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Abstract: This paper proposes a novel multiple vehicle-like target tracking method based
on a Velodyne HDL64E light detection and ranging (LiDAR) system. The proposed method
combines multiple hypothesis tracking (MHT) algorithm with dynamic point cloud registration
(DPCR), which is able to solve the multiple vehicle-like target tracking in highly dynamic
urban environments without any auxiliary information from GPS or IMU. Specifically, to track
targets consistently, the DPCR is developed to calculate accurately the pose of the ego-vehicle
for the transformation of raw measurements taken in the moving coordinate systems into a
static absolute coordinate system; while in turn, MHT helps to improve the performance of
DPCR by discriminating and removing the dynamic points from the scene. Furthermore, the
proposed MHT method is also able to solve the occlusion problem existing in the point cloud.
Experiments on sets of urban environments prove that the presented method is effective and

robust, even in highly dynamic environments.
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1. INTRODUCTION

Effective environment perception is critical for intelligent
vehicle to drive safely since it enables the vehicle to inter-
pret the scene in the surroundings and subsequently take
appropriate manoeuvres. In order to navigate successfully
in urban environments, complex manoeuvres are required,
for example merging into or out of traffic, following or
passing the vehicle in front, and crossing an intersection
simultaneously with vehicles from other directions. It is
difficult or even impossible to handle these situations with-
out perception of the motion of other vehicles. Therefore
it is a fundamental task for intelligent vehicles to detect
and track moving vehicles on the road. Many video based
tracking methods have been developed in recent years (Xu
et al. (2011); Benfold and Reid (2011); Rudakova (2010);
Andriyenko and Schindler (2011)), however, these methods
are apt to be affected by environmental condition such as
weather, illumination. Comparing with video camera, the
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Fig. 1. Velodyne HDL-64E and its Point Cloud

3D LiDAR has many advantages: first, it can work during
the day and night in any weather conditions; second, the
scale of its measurements is uniform despite of distance;
third, its data are easier to segment. In our research, a
Velodyne HDL-64E LiDAR is employed which captures
over 1.3 million points per second from the surrounding
environment (Fig. 1).

Among classical tracking algorithms, the multiple hypoth-
esis tracking (MHT, Koller and Ulmke (2005); Kuo-Chu
et al. (1994); Ryoo and Aggarwal (2008); Lau et al. (2010))
has been proven an excellent approach for multiple target
tracking. Unlike the Joint Probabilistic Data Association
(JPDA, Lennart et al. (2011)) or Global Nearest Neigh-
bourhood (GNN), MHT retains all possible data asso-



ciation hypotheses until there is enough information to
resolve the assignment ambiguities occurred in the past
(Thomaidis et al. (2010)). MHT is considered as one of
the optimal methods for multiple target tracking especially
when there exist many ambiguities during data associa-
tion. Therefore, MHT is employed in this paper to handle
the challenging problem of tracking multiple vehicles in
urban environments with dense traffic.

To track objects consistently, the coordinates of raw mea-
surements from different frames in the moving coordinate
system need to be transformed into a static global coor-
dinate system. Usually, some external information from
auxiliary positioning and orientation sensors is used to
obtain the transformation parameters. Anna and Thrun
(2008), adopted GPS to estimate the ego-motion, while
Thomaidis et al. (2010) integrated an inertial navigation
system (INS) with vehicle odometer to deal with this
problem. However, GPS is sometimes not accurate enough
due to signal inaccessibility or multi-pass effects especially
in urban environments where tall buildings are present. On
the other hand, high-accurate INS systems are extremely
expensive and their accuracy decreases with time. Wang
et al. (2003) has derived the Bayesian formula of the
simultaneous localization and mapping (SLAM) with de-
tection and tracking of moving objects (DATMO) problem
just based on the SICK single rangefinder and odome-
ter, however, their method had to include a prior digital
map which is might not available everywhere. With the
impressive progress in the field of point clouds matching
technology (Niichter et al. (2004); Li et al. (2012); Frank
and Christoph (2011)) in recent years, it is possible to
accomplish the tracking task only using a 3D laser scanner
without relying on GPS, INS or digital map. To achieve
this goal, we incorporate dynamic point cloud registration
(DPCR) technology and MHT in a single framework. In
this framework the DPCR provides accurate ego-motion
information for tracking while in turn, MHT will help
to improve the performance of DPCR by discriminating
and removing the dynamic points from the scene before
applying the iterative closes points (ICP)(Besl and McKay
(1992)) matching method.

The rest of this paper is organized as follows: Firstly, we
give a brief overview of MHT in Sec. 2, then in Sec. 3,
we begin with an introduction of DPCR and subsequently
elaborates on the integration of MHT with DPCR; Sec. 4
demonstrates the experimental results in real-world urban
scenarios with dense traffic flow. Finally, conclusions and
remarks are given in Sec. 5.

2. OBJECTS SEGMENTATION

Segmenting vehicles from 3D point cloud data is the basic
step of tracking. However, instead of detecting real vehi-
cles, we just detect the vehicle-like object which is defined
as all the clusters of which the geometrical features are
similar to vehicle. This helps to decrease the computation
time of segmentation and to cope with complicated sce-
narios in an urban environment with dense traffic where
different degrees of occlusion exists.

The 3D laser points are first projected into a planar 2D

polar grid, then the average height H, the height variance

o2, and difference AH between maximum and minimum

Fig. 2. Point Cloud Segmentation. The red rectangles are
the segmented-out vehicle-like targets.

height of each grid cell are calculated as the grid’s features
which are used for classifying the grid as ground or non-
ground by using Algorithm 1.

Algorithm 1 Segmentation:Groud

IF |H; — Hy| > 61

THEN Grid ¢ belongs to the non-ground object.
ELSE IF (0%); > 02

THEN Grid 7 belongs to the non-ground object.
ELSE IF AH; < 43

THEN Grid i belongs to the non-ground object.
ELSE Grid 7 belongs to the ground.

where Hj, is the height of ground in the vehicle coordinate
system which is calibrated in advance, 01, do and &3 are
thresholds.

The points which are classified as ground points are re-
moved and other points are then clustered based on a
distance criterion. Afterwards, a best fitting cube bound-
ing box is built for each cluster. The length [, the width
w and the height h of a cube bounding box is used for
distinguishing whether a cluster is a vehicle-like object or
not with Algorithm 2. As illustrated in the Algorithm 2,

Algorithm 2 Segmentation:Vehicle-like Objects

IF I, < 1.bmorl; >Tm

THEN Cluster ¢ belongs to the non-vehicle-like object.
ELSE IF w; < 1.5m or w; > Tm

THEN Cluster i belongs to the non-vehicle-like object.
ELSE IF h; < 1.0m or h; > 4m

THEN Cluster ¢ belongs to the non-vehicle-like object.
ELSE Cluster i belongs to a vehicle-like object.

in our assumption, the vehicle-like object is defined as the
object of which the width and length are both between
1.5m and 7m, and the height is between 1.0m and 4.0m.
The segmentation algorithm is deliberately designed to be
simple to reduce the computation time.

If a cluster is labelled as a vehicle-like target, the centroid
coordinate (z.,y.) is calculated to form the raw measure-
ment Z.

3. MULTIPLE HYPOTHESIS TRACKING
3.1 Data Association

Data association is generally considered as the most com-
plex problem in multiple target tracking. It identifies which
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measurements at different times belong to the same tar-
gets. In general, data association is considered as a 2D
Linear Integer Assignment Problem (LIAP) and is math-
ematically represented as equation (1):

N N

i=1 j=1

N N
s.t. ZX” =1 andZXij = 1, (2)
i=1 j=1

where N is greater value between the number of trackers
and the number of measurements. C;; is the cost for
associating measurement j with tracker ¢ . X;; € 0,1, if
measurement j is assigned to track i, X;; = 1, otherwise,
X;; = 0. The cost Cj; is computed by using equations (3)
and (4). If measurement j is within the gate of tracker i

Cij = a(Al - cos(AB)) + fASize (3)
Otherwise,

C;; = BIGVALUE (4)
where o and (8 are the weight values ranging from 0 to
1, Al is the distance difference between the line from the
predicted position of tracker i to its filtering position of the
last scan and the line from the real measurement j to the
filtering position of tracker i, Af is the slope difference
between these two lines, A,;.. are the difference of size
between measurement j and the previous measurement of
tracker 4 (fig. 3). At present, the value of a and 3 are set
based on experience.

There are many algorithms to solve the LIAP, such as
Auction algorithm (Bertsekas (1991)) and JVLAP algo-
rithm (Jonker et al. (1987)). Because of the high efficiency
and optimization, the JVLAP algorithm is adopted in this
paper. In particular, if X;; = 1 in the solution but the
corresponding cost C;; = BIGVALUE, it indicates that
the tracker i is lost or vanishes from sensor view or the
measurement j is a new target.

3.2 Hypotheses Generation and Pruning

A single best solution (or hypothesis) for LIAP inevitably
results in some association errors. MHT effectively mit-
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Fig. 4. Hypotheses generation and pruning. As shown in
the figure, each parent hypothesis will generate three
new child hypothesises at most. There will be nine
hypothesises for one target at scan t. However, only
the first three best hypotheses represented by red
points in the figure with the least association cost
are retained, and the others are discarded. A tracked
target retains no more than three possible trajectories
represented by red polylines. Four different retaining
cases are shown as tracker 1,2 3.4 respectively.

igates association errors by retaining multiple data as-
sociation hypothesises until enough evidence is accumu-
lated to resolve the assignment ambiguities occurred in
the past. This is realized through Murty’s algorithm (Cox
and Hingorani (1996); Katta (1968)) which generates the
k-best hypothesises of LIAP incorporating with an arbi-
trary optimization algorithm. In general, there is a set of
hypothesises Q2¢~1 of the previous iteration, which is also
called parent hypothesis set. Z; denotes the measurements
set of scan t. Each parent hypothesis set contains a set
of trackers and spawns k new child hypothesises with Z;
according to Murty’s algorithm. With time going on, the
number of hypothesises increases exponentially, which will
arouse numerous computational burden and reduce prac-
ticality of the algorithm. Therefore, it is essential to prune
hypothesises. One of the two most common hypotheses
pruning methods proposes to discard hypothesises with
a probability lower than a pre-defined threshold, and the
other one is always keeping top k-best hypothesises. In
this paper, the k-best method is employed because of its
high efficiency. Fig. 4 shows the process of hypothesises
generating and pruning.



3.8 State Estimation

The linear Kalman filter (KF) is used for each target’s mo-
tion state estimation in our algorithm. The motion process
and measurement process are respectively modelled as (5):
X(k)=AX(k—-1)+v(k—1) (5)

Z(k) = HX (k) + w(k), (6)

where X is the motion state vector in the static absolute
coordinate system, whose specific form is [zp, Ypo, Tv, Yv]-
A and H are time invariant. v(k) and w(k) are both
white Gaussian noise sequence with covariance ) and

R respectively. Specially, the measurement noise w(k) is
linked with the distance and the size.

4. INTEGRATION OF DPCR AND MHT
4.1 DPCR

DPCR is incorporated to consistently align overlapping 3D
point clouds captured by a high-speed rotating Velodyne
HDL-64 laser scanner in a dynamic environment into a
static absolute coordinate system. Compared with Point
Cloud Registration (PCR) for indoor or static environ-
ments, DPCR focuses on much more complicated outdoor
urban streets, so it is more challenging because of the char-
acterless ground and many potential moving objects. To
accurately register point cloud in a dynamic environment,
the ground and moving objects should be removed first.
Then the remaining points will be processed by a fast and
reliable ICP matching algorithm Borrmann et al. (2008).
After ICP matching processing, the ego-motion consists of
three translation parameters and three angle parameters
are estimated, which can also be represented as a 4 x 4

matrix Q'™
B Rtfl 0
¢ 1:<Ttt1T1>' (7)
t

Q! is converted to a vector T': ™! which consists of Euler
angles (0, 6,, 0.):"! and translations (z,y, z)! ™!, Assume
that @), is the transformation matrix from ¢ frame to the

first frame.
Qi = QI Q1 (8)

Qo=1 9)

where [ is a 4 x 4 identity matrix.

Specially,

As is well-known, the more accurate the initial value is,
the higher efficient the ICP algorithm is. To accelerate the
ICP matching, a 3-order polynomial regressor is adopted
to predict ego-motion:

X(t) =a+ bt + ct® +dt? (10)
Where X (t) is the ego-state in the static absolute coordi-
nate system at scan ¢, and (a, b, ¢, d) are coefficient vectors.
When a newest ego-state is computed by DPCR, the oldest
ego-state will be discarded and the newest one will be used
to update the coefficients. The One-step predicted ego-
state will be used as initial value for ICP matching.

4.2 Integration of MHT and DPCR

Existence of moving objects is the main factor affecting
the precision of ICP matching. To align 3D point clouds

Fig. 5. DPCR Result. The red line is ego-trajectory com-
puted by DPCR.

of an environment comprising many moving objects, the
problem of discriminating which part of point cloud is
static and which part is dynamic has to be solved. Most
solutions to PCR assume that the unknown environment
is static, containing only rigid and stationary objects.
Nonrigid or moving objects are just processed as outliers
and filtered out. One of the most important and difficult
issues of DPCR is to discriminate moving objects from
stationary background. Our approach solves this dilemma
by integrating MHT into the ICP matching process, which
discriminates all the points in the scans into static and
moving, by tracking clusters of points, and matching the
static part of point cloud iteratively. The problem of com-
bining MHT and DPCR is similar to the chicken-and-egg
problem: before doing tracking, the ego-motion is needed
for coordinate transformation; tracking helps to remove
the moving objects, and DPCR calculates correct ego-
motions if moving objects are removed correctly. Here, we
use the one-step predicted ego-motion from the polynomial
regressor to accompany this problem, that is, the one-
step predicted ego-motion will be used as transformation
parameters for coordinate system transformation as well
as initial value for ICP matching.

5. VALIDATION SCENARIOS AND RESULTS

The first data set for validation was collected with a
Velodyne-64E laser scanner mounted on the self-driving
car (Smart V-II) developed by Wuhan university. The
experiment was carried out on approximate 800 meters
long LuXiang Circle of LuoYu Road in Wuhan, China
which is fraught with other vehicles and lasted about 1100
scans. The top part of Fig. 7 is the bird’s view of the circle.
and the below figures show the traffic situation acquired
with a CCD camera synchronously. There are about 10 to
15 vehicles in one scan, and the number is not constant.

The left figure in Fig. 8 presents the registration result
of the whole circle which contains thousand scans by the
method of Point Cloud Registration based on ICP when
only the ground is removed, while the right figure in Fig. 8
demonstrates the result of MHT assisted registration in
which the moving points are discriminated and removed
as well as the ground points. It is obvious that the quality
of registration results have been significantly improved
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Fig. 7. Bird’s eye view of the LuXiang circle and typical
traffic scenarios there

incorporating MHT. Fig. 9 shows the tracking process.
Though the test environment was messy and full of cars,
there were only 7 association errors in the entire process.
The second data set we used to compare the effect of MHT
and GNN was from the Karlsruhe Institute of Technology.
In that data set, the ego-vehicle was static. A car stayed
in front of it, which made occlusion in point cloud of each
frame (Fig. 10). When other cars went into the occlusion,
there would be few laser points reflected from them, which
made it’s impossible to abstract them from point cloud at
these frames. However, we found the MHT was very robust

to the occlusion. When a car went out from the occlusion,
the MHT continued to track it instead of generating a
new tracker, and only failed once during 160 frames time.
On the contrary, the GNN was more apt to be affected by
occlusion, it always started a new tracker (Fig. 11,Fig. 12).

Fig. 8. DPCR Results in Luxiang Cicle

Fig. 9. A Scene of MHT tracking. The green line is ego-
trajectory, and red lines are the trajectories of tracked
targets.

78

Fig. 11. GNN Tracking around Occlusion Area. When the
tracker 70 went into the occlusion, it lost. And when
it went out, the GNN tracking method generated a
new tracker 90, which was the same car as tracker 70.



Fig. 12. MHT around Occlusion Area. The tracker 82
which was the same car as tracker 72 in Fig. 11
went into the occlusion, and then went out, the MHT
continued to track it instead of starting a new tracker.

6. CONCLUSIONS

In this paper, we propose a MHT method incorporat-
ing with dynamic velo-registration for vehicle-like targets
tracking for self-driving in urban environment. The al-
gorithm is purely based on a Velodyne HDLG4E laser-
scanner. The experimental results show that while the
dynamic objects being removed by MHT, the precision
of DPCR is significantly improved, and in turn, the trans-
lation matrix and rotation matrix for coordinate system
transformation will be more accurate. Meanwhile, the
MHT adopted in our algorithm is more robust than GNN.
In the future research, we will improve the performance of
our algorithm in time-consuming so that it will be able to
compute in real-time.
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