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This article investigates the use of time-of-flight (ToF) cameras in mapping tasks
for autonomous mobile robots, in particular in simultaneous localization and mapping
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(SLAM) tasks. Although ToF cameras are in principle an attractive type of sensor for three-
dimensional (3D) mapping owing to their high rate of frames of 3D data, two features
make them difficult as mapping sensors, namely, their restricted field of view and influ-
ences on the quality of range measurements by high dynamics in object reflectivity; in
addition, currently available models suffer from poor data quality in a number of aspects.
The paper first summarizes calibration and filtering approaches for improving the accu-
racy, precision, and robustness of ToF cameras independent of their intended usage. Then,
several ego motion estimation approaches are applied or adapted, respectively, in order
to provide a performance benchmark for registering ToF camera data. As a part of this,
an extension to the iterative closest point algorithm has been developed that increases the
robustness under restricted field of view and under larger displacements. Using an indoor
environment, the paper provides results from SLAM experiments using these approaches
in comparison. It turns out that the application of ToF cameras is feasible to SLAM tasks,
although this type of sensor has a complex error characteristic. C© 2009 Wiley Periodicals, Inc.

1. INTRODUCTION

Since their invention nearly a decade ago, time-
of-flight (ToF) cameras have attracted attention in
many fields, e.g., automotive engineering, industrial
engineering, mobile robotics, and surveillance. So
far, three-dimensional (3D) laser scanners and stereo
camera systems are used mostly for these tasks due
to their high measurement range and accuracy. Stereo
vision requires the matching of corresponding points
from two images to obtain depth information, which
is directly provided by active sensors, such as laser
scanners or ToF cameras. ToF cameras provide high
frame rates while preserving a compact size. This
feature has to be balanced with measurement accu-
racy and precision. Depending on external interfer-
ing factors (e.g., sunlight) and scene configurations,
i.e., distances, surface orientations, and reflectivities,
distance measurements from different perspectives
of the same scene entail large fluctuations in accu-
racy and precision. These influences cause as well
systematic errors as noise, both needing to be han-
dled by the application. As a result, laser scanners
are still the most common sensors used for 3D map-
ping purposes, e.g., Cole and Newman (2006), Holz,
Lörken, and Surmann (2008), Nüchter, Lingemann,
Hertzberg, and Surmann (2007), and Thrun et al.
(2006).

In this article we present a mapping approach
that deals with large variations in precision of dis-
tance measurements. We provide the underlying data
in order to motivate further investigations in 3D
mapping with ToF cameras. The proposed map-
ping approach is performed robustly with no ad-
ditional sensory information about the ToF cam-
era’s ego motion. The approach comprises depth

correction by employing an improved calibration, fil-
tering of remaining inaccuracies, registration with re-
spect to a common coordinate system, and map re-
finement including global relaxation—all combined
yielding a precise and consistent 3D map.

The article is organized as follows: Section 2 elab-
orates 3D mapping approaches and applications re-
lated to ToF cameras. Section 3 describes ToF cam-
era errors caused by external interfering factors and
the employed depth correction method. In Section 4
our mapping approach including 3D pose estima-
tion, error handling, and mapping is represented.
Section 5 illustrates experimental results that support
our accentuation of employing real-time-capable ToF
sensors to pose estimation and mapping tasks. Fi-
nally, Section 6 concludes with an outlook on future
work.

2. RELATED WORK

One of the first applications in robotics consider-
ing ToF cameras as an alternative to laser scanning,
stereo or monocular vision, was presented in 2004.
Weingarten, Grüner, and Siegwart (2004) evaluated
a SwissRanger SR-2 device in terms of basic obsta-
cle avoidance and local path planning capabilities.
The ToF camera was calibrated photogrammetrically
to determine parameters for the perspective projec-
tion to the image plane. Additionally, an empirically
determined depth correction method employing a
unique distance scaling and offset value was pro-
posed. Navigation and path planning could be per-
formed robustly based on the provided data.

In 2005, Sheh et al. presented an application
based on the same ToF camera at the RoboCup in
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Osaka (Sheh, Kadous, & Sammut, 2006). The data
take involved the rotation by a pan-tilt unit in order
to obtain an almost circumferential view. Generally,
this involved taking 10 range images at intervals of
36 deg, while stopping at each location long enough
to avoid motion blurring. The whole process took ap-
proximately 20 s for each data take. Their mapping
procedure was assisted by a human operator, who
had to identify landmarks.

In 2006, Ohno et al. used a SwissRanger SR-2
camera for estimating a robot’s trajectory and re-
constructing the surface of the environment (Ohno,
Nomura, & Tadokoro, 2006). The calculated tra-
jectory was compared with precise reference data
in order to demonstrate the algorithm’s precision.
The estimation error for the robot pose was up
to 15% in translation and up to 17% in rotation,
respectively.

The aforementioned approaches show that ap-
plications with ToF cameras have to face two prob-
lems. First, registration of range images provided
by ToF cameras is more difficult than registration of
laser range finder data due to the lower measure-
ment accuracy. That is why some groups investi-
gated the error modeling and calibration of these de-
vices. Because ToF cameras provide monochromatic
reflectance images and are based on a pinhole cam-
era model, photogrammetic calibration is feasible in
order to determine intrinsic and extrinsic parame-
ters. Additionally, a calibration of the provided range
data has to be performed. Currently, only a few au-
thors have proposed a calibration method consider-
ing jointly reflectance and range data. Lindner and
Kolb as well as Kahlmann et al. estimated intrinsic
parameters of a ToF camera using the reflectance im-
age of a checkerboard (Lindner & Kolb, 2006) and
a planar test field with near-infrared (NIR) LEDs,
respectively (Kahlmann, Remondino, & Ingensand,
2006). A per-pixel precision of at least 10 mm was
achieved.

The second problem concerns the smaller field of
view of a ToF camera compared to 3D laser scanners.
It has to be ensured that the depth image is geometri-
cally unambiguous in terms of registration to a previ-
ous depth image. Sheh et al. (2006) handled this prob-
lem by employing a pan-tilt unit for circumferential
data take while stationary, which entails a slow data
acquisition rate.

In contrast to a pure range image–based registra-
tion, features obtained from the reflectance image can
contribute to the stability as long as the scene com-

prises a certain degree of texturedness. The first ap-
proaches employing the monochromatic reflectance
image for feature tracking were proposed after 2007.
The main problem is the low resolution of ToF cam-
eras, providing only a few features for certain scenes.
Additionally, the measurable depth value at the fea-
ture’s location might be of low accuracy and pre-
cision (May, Pervölz, & Surmann, 2007). Swadzba,
Liu, Penne, Jesorsky, and Kompe (2007) performed
only coarse registration on depth data related to fea-
tures in the reflectance image, whereas the fine reg-
istration has been calculated by the use of the whole
depth image. Therefore, a few researchers proposed
fusion with other sensors. Prusak, Melnychuk, Roth,
Schiller, and Koch (2007) presented a joint approach
for robot navigation with collision avoidance, pose
estimation, and map building, employing a ToF cam-
era combined with a high-resolution spherical cam-
era. A rough registration was performed on the cir-
cumferential view of the spherical camera. The reg-
istration was then refined based on the range image
while employing the initial guess from the coarse reg-
istration. Huhle, Jenke, and Straßer (2007) also used a
joint approach of feature tracking and range image
registration. They fused data from a high-resolution
camera with a ToF device to obtain colored 3D point
clouds. Feature determination performed much bet-
ter on the high-resolution color images than on the
low-resolution monochromatic reflectance images of
the ToF device.

A comparison of tracking based on data acquired
from a ToF sensor with data provided by a high-
resolution color camera has been provided by Sabeti,
Parvizi, and Wu (2008). They concluded that high-
resolution color sensors are more suitable for out-
door applications and purposes that require the de-
tection of fine details, whereas ToF sensors are more
appropriate for object tracking that requires informa-
tion about the distance between object and camera.
The fusion of both sensors is therefore a profitable ap-
proach. Additionally, it can be expected that the reso-
lution of ToF cameras will increase in the future.

The approach described in this article relies ex-
clusively on ToF camera images. We present an in-
vestigation of how precise scene reconstruction is cur-
rently possible based on ToF camera data, comprising
an evaluation of calibration and filtering as well as
the application of different registration approaches.
To our knowledge, some of the registration methods
are applied to these special sensor types for the first
time.
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Figure 1. Received sinusoidally modulated input signal, sampled with four sampling points per modulation period T .

3. 3D TOF RANGING

This section introduces the reader to the emerg-
ing ToF camera technology. To start, the measure-
ment principle is described. Then, the occurring error
sources are explained. And finally, appropriate meth-
ods for error handling are presented. We constrain the
explanations on depth measuring and calibration to
the sinusoidal modulation principle. The ToF camera
employed in this study, a SwissRanger SR-3k, uses
this principle. The results reported here have previ-
ously been described in Fuchs and Hirzinger (2008)
and Fuchs and May (2007). We are summarizing them
here to keep this article self-sufficient.

3.1. Measurement Principle

ToF cameras using signal modulation are ac-
tive sensors that measure distances based on the
phase-shift principle. The observed scene is illu-
minated with modulated NIR light, whereby the
modulation signal is assumed to be sinusoidal
with frequencies in the order of some megahertz.
The reflected light is projected onto a charge-
coupled device (CCD)- or complementary metal-
oxide-semiconductor (CMOS)-sensor or a combined
technology. There, the phase shift, which is propor-
tional with the covered distance, is measured in par-
allel within each pixel.

Let Si(t) = {si(t0), si(t1), . . . , si(tm)|i = 1, . . . , n} be
m + 1 measurements of an optical input signal taken

at each of n pixel locations in the image array. Further
let A = {ai |i = 1, . . . , n} be the set of amplitude data
and B = {bi |i = 1, . . . , n} the set of intensity (offset)
data. From the reflected sinusoidal light four mea-
surements si(τ0), si(τ1), si(τ2), and si(τ3) at 0, 90, 180,
and 270 deg of the phase are taken each period T =
1/fm. A pixel’s phase shift φi , amplitude ai and inten-
sity bi (i.e., the background light) can be calculated by
(Lange, 2000) (see Figure 1)

φi = arctan
[
si(τ0) − si(τ2)
si(τ1) − si(τ3)

]
, (1)

ai =
√

[si(τ0) − si(τ2)] + [si(τ1) − si(τ3)]
2

, (2)

bi =
∑3

j=0 si(τj )

4
. (3)

The distance measurements D = {di |i = 1, . . . , n} be-
tween image array and object is then determined by

di = λm

2
φi

2π
, (4)

where λm is the wavelength of the modulation signal.

3.2. Error Model

The performance of distance measurements with ToF
cameras is limited by a number of error sources. In
the following, the most important error sources are
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Figure 2. Interreflection effects due to multimodal reflections: (a) Corners or hollows appear rounded off. (b) Occluding
shapes have a smooth transition.

explained. More detailed information on ToF error
sources can be found in Lange (2000). Some error
sources are predefined by the design of the hardware
or its physical properties and cannot be corrected by
calibration. The influence of these effects can be either
identified and discarded or estimated while making
assumptions about the configuration of the measured
scene. The following explanations relate to them as
random errors. In contrast, systematic errors comprise
all errors that can be identified and corrected due to
their systematic occurrence.

3.2.1. Random Errors

Noise limits the performance of ToF cameras and can
be subdivided into three different classes: photocharge
conversion noise, quantization noise, and electronic shot
noise (also called quantum noise) (Lange, 2000). Elec-
tronic shot noise is the most dominating noise source
and cannot be suppressed. It describes the statisti-
cal Poisson-distributed nature of the arrival process
of photons and the generation process of electron–
hole pairs. It limits the theoretically reachable signal-
to-noise ratio (SNR) and the accuracy involved.
Because the measurement principle is based on in-
tegrating discharged electrons from incoming light,
the optical power influences the reachable precision.
These electrons are collected within a conversion ca-
pacity, which can result in oversaturation if the inte-
gration time is too high (Lange, 2000). Recent cam-
eras use burst modes to increase the power output
for short intervals at the same energy level over time,
which yields a better SNR while complying with eye-
safety regulations.

Interreflection (also called multiple-ways reflec-
tion) occurs due to occlusions and in concave objects,
e.g., corners or hollows. The signal can take multi-
ple ways through reflection before returning to the
receiver. For that the remitted NIR signal is a super-
position of NIR light that has traveled a different dis-
tance, called multimodal reflection. Hollows and cor-
ners appear rounded off and occluding shapes with
a smooth transition (see Figure 2). This error arises as
a consequence of a diverging measurement volume.
For instance, the SwissRanger SR-3k device has a
0.27 × 0.27 deg field of view for each pixel. The width
of a pixel’s measurement volume therefore depends
on the distance (e.g., 1 m: 4.7 mm/5 m: 23.5 mm).

Light scattering is a general physical process that
forces light to deviate from a straight trajectory by
one or more localized nonuniformities. This effect oc-
curs in the lenses of an optical device and depends
on the amount of incident light. For ToF cameras the
secondary reflections of light reflected by near bright
objects superpose the measurements from the back-
ground, which appear closer, in consequence (Mure-
Dubois & Hügli, 2007).

3.2.2. Systematic Errors

In contrast to the aforementioned random errors, sys-
tematic errors do not tend to have a null arithmetic
mean when a measurement is repeated several times.
Usually, systematic errors either cause a constant bias
or relate to the measured value or to the value of a
different quantity.

Circular distance errors (also called distance-
related or wiggling errors) stem from the emitted
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Figure 3. Amplitude-related error. (a) Amplitude image of checkerboard taken with an IFM O3D100 device. The inhomo-
geneous illumination can clearly be seen (decreasing illumination in the peripheral area). (b) The related miscolored depth
image. Ideally, the checkerboard pattern should not be noticeable because it is a plane. But due to the amplitude-related er-
ror, dark regions are somewhat nearer to the observer. (c) The diagram plots the identified amplitude- and distance-related
error by a calibration step. (d) The measurement is corrected, and the checkerboard pattern is no longer noticeable.

square-wave signal additionally distorted by the
asymmetric response of a NIR LED signal. The re-
sult is a nonharmonic sinusoidal NIR signal. Because
a harmonic sinusoidal illumination is the basic as-
sumption in the principle of modulation interferom-
etry, the computed phase delay and distance, respec-
tively, are inaccurate. The amplitude of the circular
distance error for the SwissRanger SR-3k was de-
termined to be between −150 and 10 mm with a
wavelength of 2,000 mm (see Section 3.3.2).

Amplitude-related errors are caused by nonlin-
earities of the pixel’s electronic components. Incident
photons induce electrons in the capacitances of the
photosensitive layer. These voltages are read out and
amplified before signal processing and digitalization.
Both charging of capacitances and amplification are
nonlinear. The arrival of different numbers of pho-
tons at a constant distance results in different distance
measurements (see Figure 3).

Inhomogeneous image illumination depends
on the configuration of the LEDs, the optics, and the
camera’s field of view. The illumination decreases in
the peripheral area of the image as a result of two ef-
fects, the inhomogeneous scene illumination through
the sensor’s active light emitters and the vignetting
effect induced by the sensor’s optics [see Figure 3(a)].
This entails amplitude-related errors and different
SNRs (contribution of systematic and nonsystematic
errors in different proportions).

Fixed-pattern noise (FPN) has to be considered
in two ways. First, each pixel has an individual char-
acteristic due to an imperfect manufacturing pro-

cess and different material properties in each CMOS
gate, which yields a pixel-individual fixed measure-
ment offset. Second, the triggering of each pixel de-
pends on the position on the chip and its distance
to the signal generator. Pixels aligned in rows or
columns are connected in series and cause a grad-
ual phase shift. As a consequence the measurement
is distorted by an increasing offset. This offset is also
called fixed-pattern phase noise. In the strict sense
the term “noise” is not correct for this kind of signal
propagation delay. But due to the “fixed” occurrence
it is often ranked as such.

3.3. Error Handling

The concurrence of the above-mentioned error
sources significantly distorts the measurements.
Without any consideration of these errors, the raw
depth measurements do not allow sophisticated ap-
plications such as mapping. The following sections
present some methods that handle the random errors
as well as the systematic errors by filtering and by
calibration.

3.3.1. Filtering

The accuracy of measurements in unknown scenes
varies considerably, due to the above-mentioned ef-
fects. It can be rated with respect to the amount of
light returning to the sensor (amplitude data) and
allows at least the applicability of filtering. But a
pure amplitude-based filtering is disadvantageous in
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Figure 4. Jump edges occurring at the boundary of occluding shapes. (a) Unfiltered scene: A transition between the person
in the foreground and the wall in the background can clearly be seen. (b) Filtered scene: Jump edges are reliably removed.

terms of narrowing the field of view. Owing to the in-
homogeneous image illumination, measurements in
the peripheral part of the field of view would be dis-
carded primarily. However, such a filter has a practi-
cal use for the map generation process, in which only
measurement points providing high amplitudes are
added to a 3D map.

Among the nonsystematic errors, we further fo-
cus on the occurrence of so-called jump edges, i.e.,
when the transition from one to another shape ap-
pears to be disconnected due to occlusions. The true
distance changes suddenly for the transition from
one shape to the other, whereas ToF cameras mea-
sure a smooth transition (see Interreflection effect in

Section 3.2.1). This effect can be seen in Figure 4(a)
between the person in the foreground and the wall in
the background. The appearance depends on the per-
spective view and induces a large error when consid-
ered for the estimation of motion (see Figure 5).

Jump edge filtering. Several approaches have
been proposed to overcome the identification and/or
correction of these mismeasurements. Pathak, Birk,
and Poppinga (2008) proposed a Gaussian analy-
sis for correcting multimodal measurements. The
drawback of their method is the integration over
100 images for each frame. This reduces significantly
the frame rate. Additionally, the process of estimating
the parameters for the Gaussian fitting takes 8.5 min

(a) (b)

Figure 5. Jump edge appearance depends on the perspective view. The matching of both point clouds can easily result in
a wrong registration.
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per frame for a Matlab implementation. This is far
from being applicable in real time.

Sappa, Restrepo-Specht, and Devy (2001) pre-
sented an approach that is aimed at identifying and
classifying edges. It uses the fitting of polynomial
terms to approximate scan lines. These scan lines are
connected at edge points. The strength of this ap-
proach is that it also performs a classification of edges
in jump edges and crease edges: “Crease edges are
those points in which a discontinuity in the surface
orientation appears,” e.g., in corners or hollows.

Focusing on the identification of jump edges,
sufficient results are achieved with local neighbor-
hood relations. From a set of 3D points P = { pi ∈
R

3|i = 1, . . . , Np}, jump edges J can be selected
by comparing the opposing angles θi,n of the tri-

angle spanned by the focal point f = 0, point pi

and its eight neighbors Pn = { pi,n|i = 1, . . . , Np : n =
1, . . . , 8} with a threshold θth:

θi = max arcsin
( ‖ pi,n‖

‖ pi,n − pi‖
sin ϕ

)
, (5)

J = { pi |θi > θth}, (6)

where ϕ is the apex angle between two neighboring
pixels.

The application of this filter can be seen in
Figure 4(b). It is important to mention that the pro-
posed filter is sensitive to noise, i.e., besides jump
edges valid points are removed, if noise reduction fil-
ters are not applied first. Figure 6(a) depicts a scene
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Figure 6. (a) Distance measurement of bimodal scene (two planar objects with different z distances, i.e., background and
filing cabinet). (b)–(d) Histograms showing the influence of different filters. (b) The bimodal measurement is represented by
two peaks at ≈58 and ≈118 cm. Measurement values deviating from these values indicate noisy or wrong measurements.
The application of median filtering reduces noise on surfaces but does not have an impact on wrong measurement data
(jump edges). (c) The jump edge filter is sensitive to noise and besides jump edges discards too many valid points located at
surfaces (cf. the reduction of valid points at both peaks). (d) The subsequent application of both filters properly determines
jump edge measurements without discarding surface points.
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Figure 7. (a) The improved calibration is performed against a checkerboard pattern (image taken at the DLR laboratory).
Pattern sizes 1,190 × 840 mm. (b) The revealed depth measurement error varies from −150 to 10 mm. For the most part the
camera provides too-large-distance data. The spline approximates this error for subsequent correction purposes.

in which the z coordinate of measurements should be
bimodal, i.e., only two z distances are measured over
the entire scene. The background has a z distance of
≈115 cm and the front surface of the filing cabinet
of ≈58 cm, both determined with a measuring tape.
In the z-value histograms depicted in Figure 6 two
peaks can be observed. Different z distances result
mainly from jump edges. Jump edge filtering with-
out noise reduction discards too many valid points
on surfaces. Both peaks are considerably reduced.

The noise that overlies range measurements fol-
lows a Gaussian distribution (Gabriel, 2006), whereby
a median filter is preferable in terms of preserving
edges. The subsequent application of median and
jump edge filtering achieved reliable results. The ra-
tio between jump edge points and surface points in
a range image is small (mostly below 5%). With re-
spect to the computational complexity, experiments
in Section 5 are confined to discarding jump edge
points instead of correcting them.

3.3.2. ToF Camera Calibration

The projection onto the image plane of ToF cameras
is described by the pinhole camera model. Thus, a
common photogrammetric calibration is performed
in order to determine the intrinsic parameters. These
parameters characterize aberrations caused by the
optics in, for instance, lens distortion, skew, focal
length, and optical center.

Furthermore, the above-mentioned systematic
distance errors are identified in a depth calibration

step according to Fuchs and May (2007) (extended
model in Fuchs & Hirzinger, 2008), which is called
improved calibration in the course of this article. The
depth calibration is combined with the intrinsic cal-
ibration, and hence it is easy to apply and achieves
considerable improvements in terms of accuracy.

Initially, a number of amplitude and depth im-
ages of a checkerboard are captured from different
points of views. In the first step the amplitude im-
ages are used for an intrinsic camera calibration. In
the second step the amplitude and depth images are
used to identify the depth correction model, compris-
ing circular distance errors, amplitude-related errors
and fixed-pattern phase noise.

Figure 7(a) illustrates the ToF camera calibration
using an industrial robot. The robot provides exter-
nal positioning data, which sustain the estimation of
the calibration pattern pose. This pose is needed as
ground truth for depth calibration. If no position data
are available, the pattern pose can also be estimated
from every single capture but is more error-prone.
Figure 7(b) plots the identified distance-related error.
As a result the calibration allows for an accuracy of at
least 3 mm (Fuchs & Hirzinger, 2008).

4. 3D MAPPING

Thrun et al. (2005) count SLAM among the “core com-
petencies of truly autonomous robots.” The goal in
SLAM is to generate a map of previously unknown
territory without external localization aids. SLAM is
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Figure 8. The diagram outlines the 3D mapping process. Systematic and nonsystematic errors are treated by undistortion,
depth correction, and appropriate filtering. Several approaches are used to estimate the ToF camera’s ego motion. The
hybrid ESM algorithm applies both amplitude and depth data. KLT and SIFT are implemented in a two-stage method, in
which first the amplitude data are used to track features and second, the associated depth values are registered. The ICP
employs only depth images and iteratively registers consecutive point clouds until the algorithm converges. Finally, the
estimated ego motions are accumulated for 3D mapping purposes.

challenging because it is a chicken-and-egg problem:
To build a truthful and consistent map, one would
have to know the accurate pose; however, to know
the pose with no external localization aids, one would
need to have an accurate map for localizing.

This section presents some approaches for build-
ing 3D maps out of ToF camera data. Obviously, if
some ToF camera data sets are “somehow” assem-
bled into a truthful and consistent 3D map, then each
and every camera pose is also localized with respect
to the map. However, most of the methods coming
next do not handle this localization explicitly. There-
fore, we are using the term “mapping” rather than
“SLAM.” The last part of the section is an exception
to this principle: We will use past ToF camera poses
explicitly here in order to reduce accumulated regis-
tration errors. Unsurprisingly, the method used there
is borrowed from a SLAM loop-closing method.

Figure 8 outlines the complete mapping process.
First, in a preprocessing step, the systematic and non-
systematic errors of the depth and amplitude im-
ages are considered. Second, the consecutive point
clouds are registered to each other, whereas the dis-
placement of these consecutive point clouds is syn-
onymous with the ToF camera’s ego motion. Four
different methods have been implemented. A com-
mon and straightforward approach in the context of
point cloud registration is the iterative closest point
(ICP) algorithm. The ICP algorithm employed here
is exclusively based on range data. A more sophis-
ticated approach also comprises the amplitude data.
Two of the most frequently used feature tracking

techniques, namely the scale invariant feature trans-
form (SIFT) matching and Kanade–Lucas–Tomasi (KLT)
feature tracking, are applied for feature tracking in
consecutive images. The 3D registration can be per-
formed on the basis of these feature correspondences
and their associated depth values. Efficient second-
order approximation method (ESM) tracking is a hy-
brid approach that considers depth and intensity data
jointly. Finally, the created map is refined by means of
loop-closing techniques.

4.1. ICP-Based Ego Motion Estimation

The ICP algorithm, which was developed indepen-
dently by Besl and McKay (1992), Chen and Medioni
(1991), and Zhang (1992), is the most popular ap-
proach for range image registration. It aims at ob-
taining an accurate solution for the alignment of two
point clouds by means of minimizing distances be-
tween point correspondences. Corresponding points
are obtained by a nearest neighbor search in two
point sets. Let M = {mj |j = 1 . . . Nm} be a set of
points from a previous data take, called model point
set, and G = {gi |i = 1 . . . Ng} a set of points from the
most recent data take, called scene point set. Then, ev-
ery point in the scene point set is taken into consider-
ation to search for its closest point in the model point
set:

mk = argmin
j=1...Nm

‖gk − mj‖. (7)
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The ICP algorithm aims at finding a rigid trans-
formation, comprising a rotation R and a translation
t , by performing an iterative least-square minimiza-
tion. In each iteration step the transformation mini-
mizing the mean squared error function

E(R, t) =
Ng∑
i=1

Nm∑
j=1

ωi,j‖(Rgi + t) − mj‖2 (8)

is to be determined, where ωi,j denotes weights that
are of value 1 if (gi,mj ) are found to be corresponding
and 0 otherwise.

Expressing the corresponding point pairs as a set
of N tuples {(gk, mk)|k = 1 . . . N}, the error function
can be reduced to

E(R, t) =
N∑

k=1

‖(Rgk + t) − mk‖2. (9)

There are four known algorithms calculating the
closed-form solution for R and t . An explanation of
these algorithms can be found in Lorusso, Eggert, and
Fisher (1995). Rusinkiewicz and Levoy (2001) give a
detailed analysis of efficient variants of the ICP, dis-
cussing the closed-form solutions, point-to-point vs.
point-to-plane metrics, and different point rejection
rules.

Point correspondence rejection has a strong im-
pact on the registration result. The original formula-
tion of the ICP approach assumes that the scene point
set is completely covered by the model point set (Besl
& McKay, 1992). In the case that the scene point set
includes points that are not part of the model point
set (from a nonoverlapping area), wrong correspon-
dences are assigned for these points that might distort
the registration result (Fusiello, Castellani, Ronchetti,
& Murino, 2002). The simplest solution is the em-
ployment of a distance threshold. Corresponding tu-
ples are rejected if their Euclidean distance exceeds
this value. Several strategies are possible to deter-
mine suitable thresholds, e.g., a gradually decreasing
threshold with respect to the iteration step. In gen-
eral, these thresholds increase the registration perfor-
mance on partially overlapping point clouds signif-
icantly. For convenience, the original formulation of
the ICP approach including a distance threshold is
called the vanilla ICP approach in the following.

Many extensions to the vanilla ICP approach
have been published addressing the determination of

valid point correspondences from overlapping parts.
Prusak et al. (2007) employed the trimmed ICP (TrICP)
approach (Chetverikov, Svirko, Stepanov, & Krsek,
2002). It employs a parameter representing the degree
of overlap, i.e., the number of corresponding points n.
Only the first n correspondence pairs ordered ascend-
ing by point-to-point distance are considered for esti-
mating the optimal transformation. Prusak et al. em-
ployed a coarse registration step performed on data
of a second sensor, a spherical camera, in order to ob-
tain an estimate for the degree of overlap.

Several approaches have been proposed to over-
come the registration problem with unknown de-
gree of overlap. Fusiello et al. (2002) employed the
X84 rejection rule, which uses robust estimates for
location and scale of a corrupted Gaussian distribu-
tion. It aims at estimating a suitable rejection thresh-
old concerning the distance distribution between cor-
responding points. Niemann, Zinper, and Schmidt
(2003) proposed a rejection rule that considers mul-
tiple point assignments (picky ICP algorithm). If mul-
tiple points from the scene point set are assigned
to the same corresponding model point, only the
scene point with the nearest distance is accepted. The
other pairs are rejected. Pajdla and Van Gool (1995)
proposed the inclusion of a reciprocal rejection rule
(iterative closest reciprocal point algorithm; ICRP). For a
corresponding point pair (mk, gk), which has been de-
termined by searching the nearest neighbor of gk in
M , the search is reversed subsequently, i.e., for mk the
nearest neighbor in G is determined. This need not
be the same scene point and is denoted with g′

k . The
point correspondence is rejected if gk and g′

k have
a distance larger than a certain threshold. A disad-
vantage of the ICRP approach is the higher compu-
tational effort, because the nearest neighbor search,
which is the most time-consuming task, is performed
twice as much as for all other approaches.

The method proposed here to overcome an un-
known degree of overlap stems from 3D computer
graphics and is called frustum culling (Lengyel, 2000).
A frustum defines the volume that has been in the
range of vision while acquiring the model point set
[see Figure 9(a)]. Luck, Little, and Hoff (2000) used
frustum culling for prefiltering based on an initial
pose estimate. The iterative registration process was
then performed on the reduced data set. On the con-
trary, we employ no initial pose estimate. Therefore,
the frustum culling is embedded in the iteration pro-
cess by employing the pose estimate of the previ-
ous iteration step. Scene points outside of the model
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Figure 9. Frustum culling technique. (a) Definition of clipping planes. The clipping planes are defined by the model data
set. (b) Clipping of scene points (red/blue) outside of a model (green) frustum. Blue points are not considered for the nearest
neighbor search.

frustum are filtered by testing against clipping planes
before performing nearest neighbor searching. This
extension is called the frustum ICP approach and is
described in the following.

Let {a, b, c, d} be the vectors from the origin to the
four edge points of the far clipping plane and f = 0
be the focal point. The lateral clipping planes are then
spanned by the focal point and two edge points.

The normal vectors n = (nx, ny, nz)T of each lat-
eral clipping plane

nb = b × a,

nu = c × d,

nr = b × c,
nl = d × a

(10)

can be used to check whether a point x = (x, y, z)T is
inside the frustum by

xnx + znz < 0 (11)

for the left and right clipping plane (with nl and nr )
and

yny + znz < 0 (12)

for the upper and lower clipping plane (with nu and
nb).

This test is nonparametric and iteratively re-
moves scene points from nonoverlapping areas by
evaluating their visibility from the model’s view-
point. During the iteration process scene points are
clipped as soon as they leave the visibility frustum,
which addresses especially the problem of a restricted
field of view [see Figure 9(b)]. This extension is called
the frustum ICP approach in the following. It is not
in contradiction to other rejection rules and can be
jointly employed with them, e.g., when the rejection
of point correspondences is needed through indepen-
dent motion in the scene.

4.2. Feature-Based Ego Motion Estimation

Range image registration based on the ICP ap-
proach is computationally complex. The most time-
consuming task is the search for nearest neighbors,
which has a naı̈ve complexity of O(n2). Several mea-
sures have been proposed to reduce the computa-
tional effort, e.g., the use of search trees or the sub-
sampling of points (see Nüchter et al., 2007, for an
overview).

Subsampling and assignment of point correspon-
dences can also be achieved without the iteration
scheme while identifying and tracking discriminative
features in the reflectance image. Two fairly recent
approaches are used in terms of achieving real-time
applicability, KLT feature tracking (Tomasi & Kanade,
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1991) and SIFT-based feature tracking (Lowe,
2004).

KLT feature tracking models image motion by
constraining the brightness. Unfortunately, this as-
sumption is violated relying on ToF camera re-
flectance images. The brightness depends on the
squared distance (Lange, 2000), the integration time,
and the location in the image (see inhomogeneous
image illumination in Section 3.2.2). The first issue
is of minor influence because image motion is as-
sumed to be small. A change in integration time is
clearly noticeable in the brightness from one frame
to the next. This influence is also known from video
cameras employing autoexposure in order to handle
a high dynamic range in illumination, especially in
outdoor scenes where sunlight has a strong impact
on the brightness. An approach addressing this prob-
lem with an extension for KLT feature tracking can be
found in Kim, Frahm, and Pollefeys (2007). The third
problem is caused by inhomogeneously illuminating
the scene by the active light emitters of ToF devices
and the vignetting effect. A gradient in illumination
is jointly moved with the camera under ego motion
and influences the matching quality. Figure 10(a) de-
picts the feature tracking based on KLT features in re-
flectance images of a SwissRanger device.

SIFT feature tracking employs an image pyra-
mid convolved with a difference-of-gaussian func-
tion. A search for possible feature locations is per-
formed over all scales in the pyramid image stack.
Those feature locations are robust with respect to
changes in scale and orientation. At the candidate
locations, a detailed model is fitted in order to de-

termine precisely the location and scale. Only key
points are selected that provide a certain measure
of stability. An orientation and scale assignment is
performed to each key point location with respect
to local image gradient magnitudes and directions.
This step achieves rotation and scaling invariance.
Finally, a key point descriptor is created that allows
the identification even with significant levels of local
shape distortion and change in illumination. The lat-
ter aspect is important concerning the modalities of
a ToF camera, for which the change in illumination
is a matter of principle (see explanations for KLT fea-
ture tracking). Figure 11(a) depicts the feature track-
ing based on SIFT features in reflectance images of a
SwissRanger device.

Ego motion estimation based on stereo vision
needs the matching between image pairs in order
to obtain 3D coordinates. The triangulation of fea-
ture pairs is error prone. Some approaches propose
the use of only 2D image projections for the mini-
mization process, e.g., Nister, Naroditsky, and Bergen
(2004) and Sünderhauf and Protzel (2006). Contrary
to stereo vision, we can make direct use of 3D infor-
mation provided by the depth images. The ego mo-
tion estimation, i.e., estimation of (R, t), is performed
by a least-squares method as for the ICP-based
methods.

To achieve a robust feature tracking, two mea-
sures have to be applied. First, features related to
jump edges are discarded. Second, outliers are iden-
tified and rejected. The most common approach
to outlier detection is RANSAC (RANdom SAm-
ple Consensus) (Fischler & Bolles, 1981). A random

Figure 10. KLT feature tracking in ToF reflectance data. Feature points from model and scene are connected with a white
line. (a) Initial set of tracked KLT features. (b) Remaining point correspondences after jump edge removal and RANSAC
outlier detection.
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Figure 11. SIFT feature tracking in ToF reflectance data. Feature points from model and scene are connected with a white
line. (a) Initial set of tracked SIFT features. (b) Remaining point correspondences after jump edge removal and RANSAC
outliers detection.

subsampling of tracked features is used to estimate
(R, t). Only those features providing the estimated
model (consensus set), i.e., by having a small Eu-
clidean distance between corresponding points after
applying the transformation, are chosen for the next
iteration. From the remaining feature set a random
subsampling is used to restock rejected features. The
application of RANSAC outlier detection on KLT and
SIFT features is shown in Figures 10(b) and 11(b).

4.3. ESM-Based Ego Motion Estimation

Unlike feature-based methods, the ESM for visual
tracking does not rely on extracting features and find-
ing correspondences based on certain feature match-
ing criteria. It aims at finding an optimal transforma-
tion between two subsequent data sets or between
parts of it, i.e., the visual tracking of rigid and de-
formable surfaces (Malis, 2007). Here we show how
the ESM can be applied to data acquired by ToF cam-
eras.

The basic model assumes a pinhole camera
model. Two pixels in the current and reference image
are related by a warping function w:

u′ = w(u, η) (13)

that allows us to obtain the current coordinates u′ as
a function of the reference coordinates u and the pa-
rameters η. The vector η contains the intrinsic and ex-
trinsic camera parameters Ti and Te as well as sur-
face parameters s. If surface parameters are known
and intrinsic camera parameters are kept fixed, only

the transformation matrix Te is considered in the es-
timation process. Indeed, for ToF cameras the surface
parameters can be measured directly from depth im-
ages s = f (d).

The basic version of the ESM approach assumes
constancy in brightness by setting

I [w(u, η)] = I ′(u). (14)

This modeling provides one equation per pixel and
is iteratively solved by an efficient second-order
approximation method (see Malis, 2007, for de-
tails). Real-time applicability is expected for the
low-resolution images of ToF cameras (here 176 ×
144 pixels).

As stated in Section 4.2., the brightness constancy
assumption is violated for reflectance images due
to inhomogeneous image illumination and changes
in exposure time. Because the ESM approach deter-
mines a solution for a larger template (in contrast to
KLT feature tracking), it is not expected that moderate
changes in illumination influence the robustness sig-
nificantly (see Figure 12). If needed, arbitrary illumi-
nation changes (even specular reflections) can be han-
dled by an extended ESM version (Silveira & Malis,
2007).

The ESM approach can be specialized to consider
all ToF camera data assuming constancy in depth (i.e.,
we observe a rigid object):

d[w(u, η)] = d ′(u). (15)

In this case, we have to solve a multiobjective opti-
mization problem considering both Eqs. (14) and (15).
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Figure 12. ESM visual tracking. A template is reliably
tracked even under moderate illumination changes (see de-
tails in Malis, 2007).

In this paper, we focus on finding the solution of an
optimization problem based on Eq. (14) only. How-
ever, we use depth measurements to compute the
warping function in Eq. (13). To our knowledge, this
is the first attempt to adapt the ESM to ToF cameras.

4.4. Loop Closing for Consistent 3D Mapping

To register two overlapping ToF camera data sets,
Eq. (9) is minimized. However, while successively
aligning data with their local predecessors in a global
coordinate system, small registration errors sum up.
Loop closing is a remedy for this problem known
from SLAM work. The idea is this: Once the sensor
comes back again into a region of which data have
been recorded earlier (the sensor has finished a loop),
a new data set is registered not only with the ToF im-
ages taken just before, but also with the map data re-
sulting from ToF images previously taken. Realizing
this idea of course requires that the ToF camera pose
estimation is explicitly considered (leading from ba-
sic mapping to SLAM) and that the pose estimation is
at least sufficiently good to allow loop-closing events
to be estimated—albeit imprecisely.

We use a probabilistic SLAM approach, i.e.,
a network-based global relaxation method for 3D
point cloud data (Borrmann, Elseberg, Lingemann,
Nüchter, and Hertzberg, 2008). It extends the Graph-
SLAM approach (Thrun & Montemerlo, 2006) to six
degrees of freedom and restricts it to estimating poses
instead of poses and features. The nodes of the SLAM
graph are the ToF camera poses; the arcs connect
those nodes that are known or estimated to cover spa-

tial regions of the environment with sufficiently high
overlap. For example, subsequent frames are con-
nected until the pose change by ego motion is such
that a new frame and a predecessor frame cover no or
only a few points in 3D space. Closing a loop means
establishing (or hypothesizing) an arc between nodes
corresponding to ToF camera poses quite distant in
the time they were taken but presumably close in the
spatial region that they cover.

Given this network with n + 1 nodes x0, . . . , xn

representing the poses v0, . . . , vn and the directed
edges di,j , the relaxation algorithm aims at estimat-
ing all poses optimally. The directed edge di,j rep-
resents the change of the pose (x, y, z, θx, θy, θz) that
is necessary to transform one pose vi into vj ; i.e.,
vi = vj ⊕ di,j , thus transforming two nodes of the
graph. For simplicity, the approximation is made that
the measurement equation is linear, i.e.,

di,j = xi ⊕ xj .

A detailed derivation of the linearization is given in
Nüchter (2009). An error function is formed such that
minimization results in improved pose estimations:

W =
∑
i→j

(di,j − di,j )T C−1
i,j (di,j − di,j ), (16)

where di,j = di,j + 	di,j models random Gaussian
noise added to the unknown exact pose di,j . This
representation involves resolving the nonlinearities
resulting from the additional roll and pitch an-
gles by Taylor expansion. The covariance matrices
Ci,j describing the pose relations in the network
are computed based on the paired closest points
(Nüchter, 2009). The error function equation (16) has
a quadratic form and is therefore solved in closed
form by sparse Cholesky decomposition.

5. EXPERIMENTS AND RESULTS

This section describes experiments addressing the
impact of calibration, filtering, and ego estimation
approaches for improving accuracy, precision, and
robustness. Influences of the light-scattering effect
are rated in a separate experiment. Then, several
ego motion estimation approaches are applied or
adapted, respectively, in order to provide a perfor-
mance benchmark for registering ToF camera data.

All experiments were carried out with a Swiss-
Ranger SR-3k device. This model features a
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resolution of 176 × 144 pixels and provides depth
and intensity data with a frame rate of up to 30 Hz.
The unambiguity range is 7,500 mm.

5.1. Evaluation Measures

The quality of a 3D mapping approach can be rated
by comparing either the created 3D map or the esti-
mated path (ego motion) of the sensor with a ground
truth measure.

5.1.1. Evaluation of Localization

Primarily, the presented 3D mapping approaches are
benchmarked by analyzing the accuracy of the esti-
mated ego motion absolutely and incrementally. For
this purpose, an industrial robot arm with an accu-
rate positioning system, i.e., a repeatable accuracy
of 1 mm and 0.1 deg, is used for moving the SR-3k
through the scene.

Let {Tr,i |i = 0 . . . N} be a set of poses provided by
the robot control. The pose change between two con-
secutive poses can be determined by

	Tr,i =
(

	Rr,i 	tr,i

0 1

)
= T−1

r,i−1Tr,i , (17)

where Tr,0 is initialized with Tr,1 (in order to provide
	Tr,1 = 1).

The registration of two consecutive range images
results in an estimation matrix 	Te. Let {	Te,i |i =
1 . . . N} be the set of estimated pose changes for the
whole trajectory. The estimated pose is then calcu-
lated recursively with

Te,i = Te,i−1	Te,i . (18)

The axis angle representation of a rotation matrix is
used to evolve evaluation measures for the bench-
mark of different calibration and ego motion estima-
tion approaches. The notations θ and a = (ax, ay, az)

T

are used for the angle and the rotation axis of an ar-
bitrary rotation matrix R. Absolute and incremental
pose changes are derived from this definition.

Absolute measures consider the pose change
with respect to an absolute reference system (here the
robot base):

	Tabs,i =
(

	Rabs,i 	tabs,i
0 1

)
= Tr,iT−1

e,i . (19)

The axis angle 	θabs,i of 	Rabs,i is used to define the
absolute angular error measure

eabs,	θ = 	θabs,i = fθ (	Rabs,i). (20)

The absolute translational error measure is assigned to
the magnitude of translation:

eabs,	t = ‖	tabs,i‖ : (21)

and constitutes the second measure that can be
consulted. However, both values provide only weak
objectivity because registration errors can be com-
pensated by other registration errors. Therefore, in-
cremental measures are more suitable in terms of
validity.

Incremental measures sum up the magnitude of
registration errors in a stepwise way. To that end, the
incremental error registration matrix is computed by

	Tinc,i =
(

	Rinc,i 	t inc,i
0 1

)
= 	Tr,i	T−1

e,i . (22)

Summation over the magnitudes of incremental
translation errors defines the incremental distance error
measure:

einc,	t =
∑

‖	t inc,i‖. (23)

Unfortunately, the rotation axis of 	Tinc,i is not
the same for each increment; thus, angles cannot be
simply added up. A different rotation axis defines a
different unit. For quantifying rotation angles around
different axes, a transformation in vector representa-
tion is needed.

Using the axis angle representation, rotation an-
gles around axes ae,i and ar,i are determined by

	θe,i = fθ (	Re,i), (24)

	θr,i = fθ (	Rr,i). (25)

	θe,i and 	θr,i are then used to find the normalized
axes:

ae,i = fa(	Re,i), (26)

ar,i = fa(	Rr,i). (27)

The incremental angular error measure is then de-
termined as the Euclidean distance of axis vectors
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multiplied with the magnitude of rotation angles:

einc,	θ =
∑

‖ |	θr,i |ar,i − |	θe,i |ae,i‖. (28)

[Note the similarity to Eq. (23).] These definitions
provide a uniform measure for accumulating trans-
lational and rotational errors.

5.1.2. Evaluation of Mapping

Absolute accurate ego motion parameters do not in-
evitably yield a perfect 3D map. Even if the sen-
sor was localized exactly, it could provide corrupted
depth data, resulting in an inaccurate map. On this
account, two additional measures are implemented
in order to evaluate the quality of the generated 3D
map.

Root mean square (RMS) errors express a mea-
sure for the fitting of data sets to a certain model. The
quadratic distances of the point-to-point correspon-
dences between a data set and a certain model are
summed up, and the root mean error expresses the
consistency. The RMS error is computed by Eq. (9)
while applying the frustum culling technique in or-
der to exclude wrong point correspondences result-
ing from nonoverlapping areas. Here, this measure
is used mainly to evaluate the consistency of consec-
utive depth measurements. This consistency can be
distorted by multiple ways reflections, light scatter-
ing, or overexposure and would yield a higher RMS
error.

Isometry is the only measure that is used for rat-
ing the created map as a whole in this context. For this
purpose, some characteristic distances in the scene
were manually measured and compared to the cor-
responding ones in the 3D map [see Figure 17(a) later
in the paper].

5.2. 3D Mapping of a Laboratory Environment

The following experiments aim at rating the impact of
calibration, light scattering, exposure time, and regis-
tration approaches separately by performing differ-
ent trajectories in modified scene configurations. For
the purpose of ground truth evaluation the ToF cam-
era was attached to the tool center point (TCP) of an
industrial robot [see Figure 14(a)], which provided
the sensor pose with an accuracy of 1 mm in trans-
lation and 0.1 deg in rotation.

Three setups were designed in order to evalu-
ate the accuracy and their dependencies. In the first
setup [SI; see Figure 13(a)] the camera was rotated by
90 deg around a basic geometric Styrofoam object lo-
cated in a distance of 600 mm, such that it was kept
centered in the field of view. Thus, the length of the
performed trajectory covered a distance of 950 mm.

In the second setup [SII; see Figure 13(b)], the
camera was translated by 50 mm and rotated by
22 deg. Contrary to SI, the observed Styrofoam ob-
ject did not appear to be centered in the field of view
all the time but moved from the right to the left side.

The third setup (SIII; see Figure 14) was en-
larged and more complex. Several Styrofoam objects

(a) (b)

Figure 13. (a) Experimental setup SI: The camera was rotated by 90 deg around an object in a distance of 600 mm while it
was kept centered in the field of view. The covered distance between C0 and C1 measured 950 mm. (b) Experimental setup
SII: The camera was translated and rotated from C0 to C1 by 50 mm and 22 deg, respectively.
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Figure 14. (a) Laboratory scene used for the ground truth evaluation. The ToF camera was mounted on an industrial robot
arm (KUKA KR 16). (b) Bird’s-eye view of the 3D map created by the use of provided robot poses (false color code relates
distance to origin of coordinate system). The performed trajectory of circular shape is drawn at the lower right.

were assembled in a square, which measured ap-
proximately 1,800 mm. The performed trajectory in
this experiment describes a circular path (diameter
≈180 mm) with a radially outward-looking camera
mounting. A total of 180 range images have been
taken equally distributed along this trajectory, i.e., in
2-deg steps.

5.2.1. Impact of Calibration

First, the impact of calibration was investigated. The
calibration procedure outlined in Section 3.3.2. was
applied. This so-called improved calibration considers
circular errors and signal propagation delays. The ef-
fect of amplitude-related errors decreases with larger
distances as a matter of decreasing bandwidths for
amplitude values. Thus, the amplitude-related error
was neglected. Figure 7(b) shows the identified circu-
lar error. While running the ToF camera at a working
range of 500–1,800 mm in the laboratory setups, the
default (manufacturer’s) calibration provides depth
data drifting between −150 and 10 mm.

The trajectories in SI, SII, and SIII were per-
formed twice: once with default calibration and once
with improved calibration. In SI and SII the cali-

bration reduced errors in ego motion estimation by
≈25%. The translational errors decreased from 39.7
to 28.2 mm and from 12.8 to 9.9 mm (see Table I). But
compared to the length of both trajectories, the trans-
lational error in SII was significantly larger (20%)
than in SI (3%). The rotational error decreased only
in SI, from 4.8 to 2.4 deg, whereas in SII it stayed
nearly constant. We conclude that the type of move-
ment was crucial for the results. Especially in SII, the
observed object was located at the margins of the
field of view. The low resolution and small apex angle
handicapped ego motion estimation.

In SIII the results were less clear. Figure 15 shows
that the incremental error accumulated to the same
values (≈35 deg in rotation and ≈800 mm in transla-
tion). The localization results were only marginally
affected by the improved calibration. Furthermore,
the consistency was evaluated with respect to the
RMS error, i.e., the indication of geometrical fit of sub-
sequent range images. Again, improvements over the
default calibration were only small (see Figure 16).
The RMS error decreased by 0.26 mm on average.

The major impact of the improved calibration
concerns the isometry of the resulting 3D map.
Figure 17 depicts a 3D map of the laboratory scene

Table I. For both setups SI and SII the improved calibration minimizes the translational error by ≈25%. The rotational
error decreases only in SI.

Calibration SI rot. err. (mm) SI trans. error (deg) SII rot. err. (mm) SII trans. err. (deg)

Default 39.7 4.8 12.8 1.2
Improved 28.2 2.4 9.9 1.3

Journal of Field Robotics DOI 10.1002/rob



952 • Journal of Field Robotics—2009

0

10

20

30

40

0 30 60 90 120 150 180

e
i
n
c
↪Δ

θ
/
◦

frame #

Improved c.

Manufacturer’s c.

(a)

0.0

0.5

1.0

0 30 60 90 120 150 180

e
i
n
c
↪Δ

t
/
m

frame #

Improved c.

Manufacturer’s c.

(b)

Figure 15. Incremental error measures for different calibrations in the laboratory experiment (frustum ICP registration).
(a) Incremental angular error measure. (b) Incremental distance error measure.

from a bird’s-eye view and compares the isometry
between registration results obtained with default
and improved calibration. Two distances between op-
posing surfaces in the environment were measured in
order to relate them to ground truth. The isometry er-
ror decreased from 85 mm in the horizontal measure
and 165 mm in the vertical measure to 35 and 20 mm,
respectively.

Though the improved calibration significantly re-
duced ego motion estimation errors in SI and SII, an
impact is hardly recognizable in SIII. This contradic-
tion can be explained through an additional (unmod-
eled) error source, which was dominant for the per-
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Figure 16. RMS error comparison of scene-to-model fit-
ting employing default calibration (RMSm = 4.92 mm) and
improved calibration (RMSi = 4.66 mm).

formed trajectory and scene configuration in this ex-
periment. It is assumed that the light-scattering ef-
fect completely adumbrated related results. A sepa-
rate investigation is provided in the next section.

5.2.2. Impact of Light Scattering

The second investigation concentrated on the light-
scattering effect. For this purpose, scattering effects
were induced by adding an object to SII at several dis-
tances. Figure 18 shows the experimental setup and
registration results. The closer the disturbing object
was placed to the camera (from 1,250 mm down to
650 mm), the more the ego motion estimation results
degraded in translation (from 9.9 to 42.1 mm). In par-
ticular, strong influences were noticeable when high
reflective objects came into the field of view or when
distances to objects in the scene were heterogeneous.

5.2.3. Impact of Integration Time

Third, the impact of the integration time was ex-
amined. For this purpose, the scene was captured
twice, once with a fixed integration time and once
having the exposure time controller activated. This
controller adjusts the integration time so as to pre-
vent overexposure and to maintain a good SNR. If
it is possible to constrain dynamics in the field of
view, a fixed integration time is preferable because
depth measurements are affected in case of a change.
On the other hand, improper adjustments of inte-
gration time may result in serious measurement er-
rors (see Section 3.2.1.). Figure 19(a) contrasts the
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Figure 17. (a) Isometry of resulting 3D map of SIII. The distances of opposing walls were manually measured and assumed
to be the ground truth. (b) The improved calibration reduces deviations from the ground truth and provides a more accurate
mapping result.

RMS error for both cases. Even in this well-defined
laboratory experiment it was noticeable that the in-
tegration time is an important parameter in terms
of measurement accuracy. Unfortunately, the change
of integration time influences the distance measure-
ments. Figure 19(b) shows results of an experiment
in which the integration time was periodically ad-
justed from 5,000 to 15,000 μs against a static target.
Distance measurements altered by up to 20 mm. In
conclusion, exposure time control is necessary in dy-
namic environments, but it is also a matter of calibra-
tion due to their influences on the accuracy. Nonethe-
less, exposure time control is given top priority. Thus,

the automatic integration time controller was acti-
vated for the experiments in the following sections.

5.2.4. Evaluation of Registration Approaches

The evaluation of registration approaches was per-
formed on the laboratory data set SIII. We concen-
trated on the most popular registration techniques.
On the one hand, the ICP algorithm was applied to
the distance data. On the other hand, two feature-
based tracking methods, SIFT and KLT, were ex-
amined for their suitability for working on the re-
flectance images. Features in the reflectance domain

Figure 18. (a) Experimental setup for light-scattering investigations. The camera is moving from C0 to C1. Initially, the
scene consists of two Styrofoam cuboids standing on top of each other (case A). Then (cases B, C, and D), an additional
Styrofoam cuboid was put into the scene. (b) Ego motion estimation results degrade from 9.9 to 42.1 mm due to light-
scattering effects.
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Figure 19. Impact of exposure time. (a) RMS error comparison of scene-to-model fitting between fixed integration time
and automatic integration time exposure. Robot poses were used as ground truth for calculating the RMS error. Several
peaks indicate a bad fit between model and scene points resulting from a nonoptimal integration time adjustment. (b) The
automatic exposure time controller may cause steps of several thousand microseconds, especially if near objects come into
the field of view. The right-hand diagram illustrates periodical steps of 10,000 μs. The error alters between −10 and 10 mm.
After a short setting time, the error converges but a little drift remains.

were tracked in order to identify corresponding 3D
coordinates computed from related depth measure-
ments. Feature tracking approaches are computation-
ally cheaper than ICP matching, which currently does
not meet the timing requirements for real-time map-
ping applications based on ToF camera data (defining
real time as to work on the full frame rate).

Beyond these “traditional” registration tech-
niques, ESM tracking has been evaluated. This track-
ing method employs both dimensions—intensity and
depth. Notably, ESM has been designed for real-time
applicability in visual tracking tasks. This section
benchmarks the performance, robustness and qual-
ity of ToF image registration for the above-mentioned
approaches.

ICP-based range image registration: The appli-
cation of ICP was evaluated in terms of robustness
and accuracy. A basic assumption of the original for-
mulation of the ICP algorithm is that the scene point
set is a subset of the model point set. In 3D mapping
applications, in which the basic task is to align 3D
point sets with only partial overlap, this assumption
is usually violated. Owing to the small angular steps
of 2 deg in the laboratory experiment, the degree of
overlap is high. Therefore, the vanilla ICP approach
(employing a distance threshold) performed well for

the basic setup. With increasing angular step widths,
i.e., with faster angular motion, the registration got to
be more and more of a problem, because the shrink-
ing area of overlap induced a large portion of wrong
point correspondences, which could not be deter-
mined completely by means of a distance threshold.

Owing to the small apex angle of ToF cameras,
those “misassignments” can influence the registra-
tion result significantly. This depends on the geomet-
ric distinctiveness of measurements in the field of
view, e.g., facing a large planar wall vs. a curved stair-
case. [See Figures 33(a) and 33(b) later in the paper.]

Clipping points from nonoverlapping areas in-
creased the robustness, especially in scenes of poor
geometric structure. Figure 20 contrasts the vanilla
ICP approach with frustum ICP. It can clearly be seen
that vanilla ICP achieves good results for this scene
up to angular steps of 8 deg. For larger angular steps
the approach converged more often to wrong local
minima. The frustum culling variant still performed
well on configurations with angular steps up to
12 deg.

An evaluation of minima to which ICP-based
methods converged reveals that depth measurement
errors have a deep impact on the registration results.
Figure 21 shows the RMS error of fitting consecutive
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Figure 20. Incremental error measures comparing vanilla ICP with frustum ICP. Frustum culling increases the robustness
with respect to larger angular steps. (a)–(d) Incremental angular error measure. (e)–(h) Incremental distance error measure.
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Figure 21. RMS error comparison of scene-to-model fit-
ting employing robot poses (RMSr = 4.84 mm) and esti-
mated poses from the ICP algorithm (RMSe = 4.66 mm).

point sets in dependency of their registration. The
RMS errors were computed from robot poses (which
are highly accurate) and poses estimated by frustum
ICP. Though the estimated ICP poses were erroneous,
the RMS error related to these ICP poses was always
lower than or equal to the RMS error related to robot
poses. This means that the error criterion of the ICP
approach is not able to detect errors induced by the
related measurement principle of ToF cameras and
thus converges to a wrong result.

Figure 22 confirms this. Even using the ground
truth robot poses as initial estimations does not help.
Though a few scene point sets were “trapped” in lo-
cal minima without the correct initial guess, namely,
some frames around numbers 15 and 50, all remain-
ing estimations were nearly identical, as indicated by
the fact that all plots run mostly in parallel, except for
the few mentioned frames. Knowing the true pose,
therefore, does not guarantee ending up in an opti-
mal registration by ICP.

Figure 23 shows the maps reconstructed using
frustum ICP. The trajectory is distorted especially
in the first part, where near bright objects (Sty-
rofoam cubes) partially occluded the background.
The trajectory runs from the lower right-hand cor-
ner in counterclockwise rotation. The second half
of the trajectory reveals a semicircle.1 Even employ-

1Even this is not necessarily a meaningful indicator for a good re-
construction, because the diameter can be different.

ing highly accurate poses provided by the robot
control as initial guesses for the ICP approach did
not improve the pose estimation process in this ex-
periment. The reconstructed trajectories have nearly
the same shape and indicate that remaining devia-
tions are due to inherent measurement errors, i.e.,
nonsystematic errors that are difficult to model (see
Section 3.2.1).

The translation estimation is problematic in this
experiment, as the single steps that were performed
are tiny: The movement on the defined circular path
with a diameter of 180 mm results in translational
steps of 3–19 mm (for angular steps of 2–12 deg).
Considering the incremental translational error, one
can see that the measurement error is significantly
larger on average than the performed translation.
That means that a translational comparison of algo-
rithms is not meaningful in this experiment and is
consequently skipped.

Feature-based SLAM: Both feature tracking tech-
niques, KLT and SIFT, can be applied during a mis-
sion with a reduced frame rate. The mean time
elapsed for KLT feature tracking was tKLT = 356
ms; SIFT performed with a mean time of tSIFT =
293 ms.2

Applying feature tracking techniques has the ad-
vantage of a lower computational effort compared
with range image registration based on ICP. The per-
formance of both feature tracking approaches can be
seen in Figure 24. The quality of matching was better
for the SIFT approach. The reason is the robustness
of SIFT against changes in illumination. A change
in brightness is caused primarily by the automatic
integration time exposure and the inhomogeneous
image illumination. The latter effect was especially
noticeable in KLT feature tracking. The inhomoge-
neous illumination gradient, which is “moved” with
the sensor, showed a high responsiveness for the
KLT feature detector, especially in scenes where near
bright objects were in the field of view. Figure 25 de-
picts the reconstructed maps based on both feature
trackers. The map obtained with the KLT approach

2Note that the KLT approach is normally reported to be faster. The
run time and quality of feature matching of both approaches de-
pend on their parameterization, which, for instance, influences the
number of tracked features. The parameters used here were opti-
mized in terms of higher accuracy of registration results and were
empirically found because the influence of measurement errors
and change in brightness had to be considered.
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Figure 22. Absolute and incremental error measures comparing ICP convergence with or without employing ground truth
robot poses as initial guesses. The profiles of the curves are nearly equal (except pose change estimations for frames around
frames 15 and 50). Only a few range images were “trapped” in different minima.

shows considerably more distortions than the recon-
struction based on SIFT.

The reconstruction quality for both feature track-
ers is lower compared to ICP registration. There are

mainly two reasons for this fact. First, focusing on a
small subset of the image, information is more likely
to be distorted by the notorious depth measurement
errors. Second, results depend on the amount of

Figure 23. Reconstructed 3D maps and trajectory plots computed with the frustum ICP approach. (a) Two-degree angular
displacement using no initial pose estimate. (b) Two-degree angular displacement using ground truth robot poses as initial
guesses. The trajectory has nearly the same distortions as without providing accurate robot poses as initial guesses.
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Figure 24. Error measures showing the performance of pose estimation based on KLT feature and SIFT feature tracking.
(a) Absolute angular error measure. (b) Incremental angular error measure.

Figure 25. Reconstructed 3D maps with feature-based ego motion estimation. (a) 3D map and trajectory obtained with
KLT feature tracking. (b) 3D map and trajectory with SIFT feature tracking.

texture in amplitude images. On the contrary, an
ICP-based approach is more sensitive to structure
in-depth images.

Direct registration with the ESM: The ESM vi-
sual tracking approach was implemented in Matlab
and applied using 10 iterations per image. Consider-
ing that the number of unknown parameters is six,
an optimized implementation would be able to run
in real time at 30 ms/image. (This is the time for esti-
mating eight unknown parameters of a homography
matrix using the ESM visual tracking implemented in
C.3) The direct registration outperformed the above-
mentioned feature tracking techniques in the incre-
mental angular error measure (see Figure 26) but had

3The ESM visual tracking for planar objects is available at
http://esm.gforge.inria.fr/ESMdownloads.html.

difficulties in the translational dimension, due to the
remaining depth measurement errors (e.g., the light-
scattering effect).

These errors have no influence on image inten-
sities. Thus, we obtained an accurate amplitude im-
age registration even with wrong depth measure-
ments. Figure 27(a) shows the zero-mean normal
cross correlation (ZNCC) score of the registration be-
tween subsequent images. The ZNCC was almost
1 for the whole sequence, thus indicating good im-
age registrations. Figure 27(b) depicts the 3D map
and the trajectory obtained with the ESM approach.
The translational error can be seen on the left-hand
side of the map. Here a large displacement between
measurements from the same cuboid, which was in
the range of sight in the first and last frames, is
noticeable.
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Figure 26. Error measures showing the performance of pose estimation based on ESM visual tracking. (a) Absolute angular
error measure. (b) Incremental angular error measure.

5.2.5. Loop Closing

Once a loop closing is detected, or rather hypothe-
sized, the accumulated error can be distributed uni-
formly in order to increase the consistency of a re-
sulting 3D map. GraphSLAM was applied on poses
calculated by the frustum ICP approach. The abso-
lute and incremental error measures are depicted in
Figure 28. Although the trajectory is still not of circu-
lar shape (see Figure 29), the accumulated error could
be reduced significantly.

5.2.6. Concluding Remarks

Figure 30 contrasts the absolute and incremental er-
ror measures for all employed ego motion estima-
tion approaches. ICP achieved the best results, but
its run time does not allow it to be used at frame
rate.

In comparison to the ICP approach, three real-
time-applicable approaches were employed. The fea-
ture tracking techniques achieved good results. KLT
feature tracking needs an extended modeling coping

Figure 27. (a) The ZNCC between any two subsequent images registered with ESM. The ZNCC is almost 1 for each image
pair, thus indicating a good image registration. (b) Reconstructed 3D map and trajectory with the ESM approach. The
trajectory is most similar to the ICP reconstruction. The accumulated translational error can be seen by the displacement
between measurements from the same cuboid, which was in the range of sight in the first and last frames (circular spot).
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Figure 28. Error measures showing the performance of pose estimation based on frustum ICP (4-deg step width) after
loop closing. (a) Absolute angular error measure. (b) Incremental angular error measure.

with changes in illumination (e.g., Kim et al., 2007).
The SIFT feature tracking approach was robust
against these issues because the SIFT descriptor is de-
signed for that purpose. The ESM approach outper-
formed feature tracking techniques in the incremen-
tal angular error measure. It turned out to be valu-
able, employing both reflectance and distance data
jointly for the estimation process. However, in order
to avoid errors in estimating translational steps, the
ESM method should be used with a robust method
for discarding outliers in depth measurements. Ro-
bust estimation techniques have already shown to
be effective for handling errors in the image inten-
sities (Malis & Marchand, 2006). Finding robust ex-

Figure 29. Reconstructed 3D map and trajectory with ICP
approach after loop closing.

tensions for error handling in the depth measure-
ments is not straightforward and is a topic for future
work.

The experiments in this section showed that han-
dling nonsystematic errors in ToF ranging is highly
recommended for the implementation of accurate
mapping applications. Trajectories are significantly
distorted, although the RMS error measure is low.
This means that subsequent frames fit well and the
registration error is a matter of depth measurement
distortions. These issues can be addressed either on
the sensory level, e.g., by measures reducing the
light-scattering effect, or on the methodical level, e.g.,
by employing robust statistics to estimate nonsystem-
atic influences. Additionally, the relaxation of errors
showed significant improvements. The inclusion of a
frustum check in global scan relaxation techniques is
a topic for future work.

5.3. 3D Mapping of Larger Environments

A further experiment focused on the mapping of a
larger indoor environment. For this purpose, a loop-
ing trajectory in the robotics hall at the Fraunhofer
Institute IAIS [see Figure 31(a)] was performed. The
ToF camera was carried along manually, so no odom-
etry was available for prior pose estimation. The hall
size is 19.4 m in the longest distance (diagonal from
corner to corner). Because the unambiguity interval is
limited to 7.5 m, measurements appear closer (mod-
ulo 7.5 m) than they are, if the distance from camera
to object exceeds this value. Mostly, the related ampli-
tude can be used to discard those measurements, but
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Figure 30. Error measures comparing the performance of all ego motion estimation approaches. (a) Absolute angular error
measure. (b) Incremental angular error measure.

not in every case. Mismeasurements occur especially
when specular surfaces are present in the field of
view, e.g., mirrors, window panes, and metallic
surfaces. The reflected signal then still has a high
amplitude even at larger distances. Thus, amplitude-
based filtering would not remove related measure-
ments without discarding too many measurements in
the close-up range.

This problem can be tackled reliably only on the
sensory level, e.g., by employing coded binary se-
quences or multiple modulation frequencies. For the
latter case, depth measurements are out of the un-

ambiguity range, if they differ with several modu-
lation frequencies. The follow-up model of the em-
ployed ToF camera, the SwissRanger SR-4k, allows
for switching the modulation frequency in a large
range with the consequence that one frame is lost in
every frequency switching. If this reduction in frame
rate is not acceptable, the camera can operate with a
modulation frequency of 10 MHz, which enlarges the
unambiguity range to 15 m. For the mapping exper-
iment using the SR-3k, the application of amplitude
filtering was sufficient after removing a few objects
with specular reflectivity.

(a) (b)

Figure 31. 3D mapping of a larger indoor environment—the robotics hall at Fraunhofer IAIS. (a) View of part of the
hall. The environment contains different objects such as mobile filing cabinets, staircases, removable walls, and posters. (b)
Perspective view of the registered 3D map of the hall. The performed trajectory (estimated poses of each frame) is drawn
in green.
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Figure 32. RMS error comparison (ICP registration) of model/scene fitting employing default calibration (RMSm =
16.44 mm) and improved calibration (RMSi = 12.47 mm).

5.3.1. Evaluation

Ground truth data given by an external positioning
system were not available. For demonstrating the ro-
bustness of the entire approach, two measures were
evaluated. First, the pose deviation (obtained by first-
to-last range data registration) is provided to demon-
strate that the error accumulation is small enough to
perform loop closure in a larger scaled scenario. The
second measure concerns the RMS error indicating
consistency of subsequent registration results.

Figure 32 contrasts the scene-to-model fitting em-
ploying the default and the improved calibration. The
impact of the improved calibration is more notice-
able in this experiment than for the mapping of the
lab scene. The circular distance error correction has a
greater influence due to the coverage of a larger range
interval and larger translational steps.

A second aspect that can be observed in this ex-
periment concerns the increased robustness through
frustum culling. Incorrect range image registration is
often attributed to a narrow field of view. Figure 33
depicts two measurements made in this experiment.
Point clouds shown in the left-hand image were taken
subsequently against a staircase during ego motion
[see Figure 31(a)]. Both data takes (model and scene)
provide a high degree of geometric structure, so ICP-
based approaches can be expected to perform well.

Point clouds depicted in the right-hand image were
taken a few steps later against the movable walls vis-
ible at the left-hand border of Figure 31(a). Geomet-
ric structure is poor, so vanilla ICP achieves poor re-
sults. In these scenes especially the performance gain
of frustum culling was noticeable. Frustum ICP per-
formed well for the whole data take. Figure 31(b)
shows the reconstructed 3D map and the estimated
trajectory. Errors accumulated after 325 range image
registrations to ‖	t‖ ≈ 0.21 cm and 	θ ≈ 5 deg.

5.3.2. Concluding Remarks

This experiment showed that 3D mapping of indoor
environments is feasible by employing a ToF cam-
era. The frustum ICP approach increased the robust-
ness especially in scenes of poor geometric structure,
while decreasing the computational effort.

A larger dynamic range made the impact of
an improved calibration more noticeable. Also, the
activation of the automatic integration time expo-
sure showed a positive influence. Several preced-
ing experiments with a fixed integration time pro-
vided worse results. The range of values adjusted
by the integration time controller was between 8.9
and 65.5 ms, which indicates a large dynamic range
for the experiment, i.e., the incidence of close-up
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Figure 33. Matching model and scene point sets with ICP is difficult if measurements are of poor geometric structure. (a)
Ego motion estimation can be performed robustly based on range image data while facing the staircase. (b) Reflectance-
based methods perform better in scenes providing low geometric structure but texturedness, e.g., facing the movable poster
walls visible at the left-hand border in Figure 31(a).

scenes comprising high-reflective surfaces as well as
wide-range scenes. Preceding tests with fixed integra-
tion times often resulted in either low-illuminated or
oversaturated measurements. Both situations have to
be avoided.

6. CONCLUSION AND FUTURE WORK

This article investigated the applicability of ToF cam-
eras in the context of autonomous mobile robotics,
especially SLAM. Environment dynamics, as consid-
ered here, comprise a series of aspects, i.e., the sen-
sor motion during data acquisition, changes in illu-
mination as a matter of exposure time control, a high
dynamic range in object reflectivity, and an uncon-
strained working range. In ToF camera-based appli-
cations, dealing with these environment conditions is
often avoided or restrained, e.g., by defining a limited
working range in manipulation tasks.

Performing robust 3D mapping with ToF cam-
eras succeeds only if the special sensor characteristics
are considered, for which this work provided three
contributions. First, the impact of calibration has been
shown with respect to the resulting 3D map. A higher
accuracy in isometry could be achieved. Three dif-
ferent scenarios have been provided in order to rate
improvements in accuracy for ego motion estimation
and to demonstrate the influences of remaining er-
ror sources, i.e., mainly the light-scattering effect. It
became evident that random errors affect results, de-
pending on the performed motion.

Second, a robust nonparametric extension to the
ICP approach has been presented. It showed robust-
ness even when dealing with larger displacements.

Third, a benchmark of ego motion estimation ap-
proaches has been provided. Two of the most com-
mon feature tracking algorithms based on reflectance
data—KLT and SIFT—were compared to a purely
depth image–based ICP approach and a hybrid tech-
nique, the ESM. Experiments focused on the applica-
bility of those approaches with respect to the special
characteristics of ToF camera data. The ESM has been
modified in order to incorporate reflectance and dis-
tance data. The coupling of both dimensions in this
approach achieved accurate results.

On the whole, the experiments revealed three
issues for future work. To start, the modeling of
nonsystematic errors such as the compensation of the
light-scattering effect or the treatment of multiple-
way reflections by means of geometric measures
could enhance 3D mapping accuracy significantly.
Then, a joint minimization criterion in the reflectance
and depth domain will improve the robustness with
respect to unambiguity in structure or texture of the
measurement volume. Finally, the sensor fusion of
ToF camera and an inertial measurement unit gives
rise to improved mapping results.

The data sets and ground truth poses taken in
the laboratory scene are available at http://www.
robotic.dlr.de/242/.
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