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ABSTRACT

Lidar sensors provide precise 3D point cloud measurements, and can be used for pose estima-
tion of an uncooperative satellite during space rendezvous. For updating the estimated pose of
a the target, iterative closest point (ICP) or one of its variants is usually applied as a tracking
method. However, for dense point clouds and space hardware with reduced computing power,
the execution time of ICP can become a limiting factor. Normal distribution transform (NDT) is
an alternative algorithm for fine point cloud registration, which can be faster than ICP. Yet, NDT
can be less robust than ICP due to the discontinuities in its cost function. This work proposes a
smoothing method of the NDT map in order to mitigate this robustness problem. In addition, a
strategy for correcting motion blur observed with lidar sensors when recording a tumbling target
is developed. Experiments at the European Proximity Operations Simulator demonstrate the effi-
ciency, precision and robustness of the smoothed NDT algorithm when compared to ICP, as well
as the importance of motion blur correction for precise pose estimation.

1 INTRODUCTION

In order to reduce the number of space debris in Earth orbit and to avoid potential collisions with other
satellites, there is a need for active debris removal (ADR) missions. An additional way to bring more
sustainability in orbit are on-orbit-servicing (OOS) missions, which aim at repairing a satellite in orbit,
or extending its lifetime by refuelling. For both ADR and OOS missions, an active chaser satellite
needs to rendezvous with an uncooperative target spacecraft or debris, before performing proximity
operations. Because the target is uncontrolled, it might be tumbling freely. For potential robotic
operations, it is necessary to estimate its full pose (position and attitude) in close-range (typically at
relative distances below 30m).
The illumination conditions in orbit are harsh due to the frequent day/night eclipses, reflections, and
the high luminosity contrasts. These effects can impact the reliability of the pose estimation when
using an optical camera as a navigation sensor [1]. On the opposite, active sensors such as time-of-
flight (ToF) cameras or scanning lidars are less perturbed by these effects, and provide an additional
depth information. ToF cameras only have a limited working range with a maximum relative distance
of around 10m [2], [3], while scanning lidars can range over several hundred meters [4]. However,
lidar sensors are also subject to motion blur effects due to their low scanning rate, especially when
the target spacecraft is tumbling rapidly. In this work, we investigate the use of a scanning lidar for
relative pose tracking.
It is supposed that a 3D model of the target satellite is known, as shown on Fig. 1. This model can
possibly be the result of an inspection flight around the unknown object. Given the 3D model, pose
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estimation is usually performed in two steps, pose initialization and pose tracking. Pose initialization
consists in finding the target’s pose without an initial guess of the solution, it is a global optimization
problem. On the contrary, pose tracking consists in refining an initial guess (previous pose or filter
prediction) to find the corrected pose, it is a local optimization problem. After pose initialization is
performed, pose tracking is usually run continuously to update the pose estimation whenever a new
point cloud is received. Several techniques exist for pose initialization [5]–[7], yet this work will
address only the topic of pose tracking.
The process of aligning two point clouds given an initial estimate is also referred to as point cloud
registration. The most widespread algorithm for point cloud registration is the iterative closest point
(ICP) [8]. If ICP is an efficient method, for large point clouds, it can become challenging to execute it
in real-time, especially on space hardware with limited computing power [3], [9]. Normal distribution
transform (NDT) [10] is an alternative registration method which was reported to be as precise as ICP
while being more efficient [11], [12]. However, NDT can be less robust to the uncertainty in the initial
estimate than ICP [11].
We introduce a smoothing method of the NDT map in order to increase the robustness of the NDT
algorithm while maintaining its computational efficiency, and apply the smoothed NDT algorithm to
the problem of lidar tracking of an uncooperative spacecraft. Additionally, we propose a strategy for
deblurring the point clouds relying on the use of a Kalman filter to mitigate the effects of motion
blur observed with tumbling targets. The proposed method is compared to ICP and evaluated during
hardware-in-the-loop tests at the European Proximity Operations Simulator (EPOS).

(a) (b)

Figure 1: Point clouds of the target satellite. (a) Point cloud obtained from a CAD model of the satellite. (b)
Point cloud captured by the lidar at the test facility.

2 RELATED WORK

ICP was first introduced by Besl and McKay [8] and has multiple variants, such as point-to-plane ICP
[13] or trimmed ICP [14]. For testing the TriDAR sensor with the Space Shuttle, a point-to-plane
variant of ICP was applied [4]. Likewise, Opromolla et al. apply ICP with normal shooting after the
first iteration, and test their method on simulated LiDAR data [15]. Liu et al. use standard ICP to track
an uncooperative target with a ToF camera on simulated data and field experiments [16]. However, no
ground truth is provided for error evaluation the error of their method during the field experiment, and
problems due to noisy point clouds and reflections are reported. For mitigating the effects of sensor
noise, ICP can be combined with RANSAC to reject wrong associations [17]. Reflective materials
such as golden multi-layer insulation (MLI) sheets can lead to reflections and outliers in the sensor
data [18]. Therefore, the authors apply a trimmed ICP variant to filter out point pairs which have a
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distance greater than the median distance of the point pairs. Because of the relatively low frame-rate
of scanning lidars, the relative motion between two scans might be important. Thus instead of using
the previous registration estimate as an initial guess, Opromolla and Nocerino use the prediction result
of an unscented Kalman filter to initialize ICP registration with better precision [19].
When the number of points in the cloud becomes important, especially with ToF sensors which pro-
vide high density point clouds, ICP registration in real-time is challenging. Thus to reduce the point
cloud size, Zhao et al. combine ICP with an adaptive down-sampling strategy and depth image pro-
cessing to ensure real-time execution [9]. Alternatively, Sun et al. propose to extract salient points
from a dense point cloud, and to apply ICP on the reduced point cloud, in order to achieve compu-
tation times compatible with real-time requirements [3]. The authors additionally assume that no 3D
model of target is known in the beforehand, and build a point cloud map of the target on-line. Their
method is also compared with a standard NDT implementation from the Point Cloud Library.
NDT was initially developed for registration of 2D point clouds by Biber and Straßer [10], and later
extended to 3D by Magnusson et al. [20]. If NDT is a precise and efficient registration method [11],
its cost function is discontinuous because of the voxelized representation of the probability function.
Therefore, in their original implementation, Biber and Straßer propose to use four overlapping voxel
grids to smoothen the cost function [10]. In 3D, the same strategy can be used, and corresponds to
evaluating eight overlapping grids simultaneously [21]. Likewise, Magnusson et al. use tri-linear in-
terpolation to evaluate the eight neighbouring cells [11]. In both cases, the authors report an increase
in the computation time by four to eight times due to this strategy. We propose a way to smoothen
the NDT map in a pre-processing step, so that the computation time of the registration remains un-
changed.

3 METHODS

3.1 Smoothed NDT

NDT is a fine registration algorithm aiming at aligning two point clouds, a target point cloud X and
a source point cloud Z = (z1, ...,zn). Typically,X is a point cloud generated from a CAD model of
the target spacecraft, while Z is the point cloud captured by the lidar during operations. The principle
of NDT is to subdivide the target point cloud into a voxel grid. For each voxel k, the mean µk and
covariance matrix Ck of the points of the target cloud X which belong to that voxel is computed.
The objective is to find the 3D transformation T ∈ SE(3) which aligns the source point cloud with
the target point cloud. Each transformed source point T (zi) falls into a voxel ki of the target point
cloud, which is represented by the probability distribution with parameters (µki

,Cki). Contrarily to
classical NDT [10], we propose the use of a relaxed cost function in order to formulate the optimiza-
tion problem as a weighted least squares problem and speed up the registration, similarly to [22]. The
optimal pose T which aligns both point clouds is the one which minimizes:

s(T ) =
n∑

i=1

(
µki
− T (zi)

)T
C−1ki

(
µki
− T (zi)

)
. (1)

The optimal pose is found iteratively following a Gauss-Newton procedure. We refer to our previous
work for a simple analytical formulation of the gradients for solving the optimization problem in the
6D manifold of the homogeneous 3D transformation group SE(3) [23].
The second proposed modification of NDT addresses the discontinuity issue of the NDT map pre-
sented in Section 2. In [24], we introduced a smoothing method of the NDT map that we summarize
here. The target point cloud is split into m cells using a kd-tree partition. For each cell k, the NDT
map parameters (µk,Ck) are computed, as well as the number of points nk that belong to this voxel.
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If ck is the center of the voxel, for a radius r, the set of indexes of the neighbouring distributions
within this radius is

Nk = {i ∈ {0, ...,m} | ||µi − ck|| < r} . (2)

The idea of smoothed NDT is to replace the probability distribution Dk characterized by (µk,Ck) by
the weighted sum of the neighbouring distributions Di with i ∈ Nk. Given a fixed central cell k, the
weights wi are given by a continuous Gaussian blur with a standard deviation σ, and multiplied by
the number of points ni of each distribution

wi = ni exp(−
||µi − ck||2

2σ2
) . (3)

σ can be chosen to equal the cell size. The resulting smoothed distribution represents not only the
probability distribution of the points within the cell, but also of the points in the neighbourhood of the
cell:

D̃k ∼
∑

i∈Nk
wiDi∑

i∈Nk
wi

. (4)

Each distribution Dk is thus replaced by the smoothed distribution D̃k with parameters (µ̃k, C̃k).
During the registration process, these smoothed parameters are used in the cost function of Eq. 1 for
computing the optimal pose. In consequence, the discontinuity of the cost function when a point is
shifted from a voxel to another during registration is reduced.

3.2 Filter and motion compensation

NDT being a local optimization procedure, a precise initial estimate of the solution is important for
a good convergence of the algorithm. In particular, when the lidar frame-rate is low with respect to
the angular tumbling velocity of the target, the previous pose estimate might not be a good initial
estimate of the current pose, because it is outdated. Instead, a prediction of the current pose computed
by a Kalman filter can be used, similarly to the work of Opromolla and Nocerino [19]. If the authors
use an unscented Kalman filter, we opt for a more simple strategy. For the position propagation,
we use a linear Kalman filter under the assumption of constant relative velocity for modelling the
dynamics. The attitude estimation is performed using an invariant extended Kalman filter (IEKF)
[25], an extension of the extended Kalman filter for state estimation on a matrix Lie group. Likewise,
the attitude dynamics is modelled by a simple assumption of constant relative angular velocity.
The Kalman filter provides an estimate of the current pose for the time step k denoted by (pk,Rk),
the relative position and attitude of the target satellite. The prediction of the filter for the following
time step is (pk+1|k,Rk+1|k). This prediction is used to initialize the smoothed NDT algorithm. The
result of the algorithm, a pose estimation (p̄k+1, R̄k+1), is then used to update the filter.
Lidar sensors are subject to the motion blur effect when tracking a rapidly tumbling target, as illus-
trated on Fig. 2. The lidar scans during a time interval [tk, tk+1]. Each point of the cloud has a time
stamp comprised in this time interval. Given an estimate of the current relative velocity and angular
velocity of the target (vk,ωk) provided by the filter, the position of each point can be corrected to
its propagated position at the end of the scanning time tk+1 [23]. The result of such a process is
illustrated on Fig. 2.
The motion blur correction can be performed as a pre-processing step, in order to correct the point
cloud before passing it to the smoothed NDT algorithm. The resulting logic of the pose tracker, when
smoothed NDT is combined with a Kalman filter for providing an initial estimate and performing
motion compensation of the point cloud, is presented in Fig. 3.
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Figure 2: Illustration of the motion blur correction principle. (a) Picture of the target satellite mock-up used
for the experiment. (b) Lidar point cloud captured with 1Hz of the target tumbling with 10 deg/s. The point
cloud is blurred. (c) Motion compensated point cloud. The edges of the point cloud are sharper. Warm colors
indicate points closer to the sensor, cold colors points further away.

Figure 3: Logic of the pose tracking. The incoming point cloud is motion compensated before being passed to
the smoothed NDT algorithm, which is initialized with the Kalman filter’s prediction.

4 RESULTS AND DISCUSSION

4.1 Hardware-in-the-loop test environment

The proposed method for lidar pose tracking was tested at the European Proximity Operations Sim-
ulator (EPOS) [26]. EPOS is a hardware-in-the-loop test facility consisting of two robots which can
move with 6DOF. The first robot, shown on Fig. 4, carries a mock-up of the DEOS satellite com-
prised of realistic materials such as the multi-layer-insulation (MLI) sheets and solar panels. The
second robot can translate on a linear rail in order to reach relative distances between both satel-
lites of up to 25m. This second robot carries a sensor plate to which a Livox Mid-40 lidar from the
automotive domain was attached, and used for the experiments.
The algorithms were implemented in C++17 and run on one core of an Intel Core i7 CPU. The
proposed method was compared to an efficient implementation of ICP from the 3D toolkit [27]. ICP
was found to work best when setting a maximum point-to-point distance of 10cm, and the norm of the
termination criteria to 10−6, similarly to the work of Zhao et al. [9]. For smoothed NDT, the cell size
and the maximum point-to-cell distance were set to 7.5cm. The termination criteria was set to when
the increment was below 0.05◦ and 1mm. In addition, for both ICP and smoothed NDT, incoming
point clouds captured by the lidar were down-sampled using a voxel grid with a resolution of 2cm.
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Figure 4: Picture of the European Proximity Operations Simulator. A robotic arm carries a mock-up of the
target satellite. The sensors of the chaser satellite are mounted on a second robotic arm, which is not shown in
this picture.

4.2 Tracking experiment of a spinning target

A hardware-in-the-loop experiment is performed to compare ICP with the proposed smoothed NDT
algorithm. To ensure a fair comparison, both ICP and smoothed NDT are used in conjunction with
the Kalman filter and motion compensation of the point clouds as presented in Fig. 3. The rendezvous
scenario is comprised of two parts, as shown on the relative trajectory presented on Fig. 5a. Initially,
the chaser satellite performs a fly-around of the target at a steady relative distance of 15m, with a
relative velocity of 5cm/s. Starting from t = 500s, the approach towards 8m is initialized with 2cm/s.
Then, at t = 900s, the approach is continued with 1cm/s, until a relative distance of 4m. After a
second hold, the final relative distance of 3m is reached.
During the whole experiment, the target spins around its main axis with an angular velocity of 5◦/s,
as illustrated on Fig. 5b. Lidar scans are sampled with a frequency of 1Hz, so that motion blur
can be observed. After down-sampling with the 2cm voxel grid, the clouds have between 6, 000 and
15, 000 points. To ensure real-time execution, the maximum number of iterations of both ICP and
smoothed NDT is set to 20. Additionally, for demonstrating the importance of motion compensation,
an experiment was run using smoothed NDT without the deblurring module. All algorithms are
initialized with a perfect pose initialization originating from the ground truth in the beginning of the
experiment, in order to start the tracking.
Fig. 5c presents the total magnitude of the angular errors observed for both algorithms. After a small
convergence period of the Kalman filter, both ICP and smoothed NDT algorithms converge towards a
relatively small angular error for the rest of the experiment. While the ICP error remains below 2.7◦

after the first time steps, the smoothed NDT algorithm has a better angular accuracy with an error
under 2◦. The angular error when removing the deblurring module (grey curve) is around 3◦ to 4◦,
demonstrating the importance of a motion compensation strategy when using a scanning lidar to track
a spinning target.
The position errors of the tracking are shown on Fig. 5d. For both algorithms, the position estimation
error decreases with the relative distance, before slightly increasing in the end, when the target satellite
is only party visible in the lidar’s field of view. Smoothed NDT leads to a position error around 6cm
when at 15m distance, before decreasing to around 2cm at the end of the experiment. On the other
hand, ICP presents slightly larger position error, especially at close range, when the relative distance
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Figure 5: Results of the tracking experiment. (a) Relative position of the target over time. (b) Attitude of the
target over time. (c) Compared angular errors of the tracking methods. (d) Compared position errors of the
tracking methods. (e) Distribution of the execution times of both algorithms, including down-sampling and
registration. (f) Distribution of the number of iterations of both algorithms. For the boxplots, the boxes show
the first and third quartile, while the whiskers extend to the extreme values.

to the target is below 4m. The absence of the deblurring module (grey curve) does not significantly
modify the position estimation error, because the relative velocities are less important compared to
the angular spinning rate.
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The Figs. 5e and 5f present the distributions of the total execution times and the number of iterations
of both algorithms, respectively. With an average execution time of 25ms, smoothed NDT is signif-
icantly faster than ICP which has an average runtime of 93ms. This also applies for the worst case
execution times (72ms for smoothed NDT versus 241ms for ICP). Likewise, the number of iterations
of smoothed NDT is lower with 4.8 on average than the average number of iterations of ICP of 15.6.
Both are bounded by the maximum number of iterations which was set to 20.

4.3 Robustness evaluation

The second experiment aims at comparing the robustness of both algorithms with respect to the pre-
cision of the initial estimate. Because both ICP and smoothed NDT are local optimization methods
relying on an initial estimate of the solution, the objective is to evaluate how precise the initial esti-
mate has to be in order for the algorithms to converge. A similar trajectory to the one presented in the
first experiment (section 4.2) was flown in the EPOS facility. However, in order to only evaluate the
robustness of both algorithms without being stronlgy affected by motion blur, the angular velocity of
the target satellite was lowered to 1◦/s. The lidar frame-rate was kept at 1Hz.
Contrarily to the previous sequential tracking experiment, each point cloud is here considered in iso-
lation. The evaluation of the robustness domain of both algorithms is performed following a Monte-
Carlo approach. For each point cloud chosen at random, a random initial pose is chosen, with a
maximal initial position error of 50cm, and a maximal initial angular error of 30◦. Both ICP and
smoothed NDT are then run with this initial pose, and a decision is made on whether each algorithm
was successful based on following criteria: If the final translation error is below 7.5cm and the angu-
lar error below 3.5◦, the registration is considered successful. In total, 50, 000 random experiments
were performed for each algorithm.
The results of this Monte-Carlo evaluation of the convergence domain of each algorithm are presented
on Fig. 6. The convergence domain is represented on a 2D heatmap, where the magnitude of the initial
angular and translation errors form both axes of the map, while the colors represent the fraction of
registrations that were successful for each bin. When the initialization error is important, both ICP
and smoothed NDT algorithms need more than 20 iterations to converge. This is why the results
are presented with two different maximum number of iterations: Figs. 6a and 6b show the results
obtained when setting the maximum number of iterations of both algorithms to 20. Figs 6c and 6d
show the same results when the maximum number of iterations is 100.
For a maximum number of iterations of 20, both algorithms show a low success rate for initialization
errors above 15◦ and 30cm (Figs. 6a and 6b). However, the results indicate that the convergence
domain of smoothed NDT is more important than the one of ICP, with a higher proportion of total
successful registrations. Setting the maximum number of iterations to 100 leads to an important
increase in the convergence domain of both methods (Figs. 6c and 6d). Again, smoothed NDT has a
bigger convergence domain than ICP, with in particular more tolerance for initial angular errors.
These results indicate that smoothed NDT is a robust registration methods, which requires less it-
erations than ICP to converge towards the correct result. In addition, this experiment can be used to
define the convergence domain of smoothed NDT for the development of a pose initialization method.
When the maximum number of iterations is set to 100, Fig. 6d indicates that initial errors up to 20◦

and 25cm still lead to a success probability of the method above roughly 80%.

5 CONCLUSION

It can be challenging to track the pose of a spacecraft on consecutive lidar point clouds in real-time
when the point clouds are dense. Therefore, we investigated the use of NDT, an efficient alternative
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Figure 6: Monte-Carlo evaluation of the convergence domain of both algorithms. Different maximum number
of iterations max iter were set. Green colors indicates high success percentages, red colors low success. (a)
ICP convergence domain for max iter = 20. (b) Smoothed NDT convergence domain for max iter = 20. (c)
ICP convergence domain for max iter = 100. (d) Smoothed NDT convergence domain for max iter = 100.

to ICP, for the problem of uncooperative spacecraft pose estimation. A smoothing method of the
NDT map was introduced in order to increase the robustness of the algorithm. Lidar point clouds also
present motion blur when the observed target spacecraft is tumbling. This work proposed a motion
compensation technique used in conjunction with a Kalman filter. In consequence, recorded lidar
point clouds are deblurred prior to being processed by the registration algorithm.
The modified smoothed NDT algorithm was tested at the European Proximity Operations Simula-
tor, and compared to ICP. For the experiment consisting in tracking the pose of a spinning satellite,
smoothed NDT shows better precision than ICP in terms of angular and translational error. The pro-
posed method is also significantly faster than ICP, by a factor 3 to 4. To isolate the impact of motion
compensation, a test without this strategy was run. This test indicates that the application of the de-
blurring method leads to a precision improvement in the tracking of a few degrees in terms of angular
error. To compare the convergence basin of ICP and smoothed NDT, a Monte-Carlo evaluation was
performed on a second EPOS dataset. This evaluation shows that smoothed NDT is more robust than
ICP to an error in the initial estimate of the relative pose.
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The conducted tests demonstrate that smoothed NDT is a precise, efficient and robust registration
method for pose tracking of an uncooperative spacecraft using a scanning lidar. In addition, lidar mo-
tion blur can be effectively mitigated by the application of the proposed deblurring strategy. However,
for a rendezvous mission, a pose initialization method is needed in order to initialize the tracking. Fur-
ther work will focus on the development of an initialization technique, as well as the evaluation of the
proposed method with computing hardware and sensors that are realistic for space use.
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