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Quite a number of approaches for solving the simultaneous localization and mapping
(SLAM) problem exist by now. Some of them have recently been extended to mapping en-
vironments with six-degree-of-freedom poses, yielding 6D SLAM approaches. To demon-
strate the capabilities of the respective algorithms, it is common practice to present gener-
ated maps and successful loop closings in large outdoor environments. Unfortunately, it
is nontrivial to compare different 6D SLAM approaches objectively, because ground truth
data about the outdoor environments used for demonstration are typically unavailable.
We present a novel benchmarking method for generating the ground truth data based
on reference maps. The method is then demonstrated by comparing the absolute perfor-
mance of some previously existing 6D SLAM algorithms that build a large urban outdoor
map. C© 2008 Wiley Periodicals, Inc.
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1. THE PROBLEM: DETERMINING
MAP QUALITY IN SLAM

Algorithms for solving the robotic simultaneous lo-
calization and mapping (SLAM) problem are a key
scientific issue in mobile robotics research. Solutions
to SLAM are of core importance in providing mobile
robots with the ability to operate in true autonomy.
SLAM algorithms integrate robot action and sensor
readings and exploit the fact that previously mapped
areas are recognized.

Popular mapping algorithms work with three-
degree-of-freedom (DoF) pose estimates, that is, robot
poses are represented as P = (x, y, θz). This choice
is appropriate for indoor environments but not for
mapping many outdoor environments, which, in
general, require using poses in six DoF in order to
cope with elevation, pitch, and roll. Therefore, the
respective approaches, called 6D SLAM (Nüchter,
Surmann, Lingemann, Hertzberg, & Thrun, 2004),
consider the six-DoF pose V = (x, y, z, θx, θy, θz) of
the mobile robot with three position coordinates and
roll, pitch, and yaw angles.

How should results of different SLAM algo-
rithms be compared? An important criterion is clearly
the quality of the maps that they would deliver for
some test environment. Now what is map quality?
Clearly, it is important that a map be consistent, that
is, it should contain no artifacts and doublets but all
perceivable structures. Ideally, it should be correct,
too, that is, it should represent metrical information
about the environment in a correct way.

Although it is cumbersome but feasible to deter-
mine the correctness of typical planar indoor maps
(use a yardstick for making independent measure-
ments), it is practically impossible to get this type
of independent ground truth information for large
three-dimensional (3D) outdoor scenes. So on the one
hand, generating 3D maps of large environments,
using 3D or 6D poses, has received much attention re-
cently (e.g., Cole & Newman, 2006; Pfaff et al., 2007;
Triebel, Pfaff, & Burgard; 2006). On the other hand,
a framework for benchmarking these large experi-
ments is still missing. Well-known SLAM sites of-
fer only data sets, for example, Radish: The Robotics
Data Set Repository (Howard & Roy, 2007) or algo-
rithms, for example, OpenSLAM (Stachniss, Frese, &
Grisetti, 2007) and no ground truth data. So given a
map generated by some SLAM algorithm, we may
judge whether the map “looks good,” that is, is not
obviously inconsistent, but there is no way to mea-

sure its quality with respect to independent refer-
ence data, let alone to determine its consistency with
respect to ground truth. So comparing systemati-
cally the maps resulting from different SLAM ap-
proaches is futile. Mapping environments by conven-
tional means, that is, using markers and geodetic sur-
veying equipment, ends up with maps containing
similar measures of uncertainty, and such guarantees
are required by many mapping customers, for exam-
ple, applications in facility management and architec-
ture or in construction and maintenance of tunnels,
mines, and pits. In contrast, current SLAM technol-
ogy cannot come up with performance measures.

This paper presents a novel method for gen-
erating independent reference data for benchmark-
ing outdoor SLAM approaches. In particular, we are
aiming at full 6D SLAM approaches. Our procedure
makes use of an independently available, accurate
environment map (provided by the land registry of-
fice), a Monte Carlo localization (MCL) technique that
matches sensor data against the reference map, and
manual quality control.

To demonstrate the use of the benchmarking
method, we apply it for determining the quality of a
family of 6D SLAM approaches that have been pub-
lished previously. To keep this paper self-sufficient,
it does include sketches of these approaches; bear
in mind, however, that the point of this paper is
demonstrating the benchmarking method, not the
SLAM approaches. The data used for the respective
experiments were recorded using a mobile robot that
was steered manually in natural terrain, over asphalt
roads, sidewalks, cobblestone, etc., with a fast 3D
scanner gauging the environment. A sketch of the
demo environment is given in Figure 1.

The next section of this paper points to related
work. Then, we describe the sensor system used in
this work for generating large 3D maps and the two
pairs of mapping algorithms used for demonstrating
how to evaluate mapping results. After that, Section 4
presents the MCL-based benchmarking technique. In
the end, we use this technique in a demo evaluation
based on SLAM results from a data set consisting of
924 3D scans. Section 7 concludes.

2. RELATED WORK

2.1. Ground Truth Experiments

In doing experiments with ground truth reference, re-
searchers aim at measuring the objective performance
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Figure 1. Performance measurement of SLAM algorithms
using reference maps and MCL in an urban outdoor envi-
ronment (University of Hannover campus; 3D scan indices
1–700). Distances are given in meters.

of a dedicated algorithm. On the basis of this bench-
mark, it is possible to give an experimental proof of
the effectiveness of a new algorithm. Furthermore,
measuring the performance of an algorithm allows
it to be optimized and compared to other existing
solutions.

Benchmarking is a common instrument in sci-
ence. Good examples for successful performance
measurements in computer science are available in
the computer vision community. Several projects aim
at providing image databases for other researchers
(Hoover et al., 1996; Torralba, Murphy, & Freeman,
2007). These image databases are supplemented by
ground truth images and algorithms that calculate
performance metrics. In doing so, the community is
able to make progress and to document its progress
in fields such as image segmentation and object
recognition.

Unfortunately, this kind of performance
measurement is not widespread in the robotics
community. Even though there are several ways of
comparing the performance of robotic algorithms
and systems, one basic step is to provide experimen-
tal data and results to other research groups. Up to
now this is done only by small projects (Howard
& Roy, 2007; Stachniss et al., 2007) or by individual
researchers. Another way of comparing robotic sys-
tems is competitions such as RoboCup (Federation,

2007), ELROB (FGAN, 2007), or the Grand Challenge
(DARPA, 2007). This kind of competition allows the
level of system integration and the engineering skills
of a certain team to be ranked, but it is not possible to
measure the performance of a subsystem or a single
algorithm.

Objective benchmarking of localization and map-
ping algorithms is achieved only by comparing ex-
perimental results against reference data. The practi-
cal problem is to generate the ground truth data. In
computer vision, ground truth data are either avail-
able for synthetic images or need to be hand la-
beled. In the case of mobile robot navigation, one
way of gathering ground truth data is the use of pre-
cise global positioning systems (RTK-GPS) (Guivant,
Nebot, & Baiker, 2000). Unfortunately, these data are
available only for open outdoor environments and
not for urban outdoor environments or indoor envi-
ronments. Another possibility is to use complex ex-
ternal measurement setups.

Simulation yields another benchmarking method
for robotic algorithms, enabling researchers to per-
form experiments in defined conditions and to repeat
these experiments. However, real life differs from
simulation. Experiments involving sophisticated sen-
sors such as cameras or laser scanners can be simu-
lated only up to a certain level of accuracy, for ex-
ample, capturing environments must regard surface
properties such as material, local structures, and re-
flections. Therefore, using real robotic data sets is fa-
vored for benchmarking in this paper.

2.2. State of the Art in Metric
Robotic Mapping

2.2.1. Planar Mapping

The state of the art for metric maps is dominated
by probabilistic methods, in which the robot has
probabilistic motion models and uncertain percep-
tion models. By integration of these two distribu-
tions with a Bayes filter, for example, Kalman or
particle filter, it is possible to localize the robot. Map-
ping is often an extension to this estimation prob-
lem. Beside the robot pose, positions of landmarks
are estimated. Closed loops, that is, a second en-
counter of a previously visited area of the environ-
ment, play a special role here: Once detected, they
enable the algorithms to bound the error by deform-
ing the mapped area to yield a topologically con-
sistent model. However, there is no guarantee for
a correct model. Several strategies exist for solving
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SLAM. Thrun (2002) surveys existing techniques, that
is, maximum likelihood estimation, expectation max-
imization, extended Kalman filter, or (sparsely ex-
tended) information filter SLAM. FastSLAM (Thrun,
Fox, & Burgard, 2000) approximates the posterior
probabilities, that is, robot poses, by particles.

SLAM in well-defined, planar indoor environ-
ments is considered solved. In principle, probabilis-
tic methods are extendable to six DoF. However, to
our knowledge no reliable feature extraction mech-
anisms or methods for reducing the computational
cost of multihypothesis tracking procedures such as
FastSLAM (which grows exponentially with the DoF)
have been published.

2.2.2. Mapping Environments in Three Dimensions

Popular 3D environment mapping methods include
the use of translated two-dimensional (2D) laser
range finders. Thrun et al. (Thrun, Fox, & Burgard,
2000) use two 2D laser scanners for acquiring 3D
data; one for planar localization and the second, ver-
tically mounted scanner, for acquiring 3D data while
moving. The precision of 3D data points depends, in
addition on the precision of the scanner, critically on
that pose estimation. These 3D mapping approaches
are often used for navigation (Thrun, Montemerlo, &
Aron, 2006).

An emerging research topic is 6D SLAM, that is,
while mapping, the robot pose is represented with
six DoF. In previous work, we used a 3D laser range
finder in a stop-scan-match-go-process to create a
3D map of the environment by merging several 3D
scans into one coordinate system (Nüchter et al., 2004;
Surmann, Nüchter, Lingemann, & Hertzberg, 2004).
Similar experiments have been made by Newman
et al. (Newman, Cole, & Ho, 2006). A current trend
in laser-based 6D SLAM is to overcome the stop-and-
go fashion of scan acquisition by rotating or pitch-
ing the scanner while moving (Cole & Newman,
2006; Triebel et al., 2006; Wulf, Arras, Christensen, &
Wagner, 2004). In their most recent work, Pfaff et al.
(2007) employ two rotating SICK scanners for data ac-
quisition, odometry, inertial measurement unit (IMU)
and differential GPS (DGPS) positioning, a variant of
the iterative closest point (ICP) algorithm, and a loop-
closing procedure to map large urban environments
in three dimensions.

Feature-based 6D SLAM methods are investi-
gated by Frese (2007), who has adapted his fast
treemap algorithm to six DoF, which, however, covers

the least-square estimation core and no actual scan-
data processing. Other pure 6D SLAM backends such
as the tree optimizer by Olson et al. (Olson, Leonard,
& Teller, 2006) are becomming available (Grisetti,
Grzonka, Stachniss, Pfaff, & Burgard, 2007).

Among the category of feature-based 6D
SLAM are the visual SLAM methods, that is, the
MonoSLAM system of Davison et al. (Davison, Reid,
Molton, & Stasse, 2007).

3. OUR REFERENCE METHODS FOR
GENERATING LARGE URBAN 3D MAPS

This section presents the hardware and procedures
used in this work as candidates for being bench-
marked. They were published earlier, involving coau-
thors of the present paper; we give sketches here to
keep the paper self-sufficient. Remember that the is-
sue in the current paper is the benchmarking method,
whose description follows in the next section.

3.1. 3D Range Sensor

The sensor that has been employed for the experi-
ments is a fast 3D laser range scanner, developed at
the Leibniz Universität Hannover (Fig. 2). As there is
no commercial 3D laser scanner available that meets
the requirements of mobile robots, it is common prac-
tice to assemble 3D sensors out of standard 2D laser
range sensors and additional servo drives.

The specialties of our RTS/ScanDrive are a num-
ber of optimizations that are made to allow fast scan-
ning. One mechanical optimization is the slip ring
connection for power and data. This connection al-
lows continuous 360-deg scanning without the accel-
erations and high power consumption that are typi-
cal for panning systems. Even more important than
the mechanical and electrical improvements is the
precise synchronization between the 2D laser data,
servo drive data, and the wheel odometry. Owing to
this good synchronization, it is possible to compen-
sate systematic measurement errors and to measure
accurate 3D point clouds even with a moving robot.
Detailed descriptions of these 3D scanning methods
and optimizations are published in Wulf and Wagner
(2003).

Having the optimizations described above, the
limiting factor in building a faster 3D laser scanner
is the maximal number of 13,575 (75 × 181) points
that can be measured with a SICK LMS 2×× sensor
in 1 s. The only way of building faster SICK LMS
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Figure 2. Left: 3D laser range sensor RTS/ScanDriveDuo. It takes a full 3D scan of 32,580 points in 1.2 s. Right: The mobile
robot Erika.

2××–based 3D scanners is to use multiple 2D mea-
surement devices (Triebel et al., 2006). For this reason
we present the RTS/ScanDriveDuo in this paper. This
3D scanner makes use of two SICK LMS 291 2D laser
scanners. Thus the measurement time for 3D scans
with 2-deg horizontal and 1-deg vertical angle resolu-
tion is reduced to 1.2 s. In this case one 3D scan mea-
sured in 1.2 s consists of 32,580 (180 × 181) 3D points.

3.2. The Mobile Robot Erika

The mobile service robot Erika is built out of the
Modular Robotics Toolkit (MoRob-Kit). The overall
size (L × W × H) of Erika is 95 × 60 × 120 cm. With
its differential drive motors, it is able to drive up to
1.6 m/s in indoor and urban outdoor environments.
The battery capacity is designed to supply the electric
wheelchair motors, sensors, and a 700-MHz embed-
ded personal computer for at least 2 h or 5 km.

In addition to the 3D laser scanner, the mobile
robot is equipped with wheel odometry, a three-axis
gyroscope, and a low-cost SiRF III GPS receiver. The
measured data of the wheel odometry and the gyro-
scope are fused to result in the OdometryGyro that
is used as the internal sensor for both MCL and
SLAM. In contrast to the odometry sensor, the GPS
receiver does not influence either the MCL or the
SLAM results. It is logged only to have another laser-
independent reference.

3.3. 6D SLAM with ICP-Based Scan Matching

We use the well-known ICP algorithm (Besl &
McKay, 1992) to calculate the transformation while
the robot is acquiring a sequence of 3D scans. The ICP
algorithm calculates iteratively the point correspon-
dence. In each iteration step, the algorithm selects the
closest points as correspondences and calculates the
transformation (R, t) for minimizing the equation

E(R, t) =
Nm∑
i=1

Nd∑
j=1

wi,j ||mi − (Rdj + t)||2, (1)

where Nm and Nd , are the numbers of points in the
model set M or data set D, respectively, and wj,i are
the weights for a point match. The weights are as-
signed as follows: wi,j = 1, if mi is the closest point
to dj within a close limit, wi,j = 0 otherwise. The as-
sumption is that the point correspondences are cor-
rect in the last iteration. In each iteration, the transfor-
mation is calculated by the quaternion-based method
of Horn (1987).

To digitalize environments without occlusions,
multiple 3D scans have to be registered. Consider a
robot traveling along a path and traversing n + 1 3D
scan poses V0, . . . , Vn. A first straightforward method
for aligning several 3D scans taken from the poses
V0, . . . , Vn is pairwise ICP, that is, matching the scan
taken from pose V1 against the scan from pose V0,

Journal of Field Robotics DOI 10.1002/rob



Wulf et al.: Benchmarking Urban 6D SLAM • 153

matching the scan taken from V2 against the scan
from pose V1, and so on. Here the model set M is
formed from the 3D data from pose Vi−1 and the
data set D that of the pose Vi for all i ∈ [1, n]. A sec-
ond plausible method is to form of all previously ac-
quired 3D scans a so-called metascan and match the
last acquired one against this metascan. This method
is called metascan ICP. Here, the model set M con-
sists of the union of the 3D scans from the poses
V0, . . . , Vi−1 and the data set D that of pose Vi , for all
i ∈ [1, n].

3.4. 6D SLAM with Global Relaxation

Both pairwise ICP and metascan ICP correct the
robot pose estimates, but registration errors sum
up. SLAM algorithms use loop closing to bound
these errors. If two estimated robot poses Vi =
(xi, yi, zi, θx i, θy i

, θzi) and Vj = (xj , yj , zj , θxj , θyj
, θzj )

are close enough, that is, their Euclidean distance
falls below a threshold (here 5 m), then we as-
sume that these scans overlap and are matchable.
To a graph initially containing the sequence of all
poses (V0, V1), (V1, V2), . . . , (Vn−1, Vn), the edge (Vi ,Vj )
is added. While processing the scans with pairwise
ICP or metascan matching, we detect closed loops us-
ing this simple distance criterion. Once detected, a
six-DoF graph optimization algorithm for global re-
laxation based on the method of Lu and Milios (1997)
is employed, namely Lu and Milios–style SLAM
(LUM). This is a variant of GraphSLAM. Details of
the six-DoF optimization, that is, how the matrices
have to be filled, can be found in Borrmann, Elseberg,
Lingemann, Nüchter, and Hertzberg (in press); thus
we give only a brief overview here:

Given a network with n + 1 nodes X0, . . . , Xn

representing the poses V0, . . . , Vn, and the directed
edges Di,j , we aim at estimating all poses optimally
to build a consistent map of the environment. The
directed edge Di,j represents the change of the pose
(x, y, z, θx, θy, θz) that is necessary to transform one
pose Vi into Vj , that is, Vi = Vj ⊕ Di,j , thus transform-
ing two nodes of the graph. For simplicity, the ap-
proximation that the measurement equation is linear
is made, that is,

Di,j = Xi − Xj . (2)

A detailed derivation of the linearization is given in
Borrmann et al. (in press). An error function is formed
such that minimization results in improved pose esti-

mations:

W =
∑
(i,j )

(Di,j − D̄i,j )T C−1
i,j (Di,j − D̄i,j ), (3)

where D̄i,j = Di,j + �Di,j models random Gaussian
noise added to the unknown exact pose Di,j . This rep-
resentation involves resolving the nonlinearities re-
sulting from the additional roll and pitch angles by
Taylor expansion. The covariance matrices Ci,j de-
scribing the pose relations in the network are com-
puted based on the paired closest points (Borrmann
et al., in press). The error function equation (3) has
a quadratic form and is therefore solved in closed
form by sparse Cholesky decomposition. The algo-
rithm optimizes Eq. (3) gradually by iterating the fol-
lowing three steps: First, for every network link the
corresponding covariance is computed based on the
point correspondences of the scan matching. Then the
error function (3) is minimized by solving a linear
system of equations. In the third step, the local trans-
formations are applied to the poses, resulting in im-
proved pose estimates. The iterative fashion of the al-
gorithm, including graph reestimation, is the cause
of the high quality of the resulting maps (Borrmann
et al., in press).

Using the global optimization, two more strate-
gies have been implemented: In pairwise LUM, we
use pairwise matching of scans for initially estimat-
ing the robot poses. After a loop has been closed, the
global relaxation to all previously acquired scans is
applied. In metascan LUM, every new scan is ini-
tially matched against all previously acquired scans.
In both algorithms, global relaxation is started after
a closed loop is detected. The relaxation considers all
previously acquired scans.

3.5. Mapping Strategies

Figure 3 depicts how the mapping strategies are
interleaved. 6D SLAM is the result of a six-DoF ICP
algorithm combined with the extension of Lu/Milios
Scan Matching to six DoF as global relaxation.
The SLAM backend uses fast matrix computations
exploiting the sparse structure of the corresponding
SLAM graphs (Davis, 2006). Other backends such
as Olson’s graph optimization, extended to six DoF
(Kaess, Ranganathan, & Dellaert, 2007; Olson et al.,
2006) or treemap by Frese (2007), might be used as
well. Using different paths in Figure 3, the different
mapping strategies are created.
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Figure 3. Mapping algorithm overview. Four strategies for
mapping can be created from this procedure. For algorith-
mic details see Borrmann et al. (in press).

Animations of the four mapping strategies, pair-
wise ICP, metascan ICP, pairwise LUM, and metascan
LUM, are given in the accompanying video (available
as a supplementary file at http://www.interscience.
wiley.com/jpages/1556-4959/suppmat/) and on
the following web page: http://kos.informatik.uni-
osnabrueck.de/download/6DSLAMbenchmarking/.
Note that the maps presented in the video are rotated
about 190 deg. Note that the data set contains 928
3D scans and the total trajectory has a length of more
than 1 km.

We did choose our own SLAM algorithm set for
carrying out the proposed benchmark over an exist-
ing SLAM algorithm (Stachniss et al., 2007), because
it is often the case that parameters of the algorithm re-
quire being adjusted for performing well on a specific
data set.

4. THE BENCHMARKING TECHNIQUE

This paper introduces a new benchmarking tech-
nique for SLAM algorithms. The benchmark is based
on the final SLAM results and a reference position
that is obtained independently of the SLAM algo-
rithm under test.

As highly accurate RTK-GPS receivers cannot be
used in urban outdoor environments, we present a

technique that is based on surveyed maps as they
can be obtained from German land registry offices.
The process of generating these ground truth refer-
ence positions can be divided into a MCL step that
matches the sensor data to the highly accurate map
and a manual quality control step to validate the
MCL results.

As the SLAM algorithm under test and the MCL
algorithm use the same sensor data, the SLAM results
and the reference positions are not completely inde-
pendent. On the other hand, global localization al-
gorithms and incremental localization and mapping
algorithms work differently. Incremental mapping
algorithms like odometry and SLAM can suffer from
accumulating errors and drift effects. However, pure
localization algorithms eliminate these errors by con-
tinuously matching to an accurate given map. There-
fore, the remaining error of the manually supervised
reference position is at least an order of magnitude
smaller then the discussed SLAM errors.

4.1. Reference Map

As part of their geo information system, the German
land registration offices feature surveyed data of all
buildings within Germany. The information about
these building is stored in vector format in the so-
called Automatisierte Liegenschaftskarte (ALK). The
vector format contains lines that represent the outer
walls of solid buildings. Each line is represented by
two points with northing and easting coordinates in
a Gauss–Krueger coordinate system. The upper error
bound of all points stored in the ALK is specified to
be 4 cm. Up to now, no further details about doors,
windows, or balconies are available.

If no reference map is at hand, one can produce
one from calibrated areal photographs or satellite im-
ages. The accuracy of such maps is usually in the
range of 10 cm.

4.2. MCL

The MCL is a commonly used localization algo-
rithm that is based on particle filtering (Fox, Thrun,
Burgard, & Dellaert, 2001). As the theory of MCL is
well understood, we focus on the sensor model that
is used to match the 3D sensor data to the 2D refer-
ence map with this paper.

The key problem of matching a 3D laser scan to
a 2D map is solved by using a method called Virtual
2D Scans (Wulf, Arras, Christensen, & Wagner, 2004).
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Figure 4. Classified 3D point cloud of an urban scene, fea-
turing a building and bicycles in front (ground points, light
gray; plain vertical surface points, dark gray; others, black).

The method splits up into two steps. The first step
reduces the number of points in the 3D point cloud.
The reduction step is based on the assumption that
the reference map presents plain vertical walls. For
this reason all 3D measurement points that do not be-
long to plain vertical surfaces need to be removed
(Figure 4). Wulf, Brenneke, and Wagner (2004) de-
scribe a sequence of 3D segmentation and classifi-
cation algorithms that is used to do this reduction
in urban outdoor environments. By this means, the
ground floor, vegetation, and small objects are re-
moved from the 3D data. Measurement points on the
outer walls of buildings and on other unmapped ver-
tical obstacles remain. Thus, cars, people, and so on
are removed in urban scenes, because the scanner
usually acquires data points above these objects and
the Virtual 2D Scan contains data points on buildings.

Having this reduced 3D point cloud, the second
step of the Virtual 2D Scan method is a parallel pro-
jection of the remaining 3D points onto the horizon-
tal plane. After this projection the z coordinate con-
tains no information and can be removed. By this
means, the Virtual 2D Scan has the same data for-
mat as a regular 2D scan. Thus it can be used as in-
put data of a regular 2D MCL algorithm. To reduce
the computational complexity of the successive MCL
algorithm, the remaining measurement points are
randomly downsampled. Experimental results show
that fewer than 100 measurement points are needed
for sufficient localization. Thus the average 3D point
cloud with about 30,000 measurement points is re-
duced to a Virtual 2D Scan with only 100 points with-

out losing information that is needed for localization
in urban outdoor environments.

Owing to the 2D nature of the reference map and
the used 2D MCL algorithm, only the three-DoF pose
P REF = (x, y, θz) of the robot can be estimated. There
is no reference information on the robot’s elevation z.
Furthermore, the roll and pitch components θx θy of
the six-DoF robot pose cannot be estimated with this
2D method. These angles need to be measured and
compensated with a gyro unit before the generation
of the Virtual 2D Scans.

4.3. Manual Quality Control

As described above, the MCL is used to generate the
reference path from the given map and sensor read-
ings. But the output of the MCL cannot be stated as
ground truth in general. Like all measured signals,
the reference path has an error. The absolute error
depends on the error of the reference map, the sen-
sor errors, and the convergence and precision of the
MCL algorithm. To be able to use the reference path
as ground truth in our benchmark, the absolute error
of the reference path needs to be at least one order of
magnitude smaller than the error of the SLAM algo-
rithms under test.

To ensure the quality of the reference path, a man-
ual quality control step is integrated into the bench-
mark procedure. In this step a human supervisor
monitors the sensor data, the particle distribution,
and the matching results to decide whether the cal-
culated reference path can be used as ground truth.
The manual quality control decides which parts of the
path are used for benchmarking, but the manual su-
pervisor is not taking any influence on the sensor data
of the MCL algorithm.

First, the sensor data need to be checked for a suf-
ficient number of landmarks, namely, walls as given
in the reference map. If there are not enough land-
marks in the environment and thus in the Virtual 2D
Scans, the MCL results depend only on odometry and
are therefore inaccurate.

Second, the numerical condition of the parti-
cle filter needs to be monitored. As a particle filter
presents only a sampled belief, an efficient distribu-
tion of the finite number of particles is essential for
correct operation and precise results.

If these two criteria are fulfilled, the remaining
error is white noise with zero mean and a small stan-
dard deviation depending on the map, the 3D sensor,
and the discretization of the particle filter.
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4.4. Benchmark Criteria

Up to this point, the MCL positions and SLAM po-
sitions are given in different coordinate systems. The
MCL positions are given in the global Gauss–Krueger
coordinate system of the reference map, and the
SLAM positions are given in a local coordinate sys-
tem that is centered in the robot’s start position. To
be able to compare the positioning results, the SLAM
positions need to be transformed into the global co-
ordinate system based on the known start position.

Having the trusted MCL reference P REF and the
SLAM results V SLAM in the same coordinate system,
it is possible to calculate objective performance met-
rics based on position differences. The first metric
is based on the 2D Euclidean distance between the
SLAM and MCL position:

ei =
√(

xSLAM
i − xREF

i

)2 + (
ySLAM

i − yREF
i

)2
. (4)

The second metric is based on the difference between
the SLAM and MCL orientation:

eθ,i = ∣∣θSLAM
z,i − θREF

z,i

∣∣ . (5)

As the MCL position is given in three DoF only, the
robot’s elevation and roll and pitch angles cannot be
tested.

To compare the performance of different SLAM
algorithms on the same data set, it is possible to cal-
culate scores like the standard deviation

σ =
√√√√ 1

n + 1

n∑
i=0

e2
i , (6)

and the error maximum

emax = max ei . (7)

Of course, these statistical tests can be done anal-
ogously on the orientation errors eθ,i , resulting in the
scores (σθ and eθ,max).

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

The presented experiment was carried out at the cam-
pus of the Leibniz Universität Hannover. The ex-
perimental robot platform that was used to collect
the data was manually driven on the 1.242-km path
closing a total of five small and large loops. On this

path 924 full 3D scans were collected at an average
robot speed of 4 km/h and a maximum speed of
6 km/h. In addition to the 3D laser data, wheel odom-
etry and fused wheel/gyro odometry were stored
with a data rate of 10 Hz. The position fixes of a low-
cost GPS were logged with 1 Hz.

5.2. The Reference Path

The section of the ALK that is used as the reference
map contains 28 buildings represented by 413 line
segments. To avoid huge coordinate numbers, a con-
stant offset of 5,806,400 m northing and 3,548,500 m
easting is subtracted from all Gauss–Krueger co-
ordinates. This offset corresponds to the position
52◦23′58′′ north, 9◦42′41′′ east in world geodetic sys-
tem 1984 (WGS84) coordinates.

The reference path is calculated with a MCL
based on 3D laser data and wheel/gyro odometry.
The particle filter with 200 samples runs in parallel
with the data acquisition and logging threads on a
Pentium III 700-MHz processor. The localization re-
sults are plotted as a solid gray line in Fig. 1.

For the manual quality control the MCL results
can be displayed offline. As a result of the manual
quality control, it came out that the reference path
for 3D scan index 198–241 cannot be used for bench-
marking as not enough landmarks are visible in the
3D laser scan. As can be seen in Fig. 1 (MCL error
box), the MCL results drift off from the true position.
Starting with index 236 on the 3D scan and thus the
Virtual 2D Scan, new landmarks appear. As of index
242 the MCL is converged to the true position again.
Thus, the manual quality control decides that the ref-
erence path from index 1 to 197 and 242 to 924 can be
used as ground truth in the benchmarking process.
The remaining error of the reference path is estimated
to be white noise with zero mean and a standard de-
viation of 10 cm.

5.3. Mapping Results

5.3.1. Mapping with Internal Sensors and GPS

Because any sensor is inaccurate, the maps generated
using internal sensors for pose estimation are of lim-
ited quality, as has been demonstrated many times
before. For odometry and the gyro-based localization,
the errors for orientation and position are potentially
unbounded. However, because paths usually contain
left and right turns, these errors partially balance. The
GPS shows problems close to buildings, where the
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Figure 5. Orientation errors. Comparing internal sensors
measurements, GPS headings, and metascan ICP match-
ing with orientations computed by MCL localization. The
x axis represents the 3D scan index, roughly corresponding
to the position at the robot path. The orientation errors were
computed using Eq. (5).

orientation is poorly estimated and the position error
reaches its maximal value. Figure 5 shows the orien-
tation errors of the internal sensors in comparison to
ICP scan matching.

5.3.2. Mapping with ICP

Mapping with ICP was done using two different
methods, namely pairwise ICP and metascan ICP.

Figure 6. Position errors. Comparison of different map-
ping strategies. The position errors were computed using
Eq. (4).

The latter method outperforms pairwise ICP because
it considers all previously acquired 3D scans leading
to slower error accumulation. Figure 6 shows the scan
matching errors in comparison to methods that use
explicit loop closure that are described next.

5.3.3. Mapping with ICP and Global Relaxation

The performances of the methods pairwise LUM and
metascan LUM were also evaluated. As expected,
loop closing reduces the position error at the po-
sitions where the loop is closed to approximately
zero, for example, Figure 6 at scan index 100, where
the first loop was closed, and at the indices 300–
400 and 600–700. At these locations, the Lu/Milios-
style SLAM methods outperform the pairwise ICP
and metascan ICP methods and the absolute error
is close to zero. However, because global relaxation
produces consistent maps, the error between the loop
closures might be larger than the one obtained with-
out global relaxation. Having consistent maps does
not necessarily imply correct maps. Pairwise LUM,
and metascan LUM may also fail, if the loop cannot
be closed. This case occurs in our experiment in the fi-
nal part of the trajectory, that is, when the scan index
is greater than 700 (cf. Figures 6 and 7). This last loop
was not detected by the threshold method described
in Section 3.4.

Finally, Tables 1 and 2 compare all localiza-
tion/mapping methods. Figure 8 shows the final
map generated with metascan LUM. The left-hand
part contains the first 720 3D scans that were
matched correctly, whereas the right-hand part con-
tains all scans including the errors due to the

Figure 7. 3D view of the problematic loop closure in
Figure 8 (right, black rectangle). Loop closing is not possi-
ble due to accumulated elevation errors.
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Table I. Position errors (m).

Method σ emax

Odometry 55.1 261.2
OdometryGyro 64.7 250.1
GPS 5.8 95.1
Pairwise ICP 5.2 21.8
Metascan ICP 1.6 6.6
Pairwise LUM 4.9 17.0
Metascan LUM 3.8 13.8

Table II. Orientation errors (deg).

Method σθ eθ,max

Odometry 77.2 256.6
OdometryGyro 15.1 56.7
GPS 27.3 171.0
Pairwise ICP 6.3 17.7
Metascan ICP 2.4 11.8
Pairwise LUM 5.2 22.8
Metascan LUM 4.3 21.2

Figure 8. Final 3D map using the metascan LUM strategy. 3D points are classified as ground (light gray) and object points
(dark gray). The trajectory is denoted in white. Left: Registration of the first 720 3D laser scans into a common coordinate
system. Global relaxation leads to a consistent map. Right: The accumulated elevation errors on the remaining path (3D
Scan 700 to end) prevent loop closing (black rectangle). Because of that, parts of the map are inconsistent. A detailed view
of the black rectangle is provided in Figure 7.

undetected loop. Figure 9 shows a 3D view of the
scene including two close-up views for trajectories
given in Figure 10.

5.4. Computational Requirements

Of the compared mapping methods, only the internal
sensor–based method and the pairwise ICP are online
capable. Pairwise ICP using an octree-based point re-
duction and kd-tree search are performed in less than
1.2 s using standard computing hardware. In metas-
can ICP, mapping the computing time for closest
point calculations increases with the number of scans;
therefore, the scan matching time increases to 11.2 s
for matching scan no. 920 with all previous ones, that
is, matching 32,580 against 29 million points.

Pairwise LUM and metascan LUM spend addi-
tional time on computing the point correspondences
for scans represented by the nodes in the graph. Ow-
ing to the iteration required by our GraphSLAM al-
gorithm, the two methods are not online capable
(Borrmann et al., in press). The total map processing
times were 207 and 371 min, respectively. The largest
portion of the computing time was spent in calculat-
ing closest points.
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Figure 9. 3D view corresponding to Figure 8, left. Two close-up views are provided, and the corresponding camera posi-
tions are shown. The trajectories are given in Figure 10.

6. JUSTIFICATION OF THE RESULTS

To validate our experimental methodology, that is,
to generate ground truth reference positions using
MCL as described, we match the acquired 3D scans
with a 3D map generated from the 2D reference map.
For this, the 2D map is extrapolated as a 3D map,

cuboids representing the boundaries of the buildings.
Figure 11 shows the final map with the point clouds
representing the buildings.

This 3D map, which is a 2D map extended by
some height, is used for comparison using the follow-
ing three strategies:
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Figure 10. Computed trajectories in comparison. Right: Top view. Left: 3D view. Owing to the accumulated height error,
the last loop closing is not possible and the computed error score of the SLAM algorithms with global relaxation is larger
than with metascan ICP (cf. Table 1).

Figure 11. Mapped 3D scans overlaid with 3D cuboids based on the 2D reference map.

1. ICP is used for matching every single 3D
scan with the point cloud based on the 2D
map. As it turns out, this method can be ap-
plied only to the first 200 scans, because the
map does not cover the whole robot path.
In comparison, MCL successfully deals with
this problem by applying the motion model
to the particles until scan matching is possi-
ble again. This method is referred to as map
ICP (first part).

2. ICP is used for matching a 3D scan with the
metascan consisting of the 3D points from
the map and all previous acquired and reg-
istered 3D scans. The method will be called
metascan map ICP.

3. The previous method is used with the ex-
tension that points classified as ground are
not included, that is, only the dark gray
points are used for computing point corre-
spondences and the transformation. Thus it
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is called metascan map ICP w/o ground. It
is expected that this restriction results in bet-
ter ICP convergence.

Figures 12 and 13 compare the additional local-
ization/mapping methods. Tables 3 and 4 give quan-
titative results. It turns out that these justification

Figure 12. Orientation errors. Comparing metascan LUM,
metascan map ICP, and map ICP (first part) with orienta-
tions computed by MCL localization. The x axis represents
the 3D scan index, roughly corresponding to the position at
the robot path.

Figure 13. Position errors (Euclidean distance to MCL lo-
calization). Comparing metascan LUM, metascan map ICP,
and map ICP (first part).

Table III. Position errors (m).

Method σ emax

Map ICP (first part) 0.3 1.77
Metascan map ICP 0.38 1.79
Metascan map ICP w/o ground 0.38 2.98

Table IV. Orientation errors (deg).

Method σθ eθ,max

Map ICP (first part) 1.24 4.00
Metascan map ICP 1.40 6.37
Metascan map ICP w/o ground 1.38 6.32

methods behave similarly to MCL and produce com-
parable results, that is, the MCL trajectory differs only
by statistical noise from the trajectories produced by
ICP scan matching using a 3D point cloud derived
from the map.

7. CONCLUSION AND FUTURE WORK

Benchmarking of algorithms and research in ex-
perimental methodology are topics that are gain-
ing increasing importance in robotics. Thus this pa-
per presents a novel evaluation method for SLAM
in urban outdoor environments. The evaluation is
based on a comparison of the final SLAM results and
ground truth reference positions. In our case, these
reference positions are generated with a manually su-
pervised MCL working on surveyed reference maps.
Given these reference positions, it is possible to cal-
culate objective benchmark scores that can be used
for improving and comparing algorithms. This eval-
uation technique is demonstrated with experimental
data and four different 6D SLAM strategies. The ex-
periment that contains 924 full 3D scans on a 1.2-km
path was carried out on the campus of the Leibniz
Universität Hannover.

Needless to say, much work remains to be done,
because some limitations of the system remain: Using
MCL, it is possible only to estimate a three-DoF pose.
Therefore, we plan to acquire a 3D scan by an air-
borne laser scanner as an additional source of infor-
mation for estimating six-DoF reference poses. Fur-
thermore, in areas lacking features, that is, wide open
spaces with no buildings, we plan to complement our
system with GPS. However, this switch might not be
straightforward.
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Future work will include two aspects: First, re-
search in robotic benchmarking techniques needs
emphasis. This conviction will be shared with the
robotics community. To this end, we plan to cooper-
ate with the Radish: The Robotics Data Set Repos-
itory (Howard & Roy, 2007) and the OpenSLAM
(Stachniss et al., 2007) projects. The material pre-
sented in this paper, that is, the 3D scans, odom-
etry, 6D SLAM, and MCL pose estimates can
currently be accessed at http://kos.informatik.uni-
osnabrueck.de/3Dscans/. Moreover, we will address
loop closing as a crucial and challenging problem in
SLAM (cf. Figure 7).
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Hertzberg, J. (in press). Globally consistent 3D map-
ping with scan matching. Journal of Robotics and Au-
tonomous Sytems.

Cole, D. M., & Newman, P. M. (2006). Using laser range
data for 3D SLAM in outdoor environments (pp. 1550–
1563). In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA ’06), Orlando,
FL.

DARPA (2007). www.darpa.mil/grandchallenge/.
Davis, T. A. (2006). Direct methods for sparse linear sys-

tems. Philadelphia: SIAM.
Davison, A. J., Reid, I., Molton, N., & Stasse, O. (2007).

MonoSLAM: Real-time single camera SLAM. IEEE
Transaction on Pattern Analysis and Machine Intelli-
gence (PAMI), 29(6), 1052–1067.

Federation, T. R. (2007). http://www.robocup.org/.
FGAN (2007). http://www.elrob2006.org/.
Fox, D., Thrun, S., Burgard, W., & Dellaert, F. (2001). Particle

filters for mobile robot localization (pp. 419–516). In A.
Doucet, N. de Freitas, & N. Gordon (Eds.), Sequential
Monte Carlo methods in practice. Springer.

Frese, U. (2007). Efficient 6-DOF SLAM with treemap as a
generic backend (pp. 4814–4819). In Proceedings of the
IEEE Internation Conference on Robotics and Automa-
tion (ICRA ’07), Rome, Italy.

Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., & Burgard,
W. (2007). Efficient estimation of accurate maximum
likelihood maps in 3d (pp. 3472–3478). In Proceed-
ings of the IEEE International Conference on Intel-
ligent Robots and Systems (IROS ’07), San Diego,
CA.

Guivant, J., Nebot, E., & Baiker, S. (2000). Autonomous
navigation and map building using laser range sen-
sors in outdoor applications. Journal of Robotic
Systems, 17(10), 565–583.

Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P. J., Bunke,
H., Goldgof, D. B., Bowyer, K. K., Eggert, D. W.,
Fitzgibbon, A. W., & Fisher, R. B. (1996). An experi-
mental comparison of range image segmentation al-
gorithms. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 18(7), 673–689.

Horn, B. K. P. (1987). Closed-form solution of absolute ori-
entation using unit quaternions. Journal of the Optical
Society of America A, 4(4), 629–642.

Howard, A., & Roy, N. (2007). http://radish.sourceforge.
net/.

Kaess, M., Ranganathan, A., & Dellaert, F. (2007). iSAM:
Fast incremental smoothing and mapping with effi-
cient data association (pp. 2486–2493). In Proceedings
of the IEEE International Conference on Robotics and
Automation (ICRA ’07), Rome, Italy.

Lu, F., & Milios, E. (1997). Globally consistent range scan
alignment for environment mapping. Autonomous
Robots, 4(4), 333–349.

Newman, P. M., Cole, D. M., & Ho, K. (2006). Outdoor
SLAM using visual appearance and laser ranging
(pp. 1180–1187). In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA
’06), Orlando, FL.
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