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Abstract— Finding road intersections in advance is crucial for
navigation and path planning of moving autonomous vehicles,
especially when there is no position or geographic auxiliary
information available. In this paper, we investigate the use
of a 3D point cloud based solution for intersection and road
segment classification in front of an autonomous vehicle. It
is based on the analysis of the features from the designed
beam model. First, we build a grid map of the point cloud
and clear the cells which belong to other vehicles. Then, the
proposed beam model is applied with a specified distance
in front of autonomous vehicle. A feature set based on the
length distribution of the beam is extracted from the current
frame and combined with a trained classifier to solve the
road-type classification problem, i.e., segment and intersection.
In addition, we also make the distinction between +-shaped
and T -shaped intersections. The results are reported over a
series of real-world data. A performance of above 80% correct
classification is reported at a real-time classification rate of 5
Hz.

I. INTRODUCTION

When a vehicle is autonomously driving on the road, it

not only needs to know where the drivable region is, but

also basic road shape and topological relations. Especially if

there is an intersection ahead, autonomous vehicles need to

be ware of it in advance in order to slow down, to ensure

the safety and finally to plan the path.

For the early detection of intersections, one commonly

uses Geographic Information System (GIS) in conjunction

with position information originating from a Global Position

System (GPS) and an Inertial Navigation System (INS). But

it remains a difficulty since GIS are often missing, espe-

cially in quickly developing countries, or just not updated

frequently enough. In addition, GPS is invalid in many places

and GIS information does not add benefit without GPS or

other localization methods.
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Fig. 1. The goal of intersection recognition is classifying situations ahead
of a vehicle as intersection and road segment, and in addition, making a
distinction between T -shaped and +-shaped intersections.

This paper proposes a real-time intersection detection

approach based on 3D point clouds which are acquired by a

dense 64-beam scanning LIDAR mounted on the roof of our

vehicle. The proposed approach recognizes intersections in

front of autonomous vehicle. In addition, it also distinguishes

between +-shaped and T -shaped intersections. Fig. 1 shows

an overview of our work.

II. RELATED WORK

Many existing road intersection detection algorithms are

proposed in the field of remote sensing [1]. These methods

are based on aerial images which can’t be used for au-

tonomous cars. For autonomous driving, video-based meth-

ods have been proposed in the past several years [2], [3],

[4]. However, poor lighting conditions such as overcasts,

overexposure and other interference from moving vehicle

and pedestrian make video-based method an extremely dif-

ficult and nearly impossible task even if sophisticated image

processing techniques are used at the expense of processing

speed.

Therefore active sensors are nowadays used widely.

Kodagoda et al. [5] makes use laser measurements for speedy

extraction of two corresponding road edges or curbs using



the laser depth measurements and an extended Kalman filter

to detect Y -,T - and X-junctions. Wijesoma et al. [6] applies

a 2D laser scanner co-operated with CCD cameras for road

curb tracking. Aycard et al. [7] also uses multiple sensors

including LIDAR and stereo vision, but it mainly focuses

on safety on road intersection including the tasks of moving

vehicle and pedestrian perception and risk assessment instead

of intersection finding.

Different from the above method, this paper proposes a

real-time capable intersection algorithm based on the high-

end sensor Velodyne HDL-64ES2 which has a better ability

to perceive a wider range of data around. This sensor is more

and more popular in intelligent vehicle fields. Our work is

somewhat similar to [8]. They use the beam model of range

finders from [9] but then apply a distance function versus the

angle of each beam to find intersections. Our algorithm im-

proves the beam model and makes a speed related launching

point for beam which seams more reasonable for a moving

autonomous vehicle. Furthermore, the detection problem is

modeled as a classification problem and the machine learning

methods can be used to solve it.

Specifically, the proposed method is distinguished from

related approaches in the following ways:

• The proposed method models the intersection detection

as the classification problem. All method based on

machine learning can in principle be used to solve this

issue.

• We add width information for each ray of the traditional

beam model. The width is a little wider than width of

autonomous vehicle; all rays which do not end in an

obstacle are more likely to be the drivable region. Based

on this, the feature extracted from the beam model are

more effective.

• The launching point of beam is an adaptive distance in

front of autonomous vehicle instead of a fixed distance.

This distance is related to vehicle speed. The faster the

vehicle is, the longer distance is. This design goes along

with the demands of autonomous driving.

The rest of the paper is organized as follows. In the next

section, we introduce beam-based feature construction. Then

results from SVM-based classification with proposed features

are presented in section IV. Conclusion is given in section

V.

III. BEAM-BASED FEATURE CONSTRUCTION

This section introduces the construction of a length dis-

tribution based on the beam model. First, we build square

grid map for each frame of the point cloud; then the cells

belonging to other vehicle will be removed from grid map;

beam will be launched in adaptive distance in front of the

autonomous vehicle, every length of each beam is combined

as the feature vector for classification.

A. Data preprocessing

Obstacles mainly includes road curbs, trees, pedestrian and

other vehicles. In our method, we want to remain road curbs

and wipe off other obstacle from the grid map. Considering

Fig. 2. Step-by-step results of preprocessing: original data; the grid map;
vehicle and pedestrian detection and the remaining grid map after removing
vehicles and pedestrians.

that most trees are beyond the road, we just need to remove

the vehicles and pedestrians. In this paper, we apply an

effective method to detect the vehicle and pedestrian based

on external cube generated by adjacent cells in grid map.

The basic step is as follows:

1) Create a grid map for a frame of data each with

quadratic cell size r×r; calculate variance of elevation

of the points in corresponding cell.

2) Based on the variance of the elevation we use a thresh-

old on the grid map; if the variance of the elevation

is greater than the given threshold, the corresponding

entry of the grid is set as 1, otherwise it is set to 0.

Then the grid map forms a 2D image which is similar

to binary image of the scene in brid-eye view.

3) Traverse all the cells of the grid map. We assemble all

the connected cells whose 4-connected regions are all

1 as a connected region. Afterwards, we rebuild these

connected regions to surround a cube.

4) Using the length and high of the cube, we detect the

vehicles and pedestrians.

5) Clear the cells which is belong to vehicle and pedes-

trian, the remaining grid map will be used for inter-

section recognition.

Figure 2 shows the procedure of the preprocess, along the

direction of the arrows, there are original data, the grid map,

vehicle and pedestrian detection and the remaining grid map

after clearing vehicles and pedestrians.

1) Beam model and feature construction: A probabilistic

beam model is discussed in detail in [10]. It is an approx-

imate physical model of range finders and widely used in

mobile robotics.



Fig. 4. Examples of beams in intersection and road segment, and corresponding histogram of length distribution. The top one is the intersection and the
bottom one is the road segment.
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Fig. 3. Beam model. 360 Numbered beams emitted from an adaptive
launching point, each beam has a width information which is little wider
than the autonomous vehicle.

Our beam model is a sequence of beams with same

launching point which is within the adaptive distance in front

of the autonomous vehicle, the distance is related to the speed

of the autonomous vehicle with the unit in meter per second.

See Fig 3, the amount of beams of our model is 360 with a 1◦

angle of two adjacent beams. Different from the beam model

in [10], we allocate each beam a width that is a little greater

than the width of the autonomous vehicle and enumerate all

the beams from 0 to 359.

Then we launch our beam model in front of the vehicle

with special distance which depends on the vehicle speed

(see Eq. (1)), D is the distance from between the autonomous

vehicle and the launching point, v is the speed of the

autonomous vehicle. The higher the speed is, the longer

is the distance and the slower speed is, the shorter is the

distance. This strategy is more reasonable than using a fixed

distance such as proposed in [8]. All the beams scan linearly

from the launch point. There it will be cut off when the

beam hits an obstacle grid cell. If the beam is not blocked,

its length is limited to a constant L. For intersections and

road segments, the distribution of the length of each beam

is different. See Fig 4, the normalized length histogram of

the beam in intersections and road segments is different. For

road segments, there are two local peaks but for +-shaped

intersections there are four local peaks, Based on this, we

choose the normalized lengths of all the 360 beams in one

frame as the a feature, so the feature is just a 360-D vector.

D = 5 + v ∗ t; (1)

Where t = 1s in this paper.

2) Feature classification: The problem of feature classi-

fication over these features descriptor is then formulated as

supervised machine learning problem with labeled classes for

the two-class classification problem. Due to the better ability

for learning from a small sample set, we apply a Support

Vector Machine (SVM) [11] as our classifier. We consider

the normalized length of all the 360 beams as 360 features

and uses the SVM for an analysis and learning. The resulting

classifier is used to classify other unknown road scenarios.

IV. EXPERIMENTS AND RESULTS

To verify the effectiveness of the proposed method, we

present experiments of applying our algorithm to two kinds

of different data sets; Data set 1 contains 264 frames of +-

shaped intersections, 136 frames of T -shaped intersections

and 400 frames of road segments without intersections; all



Fig. 5. ROC curves of classification on two test data sets, from left to right, are ROC curves of classification on data set 1 and test data set 2.

the road conditions in data set 1 are relatively good with less

interference from other vehicles or pedestrians. In addition,

we also prepared a second data set with challenging road

conditions including many other vehicles and pedestrians

to evaluate the robustness of proposed algorithm. Data set

2 contains 44 frames of +-intersections, 56 frames of T -

intersection and 100 frames of intersection-free road seg-

ments.

All of the data are acquired by the Velodyne scanner

which is mounted on the top of our intelligent vehicle in

Wuhan and Erdos, China. Figure 6 is the intelligent vehicle

named SmartV, developed by Wuhan University. The vehicle

velocity is within or at the national legal speed limit for the

class of roads being considered. The Velodyne HDL-64ES2

is a dense 64-beam scanning LIDAR that provides 360-

degree coverage at 10 Hz, generating just over 1 million 3D

points with associated infrared remittance values per second.

A. Intersection and road segment classification

The set of manually labeled examples used for training

SVM classifier is made of 1300 frames of point clouds

150 frames of +-shaped intersections, 150 frames of T -

shaped intersections and 1000 frames of road segments,

all the intersections are labeled as positive examples. The

performance on test data sets by trained classifier is shown

in Fig. 7 and Table I. We use the true positive rate (TPR),

the true negative rate (TNR), the total accuracy, the receiver

operating characteristic curve (ROC) and the area under

curve (AUC) to evaluate classification results. The TPR,

TNR and accuracy are all above 99% and the ROC curve is

approximation to the top left corner. For test data 1, TPR is

91.25%, TNR is 96%, the total accuracy is above 93%, AUC

is about 0.98, this result is preferred. For the challenging data

set, the TPR, TNR and total accuracy is all falling below

85%, but above 80%. That suggests, more disturbances also

Fig. 6. The intelligent vehicle of Wuhan University:SmartV, the sensor
labeled by red rectangular box is Velodyne scanner.

bring higher difficulty. Some more effective preprocessing

will be considered in future work.

B. T -shaped and +-shaped intersection classification

After detecting the intersections, we recognize the type

of this intersection as T -shaped or +-shaped. The training

data for this task is extracted from previous described train-

ing data, 150 frames of T -shaped intersections are labeled

positive examples, and 150 +-shaped are labeled as negative

examples. The performance of classifier in shown in table II.

For test data, the accuracy is below 90% but above 80%. We

can see that the accuracy of T - and +-shaped classification

is lower than the accuracy of the classification of intersection

and road segment. We will improve this accuracy by design-

ing better features and increase the number of training data.

In general, the results are acceptable.



TABLE I

SVM PERFORMANCE ON INTERSECTION AND ROAD SEGMENT

CLASSIFICATION

TPR TNR Accuracy AUC

Test Data 1 91.25% 96% 93.625% 0.987

Test Data 2 81% 84% 82.5% 0.938

TABLE II

SVM PERFORMANCE T -SHAPED AND +-SHAPED INTERSECTION

CLASSIFICATION

TPR TNR Accuracy

Test Data 1 93.382% 80.681% 85%

Test Data 2 85.714% 79.545% 83%

Figure 7 shows some examples of successful classification

for road environments. As presented, the approach described

here operates in near real time at approximately 5 Hz on an

PC with Intel(R) Core(TM)2 Duo CPU at 2.3Gz.

V. CONCLUSION

This paper proposes a LIDAR-based real-time capable

intersection recognition algorithm for autonomous driving.

First, we build a grid map from point cloud data and remove

the vehicle from the map. Then a beam model is launched

and the launch point is within an adaptive distance in front of

autonomous vehicle. Finally, we exploit a trained classifier

based on a SVM. We classify the current road shape as

intersection and road segment. In addition, we recognize

T -shaped intersection and +-shaped intersection. Different

complexity of test data are experimented to demonstrate the

effectiveness and robustness of the proposed method. In the

future work, we will in addition to improve the accuracy of

intersection recognition, detect more attributes of intersection

such as the direction and width.

REFERENCES

[1] J. Hu, A. Razdan, J. Femiani, M. Cui, and P. Wonka, “Road network
extraction and intersection detection from aerial images by tracking
road footprints,” Geoscience and Remote Sensing, IEEE Transactions
on, vol. 45, no. 12, pp. 4144–4157, 2007.

[2] T. Jochem, D. Pomerleau, and C. Thorpe, “Vision-based neural
network road and intersection detection and traversal,” in Intelligent
Robots and Systems, 1995. IEEE/RSJ International Conference on,
vol. 3, pp. 344–349.

[3] ——, “Vision based intersection navigation,” in Intelligent Vehicles
Symposium(IV) 1996, IEEE, pp. 391–396.

[4] C. Rasmussen, “Road shape classification for detecting and negotiating
intersections,” in Intelligent Vehicles Symposium(IV) 2003, IEEE, pp.
422–427.

[5] K. Kodagoda, W. Wijesoma, and A. Balasuriya, “Road curb and
intersection detection using a 2d lms,” in Intelligent Robots and
Systems, 2002. IEEE/RSJ International Conference on, vol. 1, pp. 19–
24.

[6] W. Wijesoma, K. Kodagoda, A. Balasuriya, and S. Challa, “Road curb
tracking in an urban environment,” in Information Fusion, Proceedings
of the Sixth International Conference 2003, IEEE, vol. 1, pp. 261–268.

[7] O. Aycard, Q. Baig, S. Bota, F. Nashashibi, S. Nedevschi, C. Pantilie,
M. Parent, P. Resende, and T. Vu, “Intersection safety using lidar and
stereo vision sensors,” in Intelligent Vehicles Symposium (IV) 2011,
IEEE, pp. 863–869.

[8] T. Chen, B. Dai, D. Liu, and Z. Liu, “Lidar-based long range road
intersection detection,” in Image and Graphics (ICIG), 2011 Sixth
International Conference on, IEEE, pp. 754–759.

[9] S. Thrun, “Probabilistic robotics,” Communications of the ACM,
vol. 45, no. 3, pp. 52–57, 2002.

[10] D. Fox, S. Thrun, and W. Burger, “Probabilistic robotics,” 2005.
[11] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learn-

ing, vol. 20, no. 3, pp. 273–297, 1995.



Road segment

Class label icons:

Intersection

T-shaped
Intersection

+-shaped
Intersection

Fig. 7. Examples of successful classification. The first row are examples of road segments; the second row are examples of T -shaped intersections; the
last row are examples of "+"-shaped intersections.


