
Exploration Strategies for a Robot with a
Continously Rotating 3D Scanner

Elena Digor, Andreas Birk, and Andreas Nüchter
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Abstract. To benchmark the efficiency of exploration strategies one has
to use robot simulators. In an exploration task, the robot faces an un-
known environment. Of course one could test the algorithm in different
real-world scenarios, but a competitive strategy must have good perfor-
mance in any environment that can be systematically constructed inside
a simulator. This paper presents an evaluation of exploration strate-
gies we developed for a specific sensor. A continously rotating 3D laser
scanner that scans only into one direction at a time moves through the
environment sampling the surrounding. Our evaluation framework fea-
tures an efficient scanning and robot simulator for kinematic feasible
trajectories. We will show that shorter trajectories do not necessarily
imply quicker exploration. A simple simulator framework is sufficient for
evaluating these properties of path planning algorithms.

1 Introduction

In the last decade, the path planning problems of autonomous mobile robots
have received a lot of attention in the communities of robotics, computational
geometry, and on-line algorithms. Online exploration is still a crucial issue in
mobile robotics. Given an unknown environment, a robot has to find a tour,
from which it can eventually see the whole environment. Autonomous robots
that can solve the simultaneous localization and mapping (SLAM) problem,
need an exploration strategy to operate with true autonomy [10, 16]. However,
most of the related problems in computational geometry are NP-hard and it
is challenging to program good strategies in a robot control architecture. For
example, using a point-like mobile robot model in a polygonal environment and
a vision system that is able to see with a 360 degree field of view with infinity
range, Hoffmann et al. have presented a strategy yielding a competitive factor
of 26.5 [6]. The competitive ratio is the cost of exploration in relation to the
optimal exploration with full information. This implies that in the worst case
the path of the robot is at most 26.5 longer than the optimal path. Other related
theoretical grounded strategies consider the problem of how to look around the
corner [3, 4] or optimal search [5].

Despite these impressive theoretical results, real robots face practical prob-
lems. Reliable sensors systems are still in the development, real-world environ-
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ments are not (simple) polygons, and often a decent approximative solution is
already considered a good robot behavior.

This paper addresses the specific problem of finding a good exploration strat-
egy for a mobile robot with a continuously rotating 3D scanner. Fig. 1 shows
such a robot. The main sensor is a RIEGL VZ-400 laser scanner [11] that contin-
uously rotates around the vertical axis and is therfore able to acquire 3D scans
while moving. In earlier work, we constructed the mobile robot Kurt3D with
a nodding 3D scanner with the stop-scan-plan-go operation mode [14] and a
Kurt3D version with a continuously rotating SICK scanner [1]. These robots are
regularly used as rescue robots, e.g., in RoboCup rescue, as inspection robots,
e.g., for mapping abandoned underground mines, or as surveying system, e.g., for
factory design, facility management urban and regional planning. In this paper
we develop a simulation-based evaluation framework that allows us to quickly
benchmark different strategies while considering kinematic motion constraints.

Fig. 1. The mobile robot Irma3D (Intelligent robot for mapping applications in 3D)
with its main sensor, the RIEGL VZ-400.

2 Related Work

Most known approaches use a stop-scan-plan-go method. This problem is an
extension of Art Gallery problem [15] : Determine how many guards are sufficient
to see every point in the interior of an n-wall art gallery room. The room is
assumed to be represented by a simple polygon, i.e., the room can be fully
covered by one boundary, which does not cross over itself. The position of the
guards can be seen as the points in which the autonomous robot should stop and
scan the environment. Lee and Lin [12] proved that the solution to the original
Art Gallery problem is NP-hard. Surprisingly, the Watchman problem, i.e., a
single mobile guard that moves through the gallery and has to completely see it,
can be solved in polynomial time. Unfortunately, robotic exploration is harder.
The robot does not know the environment beforehand, so it cannot predict the
shape of the environment, and hence any paths it plans cannot be assured to be
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optimal. Its laser range scanner covers a finite area, in discrete angles and with
a maximal distance.

A brute force solution to exploring the whole region is to follow the walls and
to avoid obstacles. Yamauchi et al. [18] proposed an improved solution for 2D
maps, by suggesting to approach the frontiers, i.e. the border between unknown
and known regions. The map is usually saved in an evidence grid format, that is a
2 dimensional regular grid, in which a cell contains evidence or probability, based
on accumulated sensor readings, that the particular patch of space is occupied.
Frontiers are considered to be the cells for which the occupancy probability is
equal to a prior probability. The path planning is, then, based on depth first
search for finding the frontier regions and for avoiding the obstacles. The robot
moves next to a frontier region to take the next scan and to update the evidence
grid. We say the environment has been fully explored when the evidence grid
has no more frontier regions which are big enough for the robot to go through.

A very close solution to Yamauchi, but in 3D this time, is given by Nagatani et
al. [13]. Since keeping 3D point clouds is very expensive, the data is preprocessed
and it is saved in Multi Level Surface (MLS) map. An MLS map is a 2D grid
map, where each cell keeps information about height of objects seen there.

Recently, Holz et al. have evaluated [7] exploration strategies. According to
their findings, frontier based approaches are sufficiently good in real application
scenarios.

3 Exploration Strategies

Our exploration strategies are based on frontiers in a 2D grid representation of
the environment and extend the flood fill algorithm. Flood fill is often used in
image processing applications. The original algorithm colors recursively all the
pixels, that neighbor a starting pixel, and that have the same color as it. A
neighbor pixel is considered to be the pixel which is up/down/left or right next
to the current pixel. An extension of the algorithm’s neighbor definitions, allows
us to use it in finding a shortest path to a desired point on the map, in our case,
to a frontier point. Since our robot is also allowed to go diagonally at a higher
cost, we integrate that part in our exploration model.

The classical flood fill algorithm uses depth first search to find and color
the neighbors. This is unsuitable for path planning and thus the more efficient
Breadth First Filling (BFF) is used. We calculate the radius, i.e., the length of
the path from the starting point to the current point, at every step and enqueue
the encountered points in a priority queue, instead of an ordinary one, yielding
a Breadth First Filling with Priority Queue (BFFPQ) algorithm. The priority
queue allows us to sort the points based on their total distance value. Since the
map resolution is 1 grid cell = 1 cm, a diagonal move is taken to be equal to√

2 ≈ 1.44 cm at sub grid cell accuracy. For every grid cell we keep record of the
shortest distance from the source (cf. Fig. 2). We implemented the priority queue
using a heap. The sort is according to the distance of the inserted points from
the source. Hence, an insert and removal from the priority queue has complexity
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Fig. 2. Breadth first filling with priority queue. The grid cells that have been processed
are shown in red, the cells in the queue are shown in yellow and the distances (in mm)
from the source to the corresponding cell are given in digits.

O(logN) in worst case scenario. In practice this algorithm runs faster, due to
the fact that the sorting operations are on top of the list.

The BFFPQ algorithm guarantees to find out the closest frontier. However,
we are also interested in the actual path that the robot has to follow to reach
that frontier. For finding it we run a backward search algorithm that calculates
the path from the frontier point, step by step back to the source.

Next, we describe four strategies to explore the whole environment. Their
basis is BFFPQ for automatic exploration missions.

3.1 Stop-scan-replanning-go strategy

The Stop-scan-replanning-go strategy starts with a 360◦ scan, and then runs
BFFPQ and finds the first frontier grid cell. After finding the path to this cell,
the robot follows it to reach the goal.

Once it reaches the goal, it stops, and does a 360◦ scan. Next, as the name
of the algorithm suggests, the robot re-plans its new goal by finding the closest
frontier and the path towards it. The algorithm continues this way until the
robot has no more reachable frontiers.

In this strategy the 3D scanner is constantly rotating, i.e., also during the
path following.

3.2 Scan-replanning-go strategy

A second algorithm is a small deviation from the previous one. Instead of doing
constant stops for a full scan of the environment, we instantly compute a new
frontier cell to reach. The incentive is to save the time required for stopping and
scanning in favor of a shorter overall total time for an entire map exploration.

3.3 Continuously-replanning-with-stopping strategy

The following strategy takes full advantage of the fact that while moving the
robot also scans the environment, which in most of the cases might result in
opening the goal-frontier, before actually reaching it. Hence, we implemented
an algorithm according to which, once the robot opens the frontier point while
following a path towards it, the robot instantly searches for another goal point
and changes its path towards the new one.

Recall that whenever the robot aims to reach a frontier, it tries to reach the
closest one. Hence, if the robot opens it before actually reaching it, there is a
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very small chance that a full 360◦ scan would actually lead to new discoveries on
the map. Hence, we do not stop the robot, but make the robot go instantly to the
next closest frontier. Reaching the goal point however, implies that the rotating
scanner failed to explore the frontier pixel while being on the way towards it. As
a result, it seems that most probably the robot is located in a quiet unexplored
area, and it would be advantageous for it to stop and do a full 360◦ scan.

3.4 Continuously-replanning strategy

The Continuously-replanning strategy is a modification of the latter one, with
the constraint that the robot never stops. Similarly to the scan-replanning-go
strategy we aim at saving overall exploration time.

The robot starts with a 360◦ scan, and afterwards it finds the closest frontier
to go to. It follows the path towards it, and if while moving towards the goal the
robot explores the frontier, it sets a new goal and a new path to follow. Again,
this exploration is complete when there are no more frontiers on the map that
the robot can reach.

4 Scanner and Robot Simulation

We set up a basic simulation framework to simulate the constantly rotating
scanner and the mobile robot.

4.1 The Scanner

Scanning is an essential part of our exploration missions. However, since simu-
lator is currently in 2D we have to simulate 72 scans per second to yield a scan
resolution of 1◦. Hence a full 360◦ scan takes 5 seconds, which corresponds to our
used hardware the Riegl VZ-400. By having the length of a beam, we can easily
calculate a far-most point (in our coordinate system) for each scan line. Hence,
at every time step, the simulator has to mark all grid cells starting with the cur-
rent robot position (x, y) and ending either with far-most point or at the closest
encountered obstacle. We use the Bresenham algorithm to quickly simulate the
beams [2]. Beam divergence does not have to be considered, since it is negligible
for the VZ-400. However, the used Bresenham algorithm has to be altered, if
other laser scanners are simulated. For example the laser spot projected by the
SICK LMS-200 is already at a distances of 5 meter roughly 4 cm and therefore
considerable high.

Frontier computation. Since our exploration algorithms are all based on closest
frontier method [18], at any point in time the exploration algorithm has to record
the current frontiers. A frontier is defined as all unexplored grid cells which
directly border with already explored free cells. The frontier pixels are marked on
the robot’s generated map. Hence, the frontier regions are continuously marked
with every beam that the laser scanner emits (cf. Fig. 3).
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Fig. 3. Left: A single laser line (white cells) generation via Bresenham algorithm, with
frontier markings (green cells) at every construction step (from left to right). Right: A
simulated scan in a room. Due to the rotational resolution not all walls are completely
sampled.

4.2 The Robot Platform

The robot is the main component being simulated. Irma3D is a differential drive
robot. Besides a manual control, we simulate the kinematics of the differential
drive vehicle on the set velocities vl and vr for the left and right wheel on a
common axis at a distance 2b one from the other. Let u e1 and ω e2 be the linear
and angular velocities of the mid point of such axis being e1 and e2 body fixed
unit vectors as depicted in Fig. 4. Let e1vr and vle1 be the velocities of the center
of the right and left wheels that are assumed to roll perfectly. The kinematic
model linking the scalars u, ω, vr and vl is:

u =
1

2
(vr + vl) ω =

1

2b
(vr − vl) (1)

where |vr| and |vl| will be bounded by some given value Vm. As known, a dif-
ferential drive vehicle modeled by equations (1) can move on paths of arbitrary
curvature κ, as

κ =
1

b

vr − vl
vr + vl

. (2)

Fig. 4. Left: Differential drive. Right: The used Frenet frame.

Indeed for any vl = −vr the corresponding path curvature would be infinite,
i.e. the vehicle would turn on the spot. Arbitrarily large curvature values can be
implemented if the wheels rotate in opposite directions. Yet if the vehicle should
be required to move nicely and possibly at high linear speeds, commanding
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wheel speeds of different sign in order to make sharp turns should be avoided in
practice in order not to overstress the electromechanical structures of the robot,
e.g. gear boxes, tires, DC motor H-Bridge power circuits. If the wheel speeds vl
and vr should be constrained to positive values only, than the curvature κ given
by equation (2) would be bounded

κ ∈
[
−1

b
,

1

b

]
if vl, vr ∈ [0, Vm] (3)

and the linear speed u > 0 should be constrained to u ≤ Vm/2 to let κ span its
full range [−1/b, 1/b] [8].

Our simulation environment considers the path following controller designed
in [17]: given a Serret-Frenet frame {F} moving along the planar path, call P
its origin having curvilinear abscissa s with respect to an arbitrary path point
(origin of the curvilinear abscissa). Call {I} a fixed inertial frame and Q the mid
point of the differential drive robot axis such that Q has coordinates (s1, y1) in
{F} and (x, y) in {I} (cf. Fig. 4, right). Calling κr the curvature of the reference
path, the kinematics of Q in {I} would be given by the unicycle model

ẋ =u cos θm ẏ = u sin θm θ̇m = ω (4)

and by

ṡ1 =− ṡ (1− κr y1) + u cos θ (5)

ẏ1 =− κr ṡ s1 + u sin θ (6)

θ̇ =ω − κr ṡ (7)

in {F} (refer to [17] for details) being θm and θ the vehicle’s heading in {I} and
{F} respectively. Following [17] we consider the Lyapunov candidate function

V1 =
1

2

(
s21 + y21

)
+

1

2γ
(θ − δ(y1, u))

2
(8)

for some positive γ to derive the closed loop, time invariant and globally stable
control law:

θ̇ = δ̇ − γ y1 u
sin θ − sin δ

θ − δ
− k2 (θ − δ) (9)

ṡ = u cos θ + k1 s1 with k1 > 0, k2 > 0 (10)

The above control law yields the commanded wheel velocities as

vr = u+ b
(
κr ṡ+ θ̇

)
vl = u− b

(
κr ṡ+ θ̇

)
(11)

in which the maximal set values can be incorporated [9], preserving the property
of a closed loop, time invariant and globally stable controller.
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5 Experiments and Results

The performance of our developed algorithms was analyzed on our testing bench,
the simulator. The testing was based on 5 different maps, which are presented in
Fig. 5. For each of the five maps we created 10 different random starting states
for the robot. All four algorithms were applied to each testing case.

Fig. 5. Five maps used for evaluation: Simple map, empty office map, office map with
obstacles, campus roads and campus buildings. Bottom right most map is a satellite
view of the campus

Fig. 6 shows the resulting trajectories of 4 algorithms on the simple map. We
notice that in all the cases where the exploration algorithm implied no full stop
for a 360◦ scan, i.e. Scan-replanning-go strategy, and Continuously-replanning-
go strategy, the path comes out to be longer and jittery. In Fig. 6 (second), one
can see that the robot, even has a tendency to go in a circular trajectory. This
behavior is due to the fact that the robot does not stop, and it’s doing planning
and scanning while moving. Hence, it might be the case, that while reaching a
goal point on the map, the environment around is still barely explored. A full
scan is done in 5 seconds, which means every time step the robot does a move,
it covers only 72◦ of the environment. Similar results have been obtained in the
other maps, see Fig. 7 and Fig. 8.

Exploration path lengths for all strategies are given in Fig. 9 and the corre-
sponding exploration time in Fig. 10. Please notice the scaling of the y-axis. An
additional observation is that once the office map contains clutter, i.e., obstacles,
the total path length increases significantly for the non-stopping algorithms. The
reason is that the obstacles, being of different geometrical forms, block the laser

Fig. 6. Results in the simple map. From left to right: Stop-scan-replanning-go, Scan-
replanning-go, Continuously-replanning-with-stopping, and Continuously-replanning-
go strategy.
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Fig. 7. Results in the office map with clutter. From left to right: Stop-scan-replanning-
go, Scan-replanning-go, Continuously-replanning-with-stopping, and Continuously-
replanning-go strategy.

Fig. 8. Results in the large outdoor map. From left to right: Stop-scan-replanning-
go, Scan-replanning-go, Continuously-replanning-with-stopping, and Continuously-
replanning-go strategy.

beams from reaching the entire room, and as a consequence the robot has to
wander around more, before it explores one entire room.
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Fig. 9. Average and deviation of the path lengths for the four exploration strategies in
our five maps. From top left to bottom right: Simple map, empty office map, office map
with obstacles, campus roads and campus buildings. The visualization for the simple
map contains in addition the path length for exploration by an operator.
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Fig. 10. Average and deviation of exploration times for the four strategies in our five
maps. From top left to bottom right: Simple map, empty office map, office map with
obstacles, campus roads and campus buildings. The visualization for the simple maps
contains in addition the time needed for exploration by an operator.

The large scale maps (Fig. 5 bottom) emphasize our observation that in all
the cases where the exploration algorithm implies no full stop for a 360◦ scan, i.e.
Scan-replanning-go strategy, and Continuously-replanning-go strategy, the path
comes out to be very long and jittery. On the other hand, the overall time for
the exploration was much shorter than for the other two algorithms. Moreover
Stop-scan-replanning-go and Continuously-replanning with stopping strategies
seem to do similarly good in total path length, but the latter one seems to have
an advantage in the total time spent for the entire exploration.

Furthermore, for the large maps, we see a considerable gap between the total
path length of the strategies with stopping compared to the ones without. Since
both of the maps appear relatively uniform, and very big, statistically speaking,
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there are no more favored starting positions. Any position the robot will start
from will cover a very small portion of the map, and every stop cleans up a small
circle area. Hence the robot will more or less go through many small areas,

A video of the exploration strategies can be found under the following links:
http://plum.eecs.jacobs-university.de/download/simpar2010.mpg and
http://plum.eecs.jacobs-university.de/download/simpar2010 cmp.mpg

An additional finding is that the paths, that have been computed by the
planner, were most of the time feasible by the closed loop, time invariant and
globally stable control law with bounded wheel velocities. However, sometimes
the robot control has to revert to a much simpler path following strategy, where
the robot is allowed to turn on the spot.

6 Conclusion and Future Work

Exploration is an ongoing research area in robotics. The emerging technology of
3D sensing devices results in additional challenges exploration algorithms must
handle. Most of the literature cover the theoretical analysis of different stop and
scan methods with a scanner that has a fixed field of view and which is attached
on the top of the robot. Our aim was to take usage of a constantly rotating 3D
scanner, and to consider its advantages by using scanning on the fly methods.

We developed and tested in simulation four different exploration strategies
which are based on the frontier approach combined with an extension of flood fill
algorithm. Two of the algorithms involve stopping at frontier points to take full
360◦ scans of the environment, and the other two implied constant movement
until the entire map is covered.

In order to test the soundness and consistency of our exploration methods,
we have implemented our own small simulator. The robot is simulated by a
differential drive model, with a constantly rotating scanner attached to it. The
scanner does a full 360◦ scan of the environment in a certain time, and updates
the map accordingly.

Furthermore, the proposed small simulator enables us to test kinematic robot
control laws, such as the presented de Wit’s control. This enables us to quickly
determine control parameters, without using real hardware. This paper has
shown that for certain problems there is no need for a sophisticated simula-
tion environment. A home-brew small simulator enables the roboticist to study
important issues of a real robotic system.

In future work, we will test the proposed exploration strategies in combina-
tion with the closed-loop path following on the real robot Irma3D. All application
scenarios that require 3D robotic mapping benefit from the proposed study. In
addition, we’ll work on the theoretical foundations of the exploration method and
aim at finding the competitve ratio of exploration with a continously rotating
sensor.
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