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Abstract: Body weight is a crucial parameter when it comes to drug or radiation dosing. In case
of emergency treatment time is short so that physicians estimate the body weight by the visual
appearance of a patient. Further, visual body weight estimation might be a feature for person
identification. This paper presents the anthropometric feature extraction from RGB-D sensor
data, recorded from frontal view. The features are forwarded to an artificial neural network for
weight estimation. Experiments with 233 people demonstrate the capability of different features
for body weight estimation. To prove robustness against sensor modalities, a structured light
sensor is used, as well as a time-of-flight sensor. An additional experiment including temperature
features from a thermal camera improves the body weight estimation beyond.
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1. INTRODUCTION

Body weight might be one of the best indicators to check
health status: Under or overweight can be an evidence
for sickness. Further, body weight estimation is crucial
for some clinical scenarios: A physician treating a patient
with an acute ischemic stroke has to estimate the body
weight to adapt the drug dosage. The medication to solve
a blood clot has to be given within a narrow time window
of three hours after appearing of the first symptoms of a
stroke. Under this time pressure it is still state of the art for
physicians to estimate a patient’s body weight by a visual
guess. Several studies demonstrated that the physicians
and nursing staff can hardly estimate someone’s weight
sufficiently for drug dosing (Fernandes et al., 1999; Breuer
et al., 2010). In case of elderly patients, dementia might
interfere with the patient’s self estimation. In addition,
not everybody measures themself regularly and steps on a
scale. Bed scales are not available in every trauma room
and in addition high errors in weight measurement appear
if the wrong tare weight of the bed is taken. There exist
several anthropometric body weight estimation methods
for clinical usage which give a fast but rough estimation
of body weight based on the measurement of lengths and
circumferences of the human body with a measuring tape
(Buckley et al., 2012).

An other application where the visual body weight can play
an important role is identification: Some soft biometrics,
e.g. color or length of the hair, can be changed quickly.
In contrast, body weight can not be changed immediately.
Although it can be disguised, e.g with thick clothes or a
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corsage, body weight can help in the identification of a
single person (Ailisto et al., 2006). The body weight and
the constitutional type of a person are visible from distance
in contrast to close-up visible soft biometrics, e.g. color of
the eyes (Dantcheva et al., 2010).

The contributions of this paper are as follows: First, the
previous approach by Pfitzner et al. (2016) is extended
with additional geometric features. Second, all features
are analyzed towards their capability for body weight
estimation, having an RGB-D dataset provided. Finally,
extended experiments demonstrate the improvement of
the algorithm, with an extension for visual body weight
estimation without volume prediction. Data from a ther-
mal camera can improve the outcome in body weight
estimation further, as well as knowledge of the gender.
Additionally, the data from experiments is provided online,
including ground truth values for body weight.

The paper is structured as follows: Related work provides
an overlook about body weight estimation based on visual
sensors. In the following section the algorithm for feature
extraction is described. Further, experiments demonstrate
the capability of different feature groups to estimate body
weight in comparison to related work. These experiments
rely on 233 datasets and demonstrate the impact of
different features to provide an estimation of human
body weight. The approach is verified with data from a
structured light sensor (Microsoft Kinect) – and a time-
of-flight sensor (Microsoft Kinect One). Finally, the last
section gives a conclusion with an outlook to future work.



2. RELATED WORK

Since the release of the Microsoft Kinect camera, 3D
perception got a boost due to the fact of being a low-cost
consumer sensor. Several publications exist with this sensor
concerning the extraction of anthropometric features. The
position of the human skeleton was essentially important
to use the camera in gaming and multimedia applications.
The extraction and labeling of skeleton features was
provided by Shotton et al. (2013): In 900,000 synthetic
images from the Kinect camera, a labeling for body parts
was generated with the help of a random decision tree.
Further, people can be identified from skeleton and by
their gait (Gabel et al., 2012).

Also anthropometric features from depth data can be
found in related work: Pirker et al. (2010) estimated
human body volume in clinical environment by eight stereo
cameras around a stretcher and bioelectrical impedance
analysis. With a 3D reconstruction the volume of a frontal
surface can be calculated towards the medical stretcher
which has been modeled as a plane.

Velardo and Dugelay (2012) extrapolated anthropometric
features from body silhouette. The silhouette is proved by
a RGB-D sensor. The extracted features, e.g. height, waist
circumference, and the length and circumference of arm
and leg, are used to train a statistical model.

Further, Robinson and Parkinson (2013) demonstrated
the extraction of anthropometric features from different
poses: Their approach demonstrated that raw data from
Kinect camera can produce a rough estimation of anthro-
pometric features, due to sensor noise and bias in depth
measurement. Additionally, anthropometric features are
hard to provide with sufficient precision via an optical
sensor: Even thin clothes might confuse the extraction of a
circumference of a body part, e.g. the waist circumference.
Depending on the underlying calculation of body weight
these errors can have a high impact in error.

Nguyen et al. (2014) developed a method to predict
body weight by a side view feature and a support vector
regression model. Separating datasets by gender their
approach reached an average error of 4.62 kg for females
and 5.59 kg for males. Finally, they compared the body
weight estimation by the algorithm in contrast to visual
estimation.

Pfitzner et al. (2015) demonstrated a body weight es-
timation by volume extraction from RGB-D data. The
presented algorithm provided an accuracy of 79 % for a
cumulative error of ±10 %. The approach was tested with
110 patients from trauma room, focusing on body weight
estimation for stroke patients. Due to uncertainties in
volume estimation this approach had outliers up to 32 %.
Compared to an physician’s estimation this approach is
already more suitable for drug dosing.

Pfitzner et al. (2016) provide a feature-based body weight
estimation tested with 69 patients from clinical environ-
ment. Feature extraction was improved by adding temper-
ature information from a thermal imaging device to ease
segmentation of the patient. Further, an artificial neural
network (ANN) was implemented and fed with additional
geometric features from eigenvalues. These features rely

on robust features which hardly impair with clothes or a
precise measuring pose of the person. Finally, this approach
reached nearly 90 % for body weight estimation within
a range of ± 10 % towards ground truth body weight.
Further, the range of outliers was reduced towards less
than ± 18 % from ground truth.

The here presented approach extends the work of Pfitzner
et al. (2016) with additional features from RGB-D and
thermal camera, as well as an analysis in correlation of
robust features for body weight estimation.

3. APPROACH

The data for feature extraction are acquired with a
Microsoft Kinect camera, a Microsoft Kinect One camera,
as well as a thermal camera. Both Kinect cameras deliver
color images as well as depth data. First of all the thermal
camera is used to ease segmentation of a person from the
environment.

For weight estimation people are placed on a stretcher,
about two meters away from the sensor to be visible in
the field of view. The stretcher can be adapted in height.
This sensor configuration and environment was chosen on
the basis of previous work, which had the focus for body
weight estimation in clinical environment. There was no
given pose for the test probands, however all were laying
on their back with their arms beside or crossed on their
stomach.

3.1 Pre-Processing

The data acquisition was done with the sensors integrated
into the ceiling of a room, see Fig. 1(a). All three sensors are
mounted rigid to each other to prevent a loose in extrinsic
calibration. The sensors field of views is facing towards
the ground. By sensor fusion a point cloud P is generated
containing Nc Cartesian points with color crgb and addi-

tionally the temperature t with pj = (x y z crgb t)
T ∈ P.

Figure 1(a) shows the scene from the sensor’s view with
colors overlaying by false color temperature.

Segmentation is achieved by the help of the thermal cam-
era, filtering for a certain threshold to differ between human
and environment. Additional image processing techniques
like color filtering, bilateral filtering and morphological
operations improve the result in segmentation. After this
step the subset containing points of the person is known
by Pp ⊆ P.

3.2 Feature Extraction

This section describes the extraction G of the features
fi = (f1 ... fM ) from a single point cloud Ppi . The size of
a feature vector is set by M . All obtained feature vectors
are stored in a feature set F with the size I by

fi = G(Ppi ) with fi ∈ F and i = {1, 2, ..., I}. (1)

To determine which features are best for body weight
estimation the correlation is investigated. Figure 4 depicts
the correlation between the features itself and ground
truth.

The computation of the features f1 − f13 is shown in
previous work Pfitzner et al. (2016). For the reader’s



Table 1. List of features for body weight esti-
mation ∀ pj ∈ Pp.

f1 volume v

f2 surface s

f3 number of points n

f4 density n/NC

f5 1st eigenvalue λ1

f6 2nd eigenvalue λ2

f7 3rd eigenvalue λ3

f8 sphericity λ3/
∑

j
λi

f9 flatness 2·(λ2−λ3)/
∑

i
λi

f10 linearity (λ1−λ2)/
∑

i
λi

f11 compactness
√

1/n
∑

i
(pj − p̄)2

f12 kurtosis 1/n
∑

j
||pj − p̄||

f13 alt. compactness
∑

j
(pj−p̄)4/f9

f14 distance to person d

f15 contour length lc

f16 contour area ac

f17 convex hull length lh

f18 convex hull area ah

f19 gender g

f20 min temperature min(t)

f21 max temperature max(t)

f22 avg. temperature avg(t)

f23 ambient temperature tamb

convenience, it is presented here again in Tab. 1. A person
laying on a flat surface eases volume reconstruction due
to plane modeling of the back, as shown in Pfitzner
et al. (2015): The volume v is extracted by RANSAC
plane modeling as the back surface of a person, and a
meshing approach is applied for the frontal surface of
the patient, which is visible to the sensor (Fischler and
Bolles, 1981). The features f5 to f10 are based on the
eigenvalues λ1 ≥ λ2 ≥ λ3 from principal component
analysis. Fig. 3 illustrates the geometric principle for the
patient’s point cloud Pp and the eigenvalues. The features
f11 to f13 indicate the compactness of a point cloud after
segmentation from the environment based on the centroid
p̄ =

∑
pj/n with pj ∈ Ppi .

The previous approach is extended with the features f14−
f23: The distance to the patient d is added to improve
body weight estimation independently from the distance
between sensor and test person. From the extracted
contour of a patient’s silhouette, the length lc and the
area ac can be calculated with a convex hull around the
person’s silhouette, it’s length lh and area ah. Figure 2
demonstrates the extracted contour and convex hull from a
person’s RGB-D dataset. The gender is added as a feature
to be forwarded to the ANN. Although the visual gender
estimation is not integrated in the current approach, it
could be implemented as shown by Linder et al. (2015).
For experiments the gender is added manually.

Table 2. Survey of datasets. The dataset for
training is taken from the first 25 percent of
the total dataset. Both datasets contain data
from Kinect camera, while Event also contains

data from the Kinect One.

Dataset Real Weight in kg Gender
min max mean σ female male

Hospital 48.6 129 77.8 17.1 72 55
Event 48.8 114 78.6 12.0 24 82

Total 48.6 129 79.5 15.3 137 96

Training 48.6 109.8 75.0 14.3 34 25

To compensate the error in estimation of people wearing
thick clothes, features from the thermal camera are added:
On one side, wearing thick clothes would result in a higher
volume and a bigger surface. Due to the strong positive
correlation (see Fig. 4) this has a direct effect on the
outcome of weight estimation. On the other side, thick
clothes insulate the body heat of a person, which can be
noticed in thermal camera and a wider range for minimum
and maximum temperature (tmin, tmax). The ambient
temperature tamb is added to the feature vector. In the
applied total dataset F the ambient temperature ranged
from 19.1 ◦C to 26.8 ◦C. In experiments, the hot spot of a
human being was generally located on the head. The here
presented approach is implemented with the Point Cloud
Library Rusu and Cousins (2011).

4. DATASETS

To encourage future work by other research groups the
features from the recorded datasets are made public. For
scientific purpose the dataset contain the values of features
and ground truth body weight. The features are provided
at www.provided-after-review.com.

• Hospital FH : This dataset contains feature val-
ues from trauma room patients from the Univer-
sitätsklinkum Erlangen, Germany. The dataset con-
tains 127 measurements from people laying on a
medical stretcher, recorded with a Microsoft Kinect.
For this dataset a good distribution is achieved having
people of different ages, body weights and shapes,
see Tab. 1. Additionally, this dataset contains the
patient’s self estimation, age, sex, as well as anthro-
pometric features like body height, abdominal girth
and waist circumference. The distance between the
sensors and the probands was around 2 m.

• Event FE : The features from this dataset were
recorded at a public event. People in this dataset
were visitors of the public event. This dataset contains
106 people. Additionally, this dataset includes point
clouds from Microsoft Kinect One.

All features were extracted by the previously presented
algorithm.

5. SETTING FOR EXPERIMENTS

In experiment section different configurations in features
will be explored. To compare the varying set-ups the
errors in weight estimation are evaluated. The estimated
body weight w̃ is evaluated with the help of the ground



(a) (b)

Fig. 1. Scene for body weight recorded
dataset Hospital (a) and sensor mod-
ule in the ceiling with thermal imag-
ing camera Optris PI 400, Kinect and
Kinect One. (b)

(a) (b)

Fig. 2. Sensor’s view from
the ceiling with proband
(a). The extracted per-
son, it’s contour (or-
ange) and convex hull
(blue) are shown in (b).
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Fig. 3. Prinicpal components along the
persons silhouette: The 1st eigen-
value will be set along the height of
the person, the 2nd will be set as
width and the 3rd eigenvalue will
be set as the depth.

truth body weight ŵ. While the absolute error e = ŵ −
w̃ is a good indicator if tested people have nearly the
same body weight, the relative error ε = e/ŵ is more
sufficient to compare the performance in visual body
weight estimation for a large variety in ground truth
body weight. Additionally, the mean average error emae =
1/n

∑n
i=1 |ŵi − w̃i| and the mean square error emse =

1/n
∑n
i=1(ŵi − w̃i)2 are evaluated.

For experiments the neural network was trained with a
subset of 25 percent of the total datasets fi ∈ FT ⊂ F with
i = {1, 2, ..., 0.25 · I} to prevent overfitting. For validation
the complete dataset was applied FV = F. All features
are rescaled in a range of [0, 1]. The ANN N is designed as
a three layer feed forward network, including one input,
one hidden and one output layer. The number of input
units is given by the number of features M forwarded to
the ANN, while the output layer consists of a single unit
for the body weight. The number of hidden units is set to
the same number of input units M . A higher number of
hidden units could likely slip easier into overfitting. The
sigmoid function g(x) = 1/1+e−x was chosen to be applied
as activation function for all neurons.

The dataset for training is randomized after each trial in
training which causes slower training but achieves better
results. Training the network is aborted when the error
in the testing dataset starts to increase. Furthermore,
the training is aborted at the latest of 250 iterations.
Learning is achieved by resilient propagation (Riedmiller
and Braun, 1993). Regularization is applied with weight
decay to improve the outcome. After training, a forwarded
feature vector fi will result in an estimation for body weight
w̃ with

w̃i = N(fi) . (2)

Due to random starting points, the training was repeated
withK = 100 trials for each experiment. For most purposes
in training of neural networks the mean square error
over the absolute body weight might be applied, giving
a solution without any further constrains. Here, the mean

square error function is applied over the relative error based
on the total dataset of features F. After 100 trials the best
solution E is taken for experiments:

E(Nk,F) = arg min
εi∈R

1

N

N∑
i=1

ε2i (3)

with εi =
ŵi −Nk(fi)

ŵi
fi ∈ F

and k = {1, 2, ...,K}

6. RESULTS AND DISCUSSION

The different configurations for experiments are presented
and discussed in this section. Table 3 demonstrates the
results from experiments. Figure 5 shows the results of all
here presented experiments in a cumulative error plot.

Experiment e1: Volume and body weight have the high-
est correlation with a value of 0.93. This was the motivation
for Pfitzner et al. (2015) to estimate the body weight by
a volumetric reconstruction of the person in front of the
sensor. To compete against this approach the volume was
considered to be the only forwarded feature to the neural
network. In previous work weight estimation was in a range
of ± 10 % with a value of 79 %. Here the results show an
increase for these estimations towards 83.7 %; also the
standard deviation is decreased from 8.6 kg to 7.6 kg.

Experiment e2: Adding the frontal surface of the person
also improves the approach: The range for outliers is
decreased, as well as the standard deviation. Only the
estimation within a range of ± 10 % is slightly decreased.

Experiment e3: To compare the results from Pfitzner
et al. (2016) the same feature sets are forwarded to the
ANN. The results are similar: The standard deviation
slightly decreased from 6.5 kg to 5.8 kg in this setting. The
weight estimation within a range of± 10 % is also improved
slightly from 89.8 % to 90.6 %. The differences might be
explained due to the bigger dataset in training.
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Fig. 6. Ground truth weight w̄ over
estimated weight w̃ from experi-
ment e6 with ± 10 % margin.

Experiment e4: Other related work already noticed a
difference in visual body weight estimation depending on
the gender (Nguyen et al., 2014). Looking at the results,
this approach is improved compared to experiment e4:
The maximum outlier is reduced to 14.3 kg. Furthermore,
the cumulative count for ± 10 % increases from 91.0 % to
91.4 %. Having a look on the standard deviation σ, the
mean absolute error emae and the mean squared error emse
are close to the previous presented experiment and slightly
improved.

Experiment e5: For this test all available features are
used to compare the previously presented experiments. To
improve the results in body weight estimation the data
from the thermal imaging camera is used. Depending on
the clothes of a patient the extracted features differ. Thick
clothes result in a higher volume and surface. To minimize
this effect the minimum, maximum and mean temperature
of the patient as well as the ambient temperature are
extracted and forwarded to the neural network. These
additional features show only minimal correlation (see
Fig. 4). Figure 6 demonstrates this result as a scatter
plot.

Experiment e6: The volume estimation described for ex-
periment e1 is only possible for a laying person. To obtain
the volume with a single RGB-D sensor, a standing person
has to be seen from different poses, e.g. rotating around
itself. Via an Iterative Closest Point (ICP) algorithm the
frames from the RGB-D camera can be registered and a
volumetric reconstruction can be applied Besl and McKay
(1992). This approach has several disadvantages: The data
acquisition takes several seconds, as well as the recon-
struction. The test person might move during the data
acquisition which could cause problems during registration
or the ICP has to be extended to register non-rigid models
Hahnel et al. (2003). Table 3 demonstrates the results
for estimating a persons body weight without knowing the
volume: This approach has the lowest result for the margin
of 20 % body weight estimation with 98.7 %. Looking for
the standard deviation and the range in relative error still a
better estimation of body weight than seen in experiments
e1 and e2.

Experiment e7: To demonstrate the robustness of the
presented features a second sensor is used for comparison.
The Microsoft Kinect works with the structured light
principle, having a resolution in depth of 320 × 240.
Compared to that the second edition of the Microsoft
Kinect One works with the time of flight sensor principle
and provides a resolution of 512 × 424 in depth image.
For this experiment all available features f1− f23 are used
for training. Only the Event dataset provides data from
Kinect One with 126 datasets. Therefore this experiment
has to be marked as preliminary and will be verified in an
upcoming publication with a higher amount of datasets.
The result in body weight estimation with the Kinect One
improved further: This experiment had the best minimum
relative error. Further, it has the best results for the relative
error in a range of ± 5 % as well as in ± 10 %, see Tab.3.

7. CONCLUSION AND FUTURE WORK

This paper demonstrated the extraction of features for
body weight estimation, setting a focus on robust features
having a correlation to human body weight. The features
rely on geometric features from eigenvalues. Experiments
showed that adding the gender could improve the outcome
of the body weight estimation, as well as the addition
of thermal features from the person to compensate the
thermal isolation in volume estimation. The best result
was achieved if all available features are used for estimation
and a cumulative count of 94.8 % is reached for ± 10 %
when experiments were done with Kinect camera. Using
the Kinect One the result is improved to 95.3 % for the
range of± 10 % relative error. In an up-coming clinical trial
the results of this algorithm will be verified. The study
will start at the Universitätsklinikum Erlangen, Germany,
concerning body weight estimation for stroke patients.

For future work a dataset with a high variety in test
person will be produced. Several different poses should
be tracked, like standing, walking or sitting. This dataset
will be made public, containing the raw RGB-D values
including thermal data to encourage this area of research.
Adding the skeleton model to estimate someone’s pose
might also improve the results further, while a bigger



Table 3. List of features used for experiments and statistical results. The best results for each
column are marked in bold. For comparision the results of Pfitzner et al. (2016) and Nguyen
et al. (2014) are added to this table. All listed experiments rely on data from Kinect camera,

except experiment e7 which is based on data from Kinect One.

rel. error in % in range in % error in kg/kg2

exp. features samples sensor min max range avg σ in 5% in 10% in 20% emae emse

e1 f1 233 Kinect -22.9 26.8 38.0 0.21 7.6 50.6 83.7 99.1 4.68 35.3
e2 f1 - f2 233 Kinect -20.3 25.3 34.8 0.28 7.3 51.1 83.3 99.1 4.46 32.8
e3 f1 - f14 233 Kinect -19.0 19.8 29.7 -0.07 5.8 61.8 91.0 100.0 3.65 22.0
e4 f1 - f16 233 Kinect -14.0 14.3 26.2 0.28 5.5 63.9 91.4 100.0 3.42 19.2
e5 f1 - f23 233 Kinect -12.9 17.6 21.3 0.29 5.3 67.8 94.8 100.0 3.21 17.0
e6 f2 - f23 233 Kinect -16.8 22.7 34.2 0.43 6.6 58.4 87.1 98.7 4.00 26.9

e7 f1 - f23 106 Kinect One -8.7 14.3 23.0 0.90 4.8 75.6 95.3 100.0 2.86 13.8

Pfitzner 69 Kinect -14.5 17.6 32.1 -0.7 6.53 – 89.9 – – –
Nguyen 400 Kinect – – – – – – – – 5.20

dataset for training is mandatory. Having a bigger dataset
available can lead to a deep learning approach, without
indication of a certain feature set.
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