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The focus of this paper is on the performance comparison
of two simultaneous localization and mapping (SLAM) algo-
rithms namely 6D Lu/Milios SLAM and Force Field Simula-
tion (FFS). The two algorithms are applied to a 2D data set.
Although the algorithms generate overall visually comparable
results, they show strengths & weaknesses in different regions
of the generated global maps. The question we address in
this paper is, if different ways of evaluating the performance
of SLAM algorithms project different strengths and how can
the evaluations be useful in selecting an algorithm. We will
compare the performance of the algorithms in different ways,
using grid and pose based quality measures.

I. INTRODUCTION

The simultaneous localization and mapping (SLAM) prob-
lem is one of the basic problems in autonomous robot naviga-
tion. In the past many solutions of the simultaneous localiza-
tion and mapping (SLAM) problem have been proposed [16].
However, it is difficult for engineers and developers to choose
a suitable algorithm, due to a lack of true benchmarking
experiments. In the well-known Radish (The Robotics Data
Set Repository) repository [10] algorithms and results as
bitmapped figures are available, but the algorithms have not
been compared against each other. A valuable source for state
of the art performance are competitions like RoboCup [7],
Grand Challenge [4] or the European Land Robotics Trial [8].
However, the aim of such competitions is to evaluate whole
systems under operational conditions, but are not well suited
for the performance evaluation of vital components like per-
ception. This paper presents two methodologies for comparing
the results of state of the art SLAM algorithms, namely 6D
LuM [3] and FFS [11].

LuM and FFS SLAM, treat the mapping problem as an op-
timization problem, that is a maximal likelihood map learning
method. The algorithms seek to find a configuration ξ∗, i.e.,
scan poses that maximizes the likelihood of observations and
could be written as

ξ∗ = argmax
ξ

F (ξ),
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where F is a function measuring the map quality or likelihood.
This paper is organized as follows: After an overview

of related work, section III will give a brief description of
the compared SLAM algorithms. Section IV presents our
evaluation methodology, followed by the results. Section VI
concludes.

II. RELATED WORK

A. Robot Mapping

State of the art for metric maps are probabilistic meth-
ods, where the robot has probabilistic motion models and
perception models. Through integration of these two distri-
butions with a Bayes filter, e.g., Kalman or particle filter,
it is possible to localize the robot. Mapping is often an
extension to this estimation problem. Besides the robot pose,
positions of landmarks are also estimated. Closed loops, i.e.,
revisiting a previously visited area of the environment, play a
special role here: Once detected, they enable the algorithms
to bound the error by deforming the mapped area to yield
a topologically consistent model. For e.g. [15] addresses the
issues in loop-closing problems. Several strategies exist for
solving SLAM. Thrun [16] surveys existing techniques, like,
maximum likelihood estimation, Expectation Maximization,
Extended Kalman Filter, Sparsely Extended Information Filter
SLAM. FastSLAM [18] and its improved variants like [9] use
Rao-Blackwellized particle filters.

SLAM in well-defined, planar indoor environments is con-
sidered solved. However, little effort has been spent in com-
paring the performance evaluation of the SLAM algorithms.
Given vast literature and various successful approaches for
SLAM, such comparative studies are needed to choose appro-
priate SLAM algorithms for specific applications.

B. Performance Evaluation

Most research in the SLAM community aims at creating
consistent maps. Recently, on the theoretical side of SLAM,
Bailey et al. proves that EKF-SLAM fails in large environ-
ments [1] and FastSLAM is inconsistent as a statistical filter:
it always underestimates its own error in the medium to long-
term [2] that is it becomes over-confident. Besides focusing
on such consistency issues, little effort has been made in
comparative studies of SLAM algorithms.

Comparing two or more SLAM algorithms needs quantita-
tive performance metrics like robustness, rate of convergence,
quality of the results. Though the metrics used for comparison



in this paper are not completely new, the use of them in this
context has not been done before, to the best of our knowledge.
In this paper we mainly focus on the rate of convergence and
quality of results of the two algorithms. They are measured in
two different ways: occupancy grid based and pose based, as
described in section IV.

III. DESCRIPTION OF MAPPING ALGORITHMS

A. FFS

FFS [11] treats map alignment as an optimization problem.
Single scans, possibly gained from different robots, are kept
separately but are superimposed after translation and rotation
to build a global map. The task is to find the optimal rotation
and translation of each scan to minimize a cost function
defined on this map. FFS is a gradient descent algorithm,
motivated by the dynamics of rigid bodies in a force field.
In analogy to Physics, the data points are seen as masses, data
points of a single scan are rigidly connected with massless
rods. The superimposition of scans defines the location of
masses, which induces a force field. In each iteration, FFS
transforms (rotates/translates) all single scans simultaneously
in direction of the gradient defined by the force field under
the constraints of rigid movement; the global map converges
towards a minimum of the overlying potential function, which
is the cost function. FFS is motivated by physics, but is adapted
to the application of map alignment. It differs in the definition
of the potential function, and in the choice of the step width
of the gradient descent. The potential is defined as
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with r =
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(X − x)2 + (Y − y)2,pi = (X, Y ),pj = (x, y) ∈
P , P is the set of all transformed data points.

The potential function measures the probability of visual
correspondence between all pairs of data points based on
distance, direction and visual importance of data points:
in (1) m1,m2 denote the visual importance of two data
points, ∠(pi, pj) the difference of direction of two points.
Defining the visual importance of points dynamically is a
simple interface to incorporate low or mid level perceptual
properties (e.g. shape properties) into the of the global map
into the optimization process. In contrast to algorithms like
ICP, FFS does not work on optimization of nearest neighbor
correspondences only, but (theoretically) takes into account all
pairs of correspondences. Different techniques built into FFS
drastically reduce the computational complexity.

FFS is steered by two parameters, σt in eq. 1 and the
step width ∆t of the gradient descent. σ steers the influence
of distance between points. Initially set to a big value to
accumulate information from a large neighborhood, it linearly
decreases over the iterations to focus on local properties. The
step width ∆t in the FFS gradient descent is defined by
an exponentially decreasing cooling process, similar to tech-
niques like simulated annealing. Initially set to a high value
it allows for significant transformations to possibly escape

local minima. Decreasing the step enables local adjustment
in combination with a low σt.

To conclude, the basic properties of FFS are
1) Data point correspondences are not made by a hard

decision, but an integral between pairs of points defines
the cost function instead of hard ’nearest neighbor’
correspondences

2) FFS is a gradient approach, it does not commit to an
optimal solution in each iteration step

3) The iteration step towards an optimal solution is steered
by a ’cooling process’, that allows the system to escape
local minima

4) FFS transforms all scans simultaneously thus searching
in 3n space of configurations with n scans.

5) FFS easily incorporates structural similarity modeling
human perception to emphasize/strengthen the corre-
spondences

B. 6D LuM

To solve SLAM, a 6D graph optimization algorithm for
global relaxation based on the method of Lu and Milios [12] is
employed, namely Lu and Milios style SLAM (LUM). Details
of the 6D optimization, i.e., how the matrices have to be filled,
can be found in [3]:

Given a network with n + 1 nodes X0, ..., Xn representing
the poses V0, ..., Vn, and the directed edges Di,j , we aim to
estimate all poses optimally to build a consistent map of the
environment. For simplicity, we make the approximation that
the measurement equation is linear, i.e.

Di,j = Xi −Xj .

An error function is formed such that minimization results in
improved pose estimations:

W =
∑

(i,j)

(Di,j − D̄i,j)T C−1
i,j (Di,j − D̄i,j). (2)

where D̄i,j = Di,j + ∆Di,j models random Gaussian noise
added to the unknown exact pose Di,j . The covariance ma-
trices Ci,j describing the pose relations in the network are
computed based on the paired points of the ICP algorithm. The
error function Eq. (2) has a quadratic form and is therefore
solved in closed form by Cholesky decomposition in the order
of O(n3) for n poses (n ¿ N ). The algorithm optimizes
Eq. (2) gradually by iterating the following five steps [3]:

I) Compute the point correspondences (n closest points)
using a distance threshold (here: 20 cm) for any link
(i, j) in the given graph.

II) Calculate the measurement vector D̄ij and its covariance
Cij .

III) From all D̄ij and Cij form a linear system GX = B.
IV) Solve for X
V) Update the poses and their covariances.
For this GraphSLAM algorithm the graph is computed as

follows: Given initial pose estimates, we compute the the
number of closest points with a distance threshold (20 cm). If
there are more than 5 point pairs, a link to the the graph is
added.



To summarize, the basic properties of 6D LuM are
1) Data point correspondences are made by a hard decision

using ’nearest neighbor’ point correspondences
2) 6D LuM computes the minimum in every iteration
3) 6D LuM transforms all scans simultaneously
4) This GraphSLAM approach has been extended success-

fully to process 3D scans with representation of robot
poses using 6 degrees of freedom.

In this paper, we process 2D laser range scans with the
6D LuM algorithm, i.e., in the range data the height coordinate
is set 0. In this case the the algorithms shows the behaviour
of the original Lu and Milios [12] GraphSLAM method.

IV. EVALUATION

Evaluation of SLAM algorithms applied to real world data
often faces the problem that ground truth information is hard
to collect. For example, in settings of Search and Rescue
environments, data sets are scanned, which usually have no
exact underlying blue print, due to the nature of the random
spatial placement of (sparse) landmarks and features. Hence
map inherent qualities, like entropy of the distribution of data
points, must be used to infer measures of quality that reflect
their ability to map the real world. In the experiments, we will
compare the performance of 6D LuM and FFS SLAM using
a grid based and a pose based approach. Especially the grid
based approach will be compared to visual inspection, which
in this setting could be seen as a subjective ground truth of
the performance evaluation. The reason for the choice of 6D
LuM and FFS SLAM are the following:
• Both, 6D LuM and FFS SLAM, are state of the art algo-

rithms to simultaneously process multiple scans, which
is needed in settings of multi-robot mapping, which is
a problem that currently has stronger focus in robot
mapping.

• By visual inspection, 6D LuM and FFS perform, intu-
itively spoken, alike, although differing in details. Eval-
uation of the algorithms should be able to report this
behavior.

It should be noted that 6D LuM is applied here to a 2D
dataset, to compare it to the currently available version of the
FFS algorithm, which works on 2D scan data only. Hence the
LuM performance is only evaluated on three dimensions.

A. Occupancy Grid Based

Occupancy grids are used to represent the environment by
discretizing the space into grid cells that have probabilistic
occupancy values accumulated by sensor readings. They were
introduced by [13] and are very popular in SLAM community.
Learning occupancy grids is an essential component of the
SLAM process. Once built they can be used to evaluate the
likelihood of the sensor readings and also be used for guiding
the exploration task as they are useful for computing the
information gain of actions.

The likelihood of sensor readings is computed usually
using different sensor models like beam-model, likelihood-
field model or map-correlation model [17]. The information

gain of actions can be computed using change in entropy of
the grid. We use these basic ideas to compare the outcome of
the two SLAM algorithms.

We use the beam penetration model described in [6] to
compute likelihood of the sensor readings. Entropy of the
grid is computed as described in [14]. Once the final map is
obtained we compute the log-likelihood of all sensor readings
with trajectory given out by the algorithm as

L(m,x1:n) =
n∑

i=1

K∑

j=1

log(p(zij)|xi,m))

where m is the final occupancy grid, x1:n is the final set of
poses, K is the number of sensor readings at each pose and
p(zij |xi,m) is computed using beam-penetration model as in
[6]. The log-likelihood ranges from −∞ to 0 and the higher
it is the better the algorithm’s output.

The entropy of the map is computed based on the common
independence assumption about the grid cells. Since each grid
cell in the occupancy grid is a binary random variable the
entropy of H(m) is computed as follows as described in [14].

H(m) = −
∑
c∈m

p(c) log p(c) + (1− p(c)) log(1− p(c))

Since the value of H(m) is not independent of the grid
resolution it’s important either to use same resolution or to
weight the entropy of each cell with its size when comparing
output from two algorithms. The lower the entropy of the
map the better the outcome is. It is important to note that
the entropy of the map and the likelihood-scores are not
completely uncorrelated.

B. Pose Based

The occupancy grid based evaluations are very useful in
the sense that they do not need ”ground truths” to compare
the results. But their memory requirements are proportional
to the dimensionality and size of the environment. The pose
based evaluations have an advantage in terms of memory
requirements but require ”ground truth” data to compare to.
Here we present the technique that can be used to measure the
quality of the output of SLAM algorithm assuming ground
truth trajectory is available. The ground truth data can be
obtained by surveying the environment as done in [5].

The SLAM algorithm gives out a final set of poses x1:n.
Let the set of ground truth poses be xG

1:n. Since each pose
in 2D mapping has three components viz. x, y, θ we compute
the average error in each of the components. It is important
that both the output of SLAM algorithm and the ground truth
poses are in the same global frame. This could be done by
rotating and translating the set of poses such that the first
corresponding pose in each set is (0, 0, 0). Once the poses are
in same global frame the average error in each component is



computed as:

E(x) =
1
n

n∑

i=1

|xi − xG
i |

E(y) =
1
n

n∑

i=1

|yi − yG
i |

E(θ) =
1
n

n∑

i=1

cos−1(cos(θi − θG
i ))

E(θ) is computed as shown above so that the difference
between the orientations is always between 0 and π.

V. EXPERIMENTS

A. The Data, Visual Inspection

Both algorithms will be evaluated based on their perfor-
mance on the NIST disaster data set with the same initial set
of poses, see fig. 1. The data set consists of 60 scans and
is especially complicated to map, since the single scans have
minimal overlap only, and no distinct landmarks are present
in the single scans. For this data set, no reliable ground truth
pose data exists. This configuration was gained by random
distortion of a manually gained global map.

Fig. 1. Initial configuration of the NIST data set. The data consists of 60
scans. The scale is in centimeters.

Fig. 2. 6 example scans of the NIST data set. In fig. 1, they can be located
on the left side.

Six sample scans are shown in fig. 2. The final results
of LuM and FFS respectively are shown in fig. 3. Visual
inspection of 3 shows the following properties:
• The overall appearance of both approaches is equal.
• The mapping quality in different details is different: while

FFS performs better in the left half, especially in the top

left quarter, LuM shows a more visually consistent result
in the right half, especially the top right corner.

To test if the evaluation does reflect these properties, we
performed the following tests:
• First, entropy (and additional, likelihood-score) of the

entire global maps (global evaluation) of both algorithms
over all iterations are computed. This should reflect the
behavior of both algorithms to converge towards optimal
values, which should be in the same order of magnitude
for both metrics.

• To check the evaluation of the different quality of
mapping details in different areas, we split the result
maps into four quarters and evaluated separately (regional
evaluation).

In the LuM algorithm, 500 iterations were performed. FFS
stopped automatically after 50 iterations, detecting a condition
of changes in poses below a certain threshold. To compare all
iteration steps, we extended the final result (iteration 50) to
iterations 51− 500.

B. Grid Based Global Evaluation

The entropies and the likelihood-scores of the maps as
the algorithms progress are shown in the fig. 4(a) and 4(b)
respectively.

Please note the different scale on the iteration axis in
the intervals [1 − 50]and(50 − 500], in the first interval the
iterations increase in units of 1, whereas in the second they
increase in units of 10. This holds for all following figures.

You can see that the entropy decreases non-monotonically in
case of FFS while in case of LuM it tends to be monotonically
decreasing. This is based in the different nature of both
algorithms: FFS is gradient based approach that has a built in
”cooling strategy” for the step width to possibly escape local
minima. In the beginning, FFS takes bigger steps, yielding
a non monotonic behavior in its target function, which is
also visible in the entropy. LuM optimizes its pose in each
iteration, leading to a more smooth behavior, bearing the risk
of being caught in local minima. This is also reflected in the
convergence behavior in terms of speed: since LuM commits to
optimal solutions earlier, it converges faster in the beginning,
slowing down afterwards. FFS is slower (or more positively:
more careful) in the first steps, due to the choice of step
width that causes a jittering behavior. After the step width is
balanced, FFS reaches its optimum very quickly. Interestingly,
in both cases the near optimum value is reached after about
50 iterations.

The entropy score of both algorithms is comparable, which
fulfills the expectations based on the visual inspection.

Similar behavior is observed in the likelihood scores. Hence
the grid based evaluation is able to reflect the properties of
both algorithms in the case of global evaluation.

C. Regional Evaluation

The maps are split into four regions, being North-West,
North-East, South-West, South-East. Only the results for en-
tropies are shown here, the likelihood scores did not lead to



Fig. 3. Result of FFS (left) and LuM (right) on NIST data set, initialized as in 1. Evaluated by the overall visual impression, both algorithms perform
comparably. Differences in details can be seen especially in the top left, where FFS performs better, and the top right, where LuM is more precise.

(a) (b)

Fig. 4. (a): The entropy of the map H(m) at various stages of FFS and LuM. (b): The likelihood-score L(m,x1:n) at various stages of the algorithms.
Please note the different scale on the iteration axis in the intervals [1− 50]and(50− 500].

additional further information. We expect better results for FFS
in the North-West region, whereas LuM should outperform
FFS in the North-East region, results for the southern regions
should not vastly differ from each other.

The results are presented in fig. 5. fig. 5(a) shows the
behavior for the North-West region of the map while 5(b)
shows for North-East, 5(c) for South-West and 5(d) for South-
East.

In accord with visual inspection, FFS is evaluated to per-
form better on the North-West region (fig. 5(a)) while LuM
performs better in other regions. However, looking at the
difference in final values, we can see that they always differ
in ranges between ∼ 30 and ∼ 80 units: (a) ∼ 430 − 480,
(b) ∼ 3200 − 3280, (c) ∼ 278 − 309, (d) ∼ 950 − 1000.
Hence, although the tendency in the north regions is correct,
the comparison to the southern regions, which should yield a
smaller distance in values, does not clearly verify the correct
estimation.

D. Global Pose Based Estimation

Pose based estimation needs a ground truth reference pose,
see section IV-B. Since a ground truth for the NIST data set
is not available, we just use the final set of poses of each

algorithm. This necessarily leads to a graph that converges
to an error of zero. Hence it does not give any information
about the actual mapping quality, but it shows the behavior of
the algorithms in terms of rate of convergence. Fig. 6 shows
the behavior of the algorithms using error-metrics presented
in section IV-B.

With respect to path to convergence, the pose based evalu-
ation also shows the same properties of LuM and FFS as the
grid based: LuM is ”more monotonic”, while FFS has jittering
behavior. Interestingly the pose based evaluation shows FFS
converging faster, which is in contrast to the result using grid
based evaluation. While reasons for this different result will
be topic of future discussion, it again shows that the choice of
evaluation method has an influence on the property description
of the algorithms.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a performance evaluation of two
simultaneous localization and mapping (SLAM) algorithms
namely 6D Lu/Milios SLAM (6D LUM) and Force Field
Simulation (FFS). These two algorithms have been applied
to a 2D data set, provides by NIST. The results have been
compared using two different metrics, i.e., an occupancy grid



(a) (b)

(c) (d)

Fig. 5. (a): H(m) for North-West (top-left quadrant) region of m. (b): H(m) for North-East (top-right quadrant). (c): For South-West (bottom-left). (d):
For South-East (bottom-right)

(a) (b) (c)

Fig. 6. (a): E(x) for FFS and LuM. (b): E(y). (c): E(θ) for FFS and LuM. The errors E(x) and E(y) are given in meters, E(θ) is given in radians.

based method and a pose based method. In addition these
metrics have checked by visual inspection for plausibility. 6D
LUM and FFS show similar performances on the data set
considered in this paper.

Needless to say a lot of work remains to be done. The two
algorithms have been on one data set. However, in robotic
exploration task the environment is the greatest element of
uncertainty. Mapping algorithms might fail in certain envi-
ronments. In future work we plan to benchmark mapping
algorithms using more suitable standardized tests and evaluate
on automatically generated test cases. The grid and pose based
evaluation methods will be used for these evaluations.
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