimum rotation rate for the FARO

scanner is 1Hz, for the Riegl scanner it is 0.166 Hz. The field of

view (vertical/horizontal) for the FARO Focus3D is 305◦ × 360◦,

and for the Riegl VZ-400 is 100◦ × 360◦. The system is cal-

ibrated, i.e., the position and orientation of the sensor is deter-

mined on the skid. We acquire time-stamped data while moving

through the production line.

3 SEMI-RIGID OPTIMIZATION FOR SLAM

We developed an algorithm that improves the entire trajectory

of the skid simultaneously. Unlike previous algorithms, e.g., by

Stoyanov and Lilienthal (2009) and Bosse and Zlot (2009), it is

not restricted to purely local improvements. We make no rigidity

assumptions, except for the computation of the point correspon-

dences. We require no explicit motion model although such infor-

mation may be incorporated at no additional cost. The algorithm

requires no high-level feature computation, i.e., we require only

the 3D points themselves.

The motion of the mobile laser scanner between time t0 and tn
creates a trajectory T = {V0, . . . ,Vn}, where Vi = (tx,i, ty,i,
tz,i, θx,i, θy,i, θz,i) is the 6 degree of freedom (DoF) pose of the

skid at time ti with t0 ≤ ti ≤ tn. Using the trajectory of the

skid, a 3D representation of the environment can be obtained by

“unwinding” the laser measurements M to create the final map

P . However, inaccuracies in the pose estimate which is initially

computed using the known velocity estimate, as well as system-

atic calibration errors degrade the accuracy of the trajectory and

therefore the point cloud quality.

The current state of the art developed by Bosse and Zlot (2009)

for improving overall map quality of mobile mappers in the robotics

community is to coarsely discretize the time. This results in a par-

tition of the trajectory into subscans that are treated rigidly. Then

rigid registration algorithms like the ICP and other solutions to

the SLAM problem are employed. Obviously, trajectory errors

within a subscan cannot be improved in this fashion. Applying

rigid pose estimation to this non-rigid problem is also problem-

atic since rigid transformations can only approximate the under-

lying ground truth. Consequently, overall map quality suffers as

a result.

For the sensor skid a fine discretization of the time is employed,

i.e., at the level of individual 2D scan slices or individual points.

This results in the set of measurements M = {m0, . . . ,mn}
where mi = (mx,i,my,i, mz,i) is a point acquired at time ti
in the local coordinate system of Vi. In case Vi represents

more than a single point, Vi is the local coordinate of the first

point. All represented points are motion compensated with the

best known interpolated trajectory. As modern laser scanners typ-

ically operate at a frequency of 100–200 Hz time is discretized

to 5–10ms. Applying the pose transformation ⊕ we derive the

point pi = Vi ⊕ mi = Rθx,i,θy,i ,θz,imi + (tx,s, ty,s, tz,s)
T

in the global coordinate frame and thereby also the map P =
{p0, . . . ,pn}. Here, Rθx,i,θy,i,θz,i is the rotation matrix that is

defined by Eq. (1).

Given M and T we find a new trajectory T ′ = {V′

1, . . . ,V
′

n}
with modified poses so that P generated via T ′ more closely re-

sembles the real environment.

The complete semi-rigid registration algorithm proceeds as fol-

lows: Given a trajectory estimate, we compute the point cloud P
in the global coordinate system and use nearest neighbor search to

establish correspondences. Then, after computing the estimates

of pose differences and their respective covariances we optimize

the trajectory T . This process is iterated until convergence, i.e.,

until the change in the trajectory falls below a threshold.

To deal with the massive amount of data in reasonable time, we

first reduce uniformly and randomly the point cloud by using only

a constant number of points per volume, typically to 1 point per

3 cm3. A compact octree data structure is ideally suited for this

type of subsampling and for the computation of the nearest neigh-

bors Elseberg et al. (2012). The octree also compresses the point

cloud so it can be easily stored and processed. Furthermore, in

initial stages of the algorithm, estimates V̄i,j are only computed

for a subset of poses V0,Vk,V2k, . . . , with k in the order of

hundreds of milliseconds. In every iteration k is decreased so

that the trajectory is optimized with a finer scale.

3.1 Pose Estimation

Our algorithm incorporates pose estimations from a rough guess

of the velocity of the conveyor. Next, we use the formulation of

pose estimates V̄i,i+1 that are equivalent to pose differences:

V̄i,i+1 = V̄i ⊖ V̄j . (4)

The operator ⊖ is the inverse of the pose compounding operator

⊕, such that Vj = Vi ⊕ (Vi ⊖ Vj). In addition to the default

pose estimates that may also be enhanced by separating all pose

sensors into their own estimates as well as the proper covariances,

we estimate differences between poses via the point cloud P .

For each measurement pi, we find a closest measurement pj via

nearest neighbor search with |ti − tj | > δ, where δ is again the
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Figure 3: Definition of the rotation matrix and the matrix decompositions.

Figure 4: Left: Before applying our semi-rigid SLAM method. Right: Correction by our semi-rigid SLAM.

minimal amount of time that must have elapsed for the laser scan-

ner to have measured the same point on the surface again. To this

end, we alter our search structure for finding closest points to

contain time stamps as well. Points are stored in the global co-

ordinate frame as defined by the estimated trajectory T . Closest
points are accepted if |pi − pj | ≤ dmax. The positional error of

two poses Vi and Vj is then given by

Ei,j =

i+N
∑

k=i−N

∥

∥Vi ⊕mk −Vj ⊕m
′

k

∥

∥

2
=

m
∑

i=1

‖Zk(Vi,Vj)‖
2 .

(5)

Here, the mk,m
′

k is the pair of closest points in their respective

local coordinate system, and N defines a small neighborhood of

points taken in the order of hundreds of milliseconds that is as-

sumed to have negligible pose error. Since wewill require a linear

approximation of this function and ⊕ is decidedly non-linear we

apply a Taylor expansion of Zk:

Zk(Vi,Vj) ≈ Zk(V̄i, V̄j)−
(

∇Vi
Zk(V̄i, V̄j)∆Vi −∇Vj

Zk(V̄i, V̄j)∆Vj

)

.

Here, ∇Vi
refers to the derivative with respect to Vi. We create

a matrix decomposition ∇Vi
Zk = MkH such that the matrix

Mk is independent of Vi. Then, Zk(Vi,Vj) is approximated

as:

Zk(Vi,Vj) ≈ Zk(V̄i, V̄j)−Mk(Hi∆Vi −Hj∆Vj).

The minimum of this new linearized formulation of the error met-

ric and its covariance is given by

Ēi,j = (MT
M)−1

M
T
Z

Ci,j = s2(MT
M).

Here Z is the concatenated vector consisting of all Zk = V̄i ⊕
mk − V̄j ⊕ m′

k. s is the unbiased estimate of the covariance

of the independent and identically distributed errors of the error

metric and is computed as

s2 = (Z−MV̄i,j)
T (Z−MV̄i,j)/(2M − 3). (6)

The matrix decomposition MkH depends on the parameteriza-

tion of the pose compounding operation ⊕. Since we employ the

Euler parameterization as given in Eq. 1 the matricesMk andHi

are given by Eq. (2) and (3).

3.2 Pose Optimization

We maximize the likelihood of all pose estimates Vi,j and their

respective covariances Ci,j via the Mahalanobis distance

W =
∑

i

∑

j

(V̄i,j − (V′

i −V
′

j))C
−1

i,j (V̄i,j − (V′

i −V
′

j)),

or, with the incidence matrixH in matrix notation:

W = (V̄ −HV)TC−1(V̄ −HV). (7)

This linear formulation of the problem has been made possible by

the linearization of the pose difference equation in the previous

section. The minimization of W is accomplished via solving the



following linear equation system:

(HT
C

−1
H)V =H

T
C

−1
V̄. (8)

Computing the optimized trajectory is then reduced to inverting a

positive definite matrix Nüchter et al. (2010). Since a significant

portion of correspondences i, j are not considered due to the lack
of point correspondences the matrix is sparse so that we make use

of sparse Cholesky decomposition, Davis (2005). A consequence

of this formulation is that an arbitrary poseVi must remain fixed,

otherwise Eq. 8 would be under determined. This fixed pose also

incidentally defines the global coordinate system. Thus, for the

algorithm the optimization problem is decoupled from determi-

nation of global frame coordinates of the point cloud.

4 EXPERIMENTS AND RESULTS

Experiments have been carried out with both skids from Fig. 1

at two different production lines in Wolfsburg, Germany. Fig. 2

presents an obtained point cloud. The system takes as input the

approximate velocity of the skid and extracts an initial point cloud

using this velocity. Afterwards, we apply our semi-rigid SLAM

to correct the whole trajectory of the system. A typical trajectory

consists of more than 10000 skid poses.

For evaluating the accuracy of the 3D data points we have also

acquired a reference data set in a stop-scan-go mode. These inde-

pendently acquired 3D scans have been precisely registered and

form the reference model. To this reference we compare the 3D

point cloud that has been captured, while the skid is in motion. To

this end, both data sets are put in the same coordinate frame and

point-to-point distances are calculated. Fig. 5 shows two point

clouds: on the left the reference point cloud from registered ter-

restrial 3D scans and in the middle the point cloud while the sen-

sor skid was in motion. The rightmost part of Fig. 6 shows the

deviations, i.e., for every point we compute the deviation from

the ground truth model. Please note the grey parts: These are 3D

points seen by the continuously rotating scanner, i.e., points on

the skid, which have not been removed, and points in the envi-

ronment which turn out to be occluded by terrestrial scanning at

discrete poses.

Fig. 6 shows the distribution of the errors in a histogram (left)

and its frequencies. 90% of the measured points have a deviation

from the reference model below 2.5 cm. 3D points closer to the

scanner have usually even higher precision, as scanning is done

in a spherical way.

5 COLLISION DETECTION

After acquiring a consistent 3D point cloud of the environment,

we check whether a model moving through the environment col-

lides with it, which points in the environment collide and how

deep they penetrate the model. To this end we move a point cloud

of the model through the point cloud of the environment along a

given trajectory. Fig. 7 shows on the upper left the point cloud

of the environment in magenta and the point cloud of the model

in yellow. The point cloud of the model can either be acquired

by measurements with a laser scanner or by sampling the surface

area of a given CAD model. The given model represents a Volk-

swagen Golf scaled to a width of about 3m to make it collide

with the factory environment.

Any point of the environment that is found to be closer than a

radius r to any point of the model at any point of the trajectory is

classified as “colliding”. All points of the environment which are

never found to fulfill this criteria are classified as “non-colliding”.

Fig. 7 shows on the lower left the colliding point cloud in yel-

low and the non-colliding point cloud in magenta when moving

the car model from the right figure through the environment on a

straight trajectory along the assembly line. Bigger radii of r al-

low to implement “safety distances” for objects moving through

the environment. In this example, we chose a radius r of 10 [cm].

After the point cloud of the environment has been partitioned in

colliding and non-colliding points, we calculate for all colliding

points an estimate of their maximum depth of penetration into the

model along its path. For each colliding point we find the clos-

est non-colliding point in the environment and take their distance

as a heuristic for the depth of penetration. This heuristic works

well for the common cases of objects protruding the volume of an

assembly line. Fig. 7 shows in the right column the color-coded

depth of penetration.

Computation of points within a radius r for the collision detection
and of the closest non-colliding points in the environment for cal-

culating the penetration depth are done by creating and searching

in a k-d tree of the environment. Using this data structure, every

lookup can be done in O (log (n)) time with n being the num-

ber of points in the environment. Therefore, collision detection

can be done in O (lm log (n)) time with m being the number of

points in the model and l being the number of points in the tra-

jectory. The number of points in the environment n is reduced

by only considering those points within a bounding sphere of the

model. The number of points in the model can only be reduced

until points which are neighbors on a surface are a maximum dis-

tance of r apart from each other. Using a model of 10000 points,

moved through an environment of over 840000 points on a trajec-

tory with 1000 poses (as seen in Fig. 7), collision detection takes

about 11 seconds and depth of penetration calculation about 2

seconds on a single threaded desktop machine.

6 SUMMERY, CONCLUSION, AND FUTUREWORK

This paper has presented the essentials of a novel system for pre-

cise 3D modeling of production lines. With the built sensor skid

we can access and digitize areas which are hard to inspect other-

wise. We showed the ability to calculate the application specific

depth-of-penetration.

Needless to say a lot of work remains to be done. In future work,

we will concentrate on putting the acquired data into a global

frame of reference, i.e., geo-referencing, on clustering the collid-

ing point cloud, and on applying a divide-and-conquer methods to

cope with longer trajectories. Currently, 100 6D poses are gener-

ated per second, which implies that the linear system of equations

for solving our SLAM problem contains 600 entries per second.

References

Bosse, M. and Zlot, R., 2009. Continuous 3D Scan-Matching

with a Spinning 2D Laser. In: Proceedings of the IEEE Inter-

national Conference on Robotics and Automation (ICRA ’09),

pp. 4312–4319.

Davis, T. A., 2005. Algorithm 849: A Concise Sparse Cholesky

Factorization Package. ACM Trans. Math. Softw. 31(4),

pp. 587 – 591.

Elseberg, J., Borrmann, D. and Nüchter, A., 2013. Algorithmic
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