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Abstract

This paper describes a data integration approach for arbitrary 2D/3D depth sensing units exploiting assets of
the signed distance function. The underlying framework generalizes the KinectFusion approach with an object-
oriented model respecting different sensor modalities. For instance, measurements of 2D/3D laser range finders
and RGB-D cameras can be integrated into the same representation. Exemplary, an environment is reconstructed
with a 3D laser range finder, while adding fine details from objects of interest by closer inspection with an RGB-D
sensor. A typical application of this approach is the exploration in rescue environments, where large-scale mapping
is performed on the basis of long-range laser range finders while hollows are inspected with lightweight sensors

attached to a manipulator arm.

1. Introduction

Novel approaches in precise object reconstruction recently
triggered several smart applications. For instance, nowadays
one can register a 3D model of a real object with commodity
hardware at home. Attaching a specific depth sensor and tak-
ing snapshots at different perspective views, a precise volu-
metric model can be reconstructed on the fly. The model can
be sent to a 3D printer in order to get a replication of the real,
cf. [SBKC13].

The availability of fast modeling methods are also valu-
able for exploration tasks. In rescue operations a rescue team
needs as much information as possible from collapsed envi-
ronments to assess the situation. Up to now, human rescue
forces need to inspect every hollow for vital signs or haz-
ardous substances. In doing so, human sagacity is the basis
for the efficiency of search. The mission commander quickly
obtains the whole picture by piecing the team’s reports
together. Exploring these environments with autonomous
robots reduces dangerous situations to which a mission com-
mander has to expose the team. But replacing humans with
robots entails either the demand for an on-board implemen-
tation of human-like skills or a precise 3D perception con-
cept transmitted to the control center. The later necessitates
the integration of depth sensors.
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Figure 1: (a) Rescue robot with 3D laser scanner and Asus
Xtion PRO at a fire service drill with the voluntary fire de-
partment Dettelbach, Germany. (b) Robot manipulator with
CamBoard nano. (c) Sensor head with Asus Xtion PRO.

Due to different working principles, each depth sensor has
assets and drawbacks, for instance concerning the sampling
rate, resolution, disposability of color or operating range.
Figure 1a depicts the integration of a rescue robot equipped
with 3D sensors in a fire service drill in order to assess
human-robot collaboration in time-critical situations.
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In this paper we show how different depth sensors are
fused by generalizing the KinectFusion approach [IKH* 11].
A framework that respects different sensor modalities is de-
veloped. Integrating new sensors merely requires the imple-
mentation of a concrete interface. An environmental model
is reconstructed with multiple 3D sensors as depicted in Fig-
ures la - 1c. While covering a large environment with a 3D
laser range finder, fine details from objects of interest are
added by closer inspection with RGB-D or Time-of-Flight
(ToF) cameras. The fusion of these sensors has two main as-
sets: First, a rough coverage is achieved with the laser scan-
ner that makes localization more robust in poorly structured
environments as a result of 360 °-field-of-view (FoV) sens-
ing. Second, the small and lightweight sensors can be moved
with a manipulator in areas that are not visible to the laser
scanner, for instance in hollows with narrow entries. Envi-
ronmental reconstruction is achieved on the fly while em-
ploying only a power-saving CPU.

2. Related Work

Surface reconstruction is fundamental for many robotic
tasks, e.g., object detection, manipulation and environment
modeling. In general, the surface of an object is to be recon-
structed by merging measurements of sensors from different
perspective views. Depth measurements are needed as well
as the sensor’s pose. If both are known, a registration proce-
dure is dispensable and data can directly be merged.

When both, pose and depth, are unknown, e.g., when us-
ing a hand-held monocular camera, structure from motion
is applicable [Wul3]. Corresponding features in consecutive
images are assigned to estimate sensor motion, e.g., based
on the Scale Invariant Feature Transform (SIFT) [Low04].
Using monocular cameras, 3D models can be reconstructed
up to absolute scale [SSS07].

If depth information but no pose is given, i.e., by using
hand-held RGB-D cameras or laser scanners, 3D modeling
is possible by simultaneously localize the sensor while cre-
ating a 3D map. Many approaches use either feature-based
methods or iterative schemes like the Normal Distribution
Transform (NDT) [BS03, Mag09] or the Iterative Closest
Points (ICP) algorithm and variants of it [BM92, CM91,
RLO1,Zha92].

The interest in 3D registration with hand-held RGB-D
cameras increased with the appearance of the Microsoft
Kinect device on the market. For the registration of textured
3D measurements, Henry et al. utilized a joint optimization
over both, the RGB and the depth channel [HKH* 10]. They
combined the ICP algorithm applied to depth data with SIFT
feature localization in the RGB domain.

Izadi et al. applied the representation of a signed distance
function (SDF) [OF02] to data streams from the Microsoft
Kinect camera [IKH*11]. The group achieved real-time ca-
pability by the use of massive parallelism on GPU. The

hand-held Kinect was localized by ICP registration while
minimizing errors of the depth image channel through data
integration. High-density 3D models of objects within a de-
fined volume can be reconstructed setting the Kinect in mo-
tion. A high frame rate allows for the efficient search of
corresponding point pairs. A projective data association —
comparable to reverse calibration [BDL95]- can be used due
to the small displacements between exposure poses. Kinect-
Fusion was one of the most prominent publications since
2011 in the domain of 3D reconstruction and it builds the
basis for a wide variety of applications. An open-source im-
plementation is available in the point cloud library (PCL)
under the name KinFu [poil3].

Bylow et al. investigated the localization problem and
found non-linear optimization on the basis of Lie algebra
to be more efficient and robust [BSK*13]. Either point-to-
point and point-to-plane metrics were evaluated as well as
different parameter weighting and truncation strategies. The
authors demonstrated the applicability of their approach with
a quadrocopter carrying an RGB-D sensor. Processing was
performed GPU-accelerated in real-time on a ground station.

Sturm et al. used the KinectFusion approach to recon-
struct 3D models of persons from multiple views. Sending
such a model to a 3D printer, one can receive a copy of the
own body [SBKC13].

Zeng et al. implemented an octree-based GPU-version of
KinectFusion to make the mapping of larger environments
possible due to less memory consumption [ZZZL.12]. As a
result, scenes may be 8 times larger.

Recently, Chen et al. scaled the original KinectFusion ap-
proach using a compact volumetric representation [CBI13].
They losslessly streamed data bidirectional between the
GPU and host allowing for unbounded reconstructions.

Furthermore, Whelan et al. extended the KinectFusion ap-
proach to work on large scale environments [WKLM13].
The close-range reconstruction is done classically with
KinectFusion. Areas that leave the predefined volume
around a sensor in motion are subsequently extracted and
meshed.

During exploration in larger environments, it is impor-
tant to avoid sensor heading such that RGB-D measurements
are ambiguous w.r.t. the registration results, e.g., when mea-
suring only co-planar surfaces while heading the sensor to-
wards a plain wall. Also in the absence of objects within
the measurement range, registration is impossible. That is
why RGB-D SLAM is exploiting both, depth and RGB im-
ages [HKH*10]. But also a plain wall might miss enough
texture to lead this approach to success.

The problem of co-planarity in depth images emerge less
likely, the wider the field of view is, e.g., for a panoramic
sampling scheme of rotating 3D laser range finders. Other
important parameters are the sensor’s working range and the
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ascertainability of different materials. A combination of dif-
ferent sensors is advantageous in 3D exploration tasks. Con-
cerning this aspect, we contribute to the state of the art with
the generalization of SDF-based registration approaches for
application to different types of range sensing units. Data
integration becomes straightforward by virtue of the same
representation. In contrast to above mentioned publications,
our framework is not restricted on GPU-powered machines
for achieving real-time applicability. It can be employed on
power-saving CPUs and is even applicable on embedded
platforms.

3. Data Integration Framework

The framework’s basis, the signed distance function, repre-
sents the distance of a given point to a surface. The space
from which a map is to be reconstructed, is divided in fine
elements, i.e., cells in the case of 2D mapping and voxels
for a 3D representation. Let ¥ be the center of an arbitrary
element, p the sensor’s position and m the distance measure-
ment determined in the direction of the given element, the
signed distance function reads:

d(V) =m—||p—¥l| 0]

The penetration depths p and € respect sensor noise and de-
fine the finest granularity to be distinguished. Negative val-
ues of the SDF correspond to elements that are not visible to
the sensor due to occlusions. Therefore, signed distances are
truncated or respectively multiplied with a weight — resulting
in a truncated signed distance function (TSDF). Weights are
calculated with an exponential model according to Bylow et
al. with the following function [BSK*13]:

1 ifd>—e
fldep)=2e" ifd< _—gandd>—p ()
0 ifd<—p

The representation of data as TSDF can be considered as
superior for the Kinect over other representations w.r.t. mea-
surement noise and multiple-view data integration. In ad-
dition, surface normals can be extracted conveniently. For
more details, the interested reader is pointed to related pub-
lications of KinectFusion [IKH*11,BSK*13].

Any sensor needs a specific model respecting the sam-
pling scheme and measurement precision. Measurement
samples belong to certain lines of sight. Assignments of TSD
elements to measurements and vice versa are the basis of
the data integration approach. This formulates two different
problem statements:

First, it is necessary to extract synthetic measurements
from the TSD space for any sensor model. This addresses the
question of how measurements would look like for a specific
sensor at an arbitrary pose. Those synthetic point clouds can
be used for drift-free sensor localization as it is done with
KinectFusion.
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Second, one needs to know how new measurements are to
be integrated into the TSD space. For this, each element is
projected back with the specific sensor model to determine
which measurement ray comes closest to it.

Algorithm 1 sketches the registration and integration pro-
cess of new measurement data.

Algorithm 1 Registration and integration of new measure-
ment data.

1: procedure ONSENSORDATAREVEIVE(sensor)

2 model < RAYCAST(sensor)

3 scene <— get data from sensor

4: T;cp < icp registration of model and scene

5: Tsensor < TicpTsensor > update sensor pose

6

7

8

if (TSensorTl;slt_pmh > thresh) then

Tlast?push — Tsensor
PUSH(sensor)

9: end if

10: end procedure

The model is obtained by intersecting the TSD space with
measurement rays of the sensor model by calling method
RAYCAST, cf. Algorithm 2. The result represents a syn-
thetic point cloud comprising information from all previ-
ously pushed range measurements. The scene, i.e., the most
recent sensor data, is aligned with the model by ICP regis-
tration. The pose change represented as transformation ma-
trix Tj¢), is applied to update the current sensor pose Tsensor-
Subsequently, the scene is integrated into the TSD space by
calling method PUSH, if a significant movement has been
performed since the last integration, cf. Algorithm 3.

3.1. Sensor Modeling

The generalization of TSD integration needs the definition
of a sensor interface. The specific modalities of every sen-
sor has to be transparent for the processing chain in order to
reside generic. All sensors have in common

e a pose represented as transformation matrix,

o the disposability of point-wise distance measurements
along certain lines of sight,

e and probably information about the reflection of emitted
or ambient light, i.e., grayscale or color measurements.

This generic interface is designed as abstract Sensor class,
cf. Figure 2. From this class the specific model is inherited.
Two methods need to be implemented:

e One method for providing the measurement rays respect-
ing the current pose of sensor (getRayMap),

e and one method for the back projection to the measure-
ment matrix, i.e., the assignment of an arbitrary element
in the TSD space to a measurement ray (backProject).

In the following two different sensor models are discussed.
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RayCast3D

TsdSpace

+ calcCoordsFromCurrentPose(

+ push(sensor : Sensor) : void

TsdSpace* space
Sensor* sensor 1
double* coords
double* normals
unsigned char* rgb

- rayCastFromSensorPose(
TsdSpace* space,
double ray[3],

1

*

Sensor

unsigned int* size) : void 1

- Matrix* _T

+ transform(T : Matrix*) : void
+ getRayMap() : Matrix* R
+ backProject(Matrix* M, int* indices) : void

double coord[3],
double normal[3],

? N

uchar rgb[3],

SensorPolar2D

SensorPolar3D SensorProjective3D

double* depth) : bool

Figure 2: Specification of a generic interface for TSD data integration and back projection in UML notation.
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Figure 3: (a) Raycasting model for RGB-D and ToF sensors. (b) Raycasting model for 2D laser range finder. (c) Raycasting
model for 3D laser range finder. (d) Acceleration scheme: Elements remaining empty or being not in the area of sight can be
skipped during push execution. Partition edges are used to determine the set of measurement values to which the partition’s

elements would be assigned (solid lines).

Pinhole Camera Model

The basis for ToF and RGB-D sensors is the pinhole camera

model, i.e., the projection of homogenous coordinates & to
an image plane using the sensor’s 3 x 4 projection matrix as
follows.

fu O t, O

P=(0 f &t O 3)
0O 0 1 O

PE = (su,sv,5)" = (u,n)", )

where f, and f, represent scaling parameters and #, and ¢,
the coordinates of the principal point. The parameter s re-
spects the fact that all points along a ray of sight are pro-
jected to the same pixel coordinates (u, v)T. This ambiguity
is resolved with the measured distance.

The ray casting module employing equation (3) and (4)
determines a pixel-dependent line of sight by inversion. For

this trivial case it reads:

X=—-Uu—ty y=—:v—=t

Ju s

These definitions allow for assignment of arbitrary coor-

dinates to the measurement matrix and vice versa. Figure 3a
depicts this specific sensor model.

z=1 (5

Polar Model

The model for a 3D laser scanner uses conversion between
polar and Cartesian coordinates. The line of sight in the 2D
scanning plane of a Hokuyo UTM-30LX device (xZ) is de-
termined by

12 .
X =sin®

7 =cos9, (6)

where 0 is the angle of the rotating mirror deflecting the laser
beam, cf. Figure 3b. The rotation of the 2D scanner around
the scanner’s center axis through the angle ¢ yields the 3D
components of the resulting line of sight.

x:cos¢~xl y:sinQ)-x/

(© The Eurographics Association 2014.
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The back projection converts an arbitrary point j = (xy z)
in polar representation as follows.

0= arctan% -7, 0 € [-m;7] (8)

0 — arccos —— &)
[17]

These definitions provide the mutual assignment of arbi-
trary coordinates and laser beams. Figure 3¢ depicts the sen-
sor model for the 3D laser range finder. A model for 2D lo-
calization is also covered by setting ¢ = 0.

3.2. Raycasting

Providing a specific model for each sensor allows for a uni-
versal ray casting module. The ray caster queries the set of
rays from the instantiated sensor module and walks along
them through the TSD space. If a sign change is determined,
coordinates and normals are calculated by trilinear interpo-
lation, cf. [IKH*11]. Algorithm 2 sketches the implemen-
tation of the universal ray casting module. Coordinates and
normals are returned, if a sign change of the TSDF between
neighboring elements are detected.

Algorithm 2 Raycasting through TsdSpace.
1: procedure RAYCAST(sensor)

2: R < get rays from sensor
3 for each ray ¥ € R do
4 V « first element in TsdSpace along 7
5 tsdprev < NAN
6: while V is inside TsdSpace do
7: tsd < tsdy > assign property of V
8 if tsd < 0 Atsdprev > 0 then
9: ¢ < extract coordinates f. TsdSpace
10: 7i < extract normals f. TsdSpace
11: break
12: end if
13: tsdprey < tsd
14: V < next element in TsdSpace along ray
15: end while
16: end for

17: end procedure

3.3. Data Integration

Back projection is necessary in order to assign an element
from the TSD space to the corresponding measurement ray.
That means, the element could only have been seen from the
sensor pose along this ray. If the measurement value is sig-
nificantly smaller than the elements’s distance, objects are
located in between. The designation whether an element is
close to a surface considers the penetration depths p and €.
In contrast, the measurement value might be significantly
larger. This means that the element is empty — there is no
object near by.

(© The Eurographics Association 2014.

Algorithm 3 TSD-Integration of generic sensors.

1: procedure PUSH(sensor)

2: P < get current position from sensor

3 data < get data from sensor

4 mask < get mask from sensor

5: for each element V in TsdSpace do
6: V <— obtain coordinates of V
7
8
9

idx < project ¥ back to measurement index
if (mask|[idx]) then
distance < ||p - V||

10: d < datalidx] — distance
11: if d > —p then

12: tsd + min(%7 1.0)

13: w < f(d,p,€)

14: tsdy + By tido
15 wy < wy +w

16 end if

17: end if

18: end for
19: end procedure

Algorithm 3 outlines the integration of new measurements
into the TSD space. A measurement mask is used to indicate
their validity, i.e., to exclude invalid values due to low re-
flectivity or exceedance of measurement range. Due to the
employment of a generic interface, the concrete modalities
of the sensing unit is transparent to the algorithm.

3.4. Acceleration scheme

The employment of a TSD representation demands a huge
amount of memory and computing power. Currently avail-
able implementations rest upon massive parallelism on
GPUs. Most of the space is wasted since allocated elements
stay empty, i.e., there is no measurement assigned to it.
For that, elements are grouped into partitions, such that a
partition has a high probability of containing empty or un-
seen elements. Empty elements are those cells/voxels, which
were in the area of sight but too far from a sampled sur-
face. Unseen elements are hidden due to occlusions. We
choose cell partitions of 16 x 16cm? and voxel partitions
of 16 x 16 x 16¢cm? in office-like environments. The edges
of each partition can be used to verify quickly, if any ele-
ment inside the partition needs to be considered during the
push execution. Figure 3d depicts the approach. Partition 1
is crossed by two laser beams. Measurements to the related
surface are larger than the truncation radius. All cells remain
empty. There is merely need for fixing fsd = 1 and increas-
ing the weight wy for the entire partition. Partition 2 is not
in the area of sight. Thus, all elements inside keep being un-
touched and do not need to be instantiated.

Raycasting benefits from the outlined acceleration scheme
too. If a ray crosses an empty or unseen partition, element
testing, i.e., bilinear interpolation for calculating the TSDEF,
is not needed.
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3.5. Movement detection for 3D laser range finder

Mapping and localization with a 3D laser range finder needs
to concern the recording time of a single scan. The custom
3D laser range finder, that is used for the experiments in this
paper, is based on a Hokuyo UTM-30LX device. For rea-
sonable resolutions the framerate is limited to 1 Hz. While
taking a sensor frame, the pose of the laser range finder has
to be fixed, otherwise the scan appears skewed. If motion re-
construction is not possible, i.e., if no inertial measurement
unit is available or the computing power is too low to deskew
the data take by means of relaxation algorithms, the 3D scan
is unsuitable for registration.

For the reconstruction of larger environments with a 3D
scanner, it is sufficient to register data at greater intervals.
The typical movement scheme of a rescue robot is step by
step to areas that need closer inspection. This scheme is also
typical for teleoperation. An operator needs to stop the robot
from time to time to orient himself and to plan the next
movement. When the robot stops, the next 3D scan is reg-
istered and pushed into the TSD representation.

In order to decouple the reconstruction approach from ex-
ternal signals, two subsequent 3D scans are evaluated for ab-
sence of motion. The similarity of the obtained transforma-
tion matrix T4y 4 and identity I is checked by the eigenval-
ues A. Ideally the transformation between two scans from the
same pose is the identity matrix I with all eigenvalues A; = 1.
If any of the eigenvalues A; differs to the ideal value 1 by a
given threshold A, the scanner is rated to be in motion be-
tween the last two scans. If no movement was detected, the
last received point cloud is used for data integration into the
TSD volume. With this approach the 3D scanner can even
be guided by hand while the environment is reconstructed
on the fly. Algorithm 4 shows data integration on the basis
of a 3D laser range finder with movement detection.

Algorithm 4 Data integration of 3D laser scans.

1: procedure DATAINTEGRATION(scan)
2: scene <— scan

3 Ticp < ICP(sceneprey, scene)

4 A < calculate eigenvalues for Tjcp

5 if all eigenvalues ||A; — 1]| < A, then
6: Ticp <= ICP(model, scene)

7 Tpose = TiL'prose

8 model < scan

9 end if
10: sceneprey <— scan

11: end procedure

4. Experiments and Results

The data integration framework has been applied to two dif-
ferent mapping tasks. By the use of a 2D laser range finder,
a large indoor environment can be reconstructed. In an ex-
tended experiment data from a 3D laser range finder, an

RGB-D camera and a ToF camera are integrated into the
framework.

4.1. 2D Mapping

The data integration framework is applied to a SICK
LMS100 laser range finder in a larger indoor environment,
cf. Figure 6a. The map is defined for an area of 128 x 128 m?
with a granularity of 1.5cm. The approach is applied on the
fly during mission. A framerate between 7 and 10Hz could
be achieved on a power-saving Core i7 CPU (45W TDP).
Figure 4 depicts the timing of the separate operations in the
execution chain of the TSD approach. This seconds the re-
sult of Holz et al. that ICP-based mapping algorithms can
perform similarly well as Rao-Blackwellized Particle Filter
implementations [HB10].
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Figure 4: Timing results for the 2D mapping with the SICK
LMS100 in an area of 120 x 120m? with 1.5cm resolution.

4.2. 3D Mapping

For 3D mapping three different sensors are tested: a custom
3D laser range finder based on a Hokuyo UTM-30LX scan-
ner, a CamBoard nano Time-of-Flight (ToF) camera and an
Asus Xtion PRO device. The sensor model for the laser scan-
ner considers a resolution of 0.25 © in the 2D scanning plane,
i.e., around the mirror axis. These scanning planes are ro-
tated with 10rpm around the scanner’s center axis resulting
in a horizontal resolution of 3 °, cf. Figure 7a. A half rotation
provides a 360 °-FoV sampling as depicted in Figure 3c.

The coarse horizontal resolution is a tradeoff to keep the
scanning time low. When performing a typical, natural stop-
and-go exploration, undistorted scans are taken, otherwise
they need to be motion compensated. Those undistorted 3D
scans are registered and pushed to the TSD space with 2cm
granularity. Figure 7b depicts a resulting 3D environment
map after pushing a few 3D scans. In spite of the coarse
resolution of the scanner, the mapping approach achieves a
dense representation. The time for registration and integrat-
ing data into the TSD space is negligible compared to the
scanning time.

Areas of interest are inspected separately. The RGB-D
camera is used to fill a TSD space of fine resolution (5 mm).

(© The Eurographics Association 2014.
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The higher density of measurement points and the dispos-
ability of coloring is clearly advantageous.

The fusion of both TSD spaces are straightforward due
to the same representation. Both are to be aligned by reg-
istration. Figure 7c depicts the reconstruction of the area
of interest labeled in Figure 7b. On the Core i7 the ap-
proach achieves a frame rate of 2Hz for 640 x 480 resolu-
tion and 8 Hz for 320 x 240 resolution in an environment of
2.5x2.5%2.5m> with 1cm granularity.

For the ToF camera a high frame rate is achieved. Hand-
operated mapping of a 1.28 x 1.28 x 1.28 m? TSD volume of
Smm granularity is applicable. Figure 5 shows the runtime
of the separate operations in the execution chain. In average
a frequency of 10Hz is achieved. The reconstruction of the
area of interest is shown in Figure 7d;

The framework has been evaluated against the ground-
truth benchmark of Sturm et al. [SEE* 12]. The accuracy lies
in a comparable range to the GPU implementation of KinFu.

5. Conclusions and Future Works

This paper presented a data integration approach of different
depth sensors exploiting assets of the signed distance func-
tion. It contributes to the state of the art concerning three
main aspects.

First, it generalizes the KinectFusion approach to combine
different depth sensing units. Only a specific sensor interface
is needed to be implemented in order to integrate a certain
sensor. Second, the registration step on the basis of the ICP
algorithm is exchangeable. The framework can be integrated
in any 2D/3D mapping approach. Finally, the generic repre-
sentation makes 2D/3D sensor data integration straightfor-
ward. The approach can deal with coarse resolutions, when
one needs to be aware of processing time or frame rate re-
spectively. Environmental reconstruction is achieved on the
fly while employing only a power-saving CPU.

The software framework is made available as open-
source at http://github.com/autonohm/obviously. Fu-
ture work will focus on full-automatic 3D mapping indepen-
dent of sensor configuration. Optimization of the registration
step offers a high benefit.

5.1. Acknowledgement

This research has been funded by STAEDTLER Stiftung
(foundation) within the project Robot Assistance for Explo-
ration in Rescue Missions (02/13 - 04/14). The foundation’s
support is gratefully acknowledged. Furthermore, we thank
the voluntary fire department of Dettelbach for supporting
this research.

References

[BDLO5] BLAIS G., D. LEVINE M.: Registering multiview range
data to create 3d computer objects. IEEE Trans. Pattern Anal.
Mach. Intell. 17, 8 (1995), 820-824. 2

(© The Eurographics Association 2014.

400 T T T T T T

350 |} Raycast ———— |
300 icp -
250 | Push ---eccenenn .
200 | Total 1

runtime/ms

150 | _ 3 . i
100 . ‘ .. B
50

0 10 20 30 40 50 60 70

frame

Figure 5: Timing results for an hand-held CamBoard nano
applied to an area of 1.28 x 1.28 x 1.28 m? with 5mm gran-
ularity.

[BM92] BESL P., MCKAY N.: A method for Registration of 3—
D Shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence 14, 2 (February 1992), 239 — 256. 2

[BSO03] BIBER P., STRASSER W.: The normal distributions trans-
form: a new approach to laser scan matching. In Proceedings
of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS) (2003), pp. 2743-2748. 2

[BSK*13] ByYLow E., STURM J., KERL C., KAHL F., CRE-
MERS D.: Real-time camera tracking and 3d reconstruction us-
ing signed distance functions. In Robotics: Science and Systems
Conference (RSS) (June 2013). 2,3

[CBI13] CHEN J., BAUTEMBACH D., , 1ZADI S.: Scalable real-
time volumetric surface reconstruction. ACM Trans. Graph. 32,
4 (July 2013), 113:1-113:6. 2

[CM91] CHEN Y., MEDIONI G.: Object modeling by registration
of multiple range images. In In Proceedings of the IEEE Con-
ference on Robotics and Automation (ICRA) (Sacramento, CA,
USA, 1991), pp. 2724-2729. 2

[HB10] HoLz D., BEHNKE S.: Sancta simplicitas — on the effi-
ciency and achievable results of slam using icp-based incremen-
tal registration. In In Proceedings of the IEEE Conference on
Robotics and Automation (ICRA) (2010), pp. 1380-1387. 6

[HKH*10] HENRY P., KRAININ M., HERBST E., REN X., FOX
D.: Rgbd mapping: Using depth cameras for dense 3D modeling
of indoor environments. In RGB-D: Advanced Reasoning with
Depth Cameras Workshop in conjunction with RSS (2010). 2

[IKH*11] 1IzADI S., KiM D., HILLIGES O., MOLYNEAUX D.,
NEWCOMBE R., KOHLI P., SHOTTON J., HODGES S., FREE-
MAN D., DAVISON A., FITZGIBBON A.: KinectFusion: Real-
time 3D reconstruction and interaction using a moving depth
camera. In Proceedings of the ACM Symposium on User Inter-
face Software and Technology (2011). 2,3, 5

[Low04] LoWE D. G.: Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Computer Vision
60, 2 (2004), 91-110. 2

[Mag09] MAGNUSSON M.: The Three-Dimensional Normal-
Distributions Transform — an Efficient Representation for Regis-
tration, Surface Analysis, and Loop Detection. PhD thesis, Ore-
bro University, 2009. Orebro Studies in Technology 36. 2

[OF02] OSHER S., FEDKIW R.: Level Set Methods and Dynamic
Implicit Surfaces (Applied Mathematical Sciences), 2003 ed.
Springer, Nov. 2002. 2

[poil3] Point cloud library (PCL). http://pointclouds.org, 2013.
Accessed on 13/10/2013. 2


http://github.com/autonohm/obviously

S. May, Ph. Koch, R. Koch, Ch. Merkl, Ch. Pfitzner & A. Niichter / Generalized 2D and 3D Multi-Sensor Data Integration

Figure 6: Results with 2D mapping approach. (a) Bird’s-eye view on a University building at Kesslerplatz, Nuremberg (Source:
Google Earth). (b) Ground view along the corridor in the University’s building. (c) Resulting 2D map with TSD approach.
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Figure 7: Application of TSD approach to different sensors. (a) Raw 3D laser scan taken at 10rpm. (b) 3D reconstruction with
laser data. The red label highlights an area of interest. (c) 3D reconstruction of inspection area from an RGB-D camera. (d)

3D reconstruction obtained with the CamBoard nano.
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