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ABSTRACT:

This paper studies self-calibration of a structured light system, which reconstructs 3D information using video from a static consumer

camera and a handheld cross line laser projector. Intersections between the individual laser curves and geometric constraints on the

relative position of the laser planes are exploited to achieve dense 3D reconstruction. This is possible without any prior knowledge

of the movement of the projector. However, inaccurrately extracted laser lines introduce noise in the detected intersection positions

and therefore distort the reconstruction result. Furthermore, when scanning objects with specular reflections, such as glossy painted or

metalic surfaces, the reflections are often extracted from the camera image as erroneous laser curves. In this paper we investiagte how

robust estimates of the parameters of the laser planes can be obtained despite of noisy detections.

1 INTRODUCTION

Triangulation based laser sensors are a popular technique for low-

cost rangefinders in mobile robotics (Konolige et al., 2008) and

3D scanning for fabrication (Engelmann, 2011; Winkelbach et

al., 2006). In order to calibrate these systems typically calibra-

tion fixtures or objects with known shape are used to find the

parameters of the laser planes. In this study, we look at a self-

calibration technique for handheld 3D line laser scanning. The

proposed structured light scanning system consists of a fixed cal-

ibrated camera and a hand-held cross line laser projector as de-

picted in Fig. 1. Two different colors are employed to facilitate

separation of the two laser lines in the camera image.

We calibrate the camera to find the standard parameters for mod-

eling the camera intrinsics and we align the two line projectors,

such that the laser planes are orthogonal to each other. Each im-

age from the consumer video camera shows two laser curves.

First, finding the intersections of these curves from multiple im-

ages and using the orthogonality constraint between all pairs of

laser curves that are captured in the same image, yields the pa-

rameters of the laser planes. Then, by intersecting these cal-

culated planes with the image rays we create a dense 3D point

Figure 1: Fixed consumer camera and handheld cross line pro-

jector with a blue and a green laser.

cloud up to scale. Our reconstruction approach is based on self-

calibration techniques proposed by Furukawa and Kawasaki (2009).

The proposed method is applicable without knowledge of the po-

sition of the cross line laser projector in 3D space. It is a multi-

shot technique since reconstruction from only two laser curves in

a single image is not possible. To capture the full 3D geometry

many images are necessary, such that the whole scene in the field

of view of the camera is illuminated by the lasers. The scene

must remain static during capture and the camera needs to be

fixed since the reconstruction algorithm depends on the proper-

ties associated with a point in 3D space being illuminated from

different positions.

Generally, uncalibrated scanning with an unrestrictedly moving

laser projector makes it more difficult to obtain accurate scans

due to noisy estimates of the laser plane parameters. However,

the accuracy of triangulation based depth estimation is also de-

pendent on the baseline. The proposed method has the advantage

that we are not limited to a fixed distance and scanning with very

large baselines is possible. A suitable baseline depending on the

depth range of the scene can be chosen by simply moving the

projector away further from the camera. This allows to record

details that do not show up in scans with a fixed small baseline.

A disadvantage of the proposed method is that the quality of the

individual extracted laser line points significantly affects the ac-

curacy of the whole 3D reconstruction. Inaccuracies of the inter-

section positions or erroneous detected intersections distort the

reconstruction result or make the method fail. Especially in the

presence of glossy surfaces laser line extraction from images is

degraded due to reflections. In this work we investigate how the

self-calibration techniques for line laser scanning by Furukawa

and Kawasaki (2009) can be applied in spite of noisy laser line

detections. This work tries to mitigate these problems by explic-

itly detecting outliers and improving accuracy by combining the

information reconstructed from multiple laser lines.

For 3D scanning using the proposed method only a single con-

sumer video camera and two line laser projectors are necessary,

which makes the system very cost efficient and affordable.
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2 RELATED WORK

Employing planarity constraints to recover 3D shape has been

studied for diverse applications, such as automatic calibration of

structured light scanners (Furukawa et al., 2008), single image

3D reconstruction (Van den Heuvel, 1998) and shape estimation

from cast shadows (Bouguet et al., 1999). In this work we look at

self-calibrating line laser scanning, which recovers 3D informa-

tion from the projection of planar curves. Previous work typically

either employs a fixed camera and tries to estimate the plane pa-

rameters of the laser planes (Zagorchev and Goshtasby, 2006) or

works with a setup where camera and laser are mounted rigidly

relative to each other and automatically estimates the extrinsic

parameters (Jokinen, 1999).

Some methods solve the online calibration problem by placing

fixtures or known reference planes in the scene. For example,

Winkelbach et al. (2006) proposed a method for a hand-held laser

line scanning system which estimates the laser planes by placing

the object in front of a corner with two known reference planes.

By intersecting the image rays with the two reference planes the

3D point positions of the laser projection on the reference target

is reconstructed. Then by fitting a plane to these points the plane

parameters of the line laser are computed. This approach became

later popular as the Davidscanner.

Furukawa and Kawasaki (2006) demonstrated that hand-held 3D

laser scanning is possible without the requirement of placing any

special objects in the scene. However, their approach requires

a known geometric configuration of the laser planes of the pro-

jector. Their approach exploits coplanarity constraints and ad-

ditional metric constraints, e.g., the angle between laser planes,

to perform 3D reconstruction. Later, Furukawa and Kawasaki

(2009) extended the approach and showed how additional un-

knowns, such as, the parameters of a pinhole model (without dis-

tortion), can be estimated if a suitable initial guess is provided.

The work in this paper follows this approach.

The underlying plane parameter estimation problem leads to a

linear system of coplanarity constraints for which a direct least-

squares approach does not necessarily yield a unique solution.

For example, projecting all points of all planes in the same com-

mon plane fulfills the coplanarity constraints. However, this does

not describe the real scene geometry. Ecker et al. (2007) showed

how additional constraints on the distance of the points from the

best fitting plane can be incorporated in the optimization problem

to avoid unmeaningful solutions.

3 METHODOLOGY

The configuration for creating a 3D scan is visualized in Fig. 2.

We scan the scene with a fixed calibrated camera and move the

hand-held laser projector in order to project laser crosses in the

scene from different positions. In each image of the video cam-

era we observe two laser curves, which we know to have plane

normals that are perpendicular to each other due to the cross con-

figuration of the employed laser line projector. By aggregating

a sequence of images over time, we extract many different laser

curves on the image plane.

Solving for the plane parameters is a two step process: First, we

exploit coplanarity constraints from intersections between laser

curves. Since the camera is fixed and the scene is static, inter-

section points correspond to the same 3D point. By extracting

many laser curves, we will obtain many more intersections than

the number of laser planes. This allows us to build a linear sys-

tem to solve for the plane parameters up to a scale and an offset.

In the second step we solve for the additional degrees of freedom

(DOF) of the parameters by considering the orthogonality con-

straint between the laser planes in the cross configuration. The

plane parameters are found up to a scale by solving a non-linear

optimization problem.

Finally, the 3D point positions of each laser curve are computed

by intersecting the camera rays with the laser planes. The indi-

vidual steps and employed models are explained in more detail in

the following sections.

3.1 Camera Model

We approximate the camera projection function based on the pin-

hole model with distortion. The point X = (X,Y, Z)T in world

coordinates is projected on the image plane according to

(X,Y, Z)T 7−→ (fx
X

Z
+ px, fy

Y

Z
+ py)

T = (x, y)T , (1)

where x = (x, y)T are the image coordinates of the projection,

p = (px, py)
T is the principal point and fx, fy are the respective

focal lengths. Using the normalized pinhole projection

xn =

(

xn

yn

)

=

(

X/Z
Y/Z

)

(2)

we include radial and tangential distortion defined as follows
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+
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,
(3)

where (k1, k2, k5) are the radial and (k3, k4) are the tangential

distortion parameters. Here, x̃ = (x̃, ỹ) are the real (distorted)

normalized point coordinates and r2 = x2
n + y2

n.

We calibrate the camera using Zhang’s method (Zhang, 2000)

with a 3D calibration fixture with AprilTags (Olson, 2011) as

fiducial markers. This has the advantage that calibration points

are extracted automatically even if only part of the structure is

visible in the image. In general, a larger calibration structure is

beneficial since it can be detected over lager distances, which al-

lows one to take calibration data in the whole measurement range.

After performing laser line extraction we undistort all image co-

ordinates of the detected line points. Therefore, we do not have to

consider the distortion parameters during the 3D reconstruction

step, which simplifies the equations presented in the following

sections.

Object
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Figure 2: Configuration of the cross line laser projector and a

fixed calibrated camera.
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3.2 Laser Line Extraction

A simple approach to extracting laser lines from an image is to

use maximum detection along horizontal or vertical scanlines in

the image. However, this requires a high contrast between the

bright pixels of the laser line and the backgorund. Furthermore,

in the case of uncalibrated scanning this does not work in all

cases since the orientation of the laser line in the image is ar-

bitrary and no clear predominant direction exists. Therefore, we

employ a ridge detector for the extraction of the laser lines in the

image. For this work we apply Steger’s line algorithm (Steger,

1998) since it is very robust and traces the center of the lines with

sub-pixel accuracy.

The idea of this algorithm is to find curves in the image that have

in the direction perpendicular to the line a characteristic 1D line

profile, i.e., a vanishing gradient and high curvature. We apply

the line detector to a gray image created by averaging the color

channels. If scans are capture in strong ambient illumination,

we apply background subtraction to make the laser lines more

discriminable from the background.

The direction of the line in the two dimensional image is esti-

mated locally by computing the eigenvalues and eigenvectors of

the Hessian matrix

H(x, y) =

[

∂2gσ(x,y)

∂x2

∂2gσ(x,y)
∂x∂y

∂2gσ(x,y)
∂y∂x

∂2gσ(x,y)

∂y2

]

∗ I(x, y) =

[

rxx rxy
ryx ryy

]

,

(4)

where gσ(x, y) is the 2D gaussian kernel with standard devia-

tion σ, I(x, y) is the image and rxx, rxy, ryx, ryy are the partial

derivatives. The direction perpendicular to the line is the eigen-

vector (nx, ny)
T

with ‖(nx, ny)
T ‖2 = 1 corresponding to the

eigenvalue with the largest absolute value. For bright lines the

eigenvalue needs to be smaller than zero.

Instead of searching directly for the zero-crossing a second-order

Taylor expansion is employed to determine the location (qx, qy)
T

where the first derivative in the direction perpendicular to the line

vanishes with sub-pixel accuracy:

(qx, qy)
T = t (nx, ny)

T , (5)

where

t = −
rxnx + ryny

rxxn2
x + 2rxynxny + ryyn2

y

. (6)

Here, rx = ∂gσ(x,y)
∂x

and ry = ∂gσ(x,y)
∂y

are the first partial

derivatives.

For valid line points the position must lie within the current pixel.

Therefore, (qx, qy) ∈ [−0.5, 0.5] × [−0.5, 0.5] is required. In-

dividual points are then linked together to line segments. This is

done by choosing starting points with high responses and tracing

along the detected ridge points to from line segments until all de-

tected ridge points have been processed. Double responses are

explicitly detected and removed from the final output.

The response of the ridge detector given by the value of the max-

imum absolute eigenvalue is a good indicator for the saliency of

the extracted line points. Only line points with a sufficiently high

response are considered.

To distinguish between the two laser lines we use the color in-

formation and apply thresholds in the HSV color space. This is

implemented using look up tables to speed up color segmentation.

We apply only very low thresholds for saturation and brightness

of the laser line. Depending on the object surface the laser lines

can be barely visible and appear desaturated in the image.

3.3 3D Reconstruction Using Light Section

If we know the parameters of the laser plane, we can find the 3D

coordinates of the detected laser points by intersecting the image

rays with the laser planes. A line laser can be considered as a tool

to extract points on the image plane that are projections of object

points that lie on the same plane in 3D space. We describe the

laser plane πi using the general form

πi : aiX + biY + ciZ = 1 , (7)

where (ai, bi, ci) are the plane parameters and X = (X,Y, Z)T

is a point in world coordinates. Using the perspective camera

model described in Eq. 1 this is expressed as

πi : ai
x− px
fx

+ bi
y − py
fy

+ ci =
1

Z
, (8)

where x = (x, y)T are the image coordinates of the projection of

X on the image plane, p = (px, py)
T is the principal point and

fx, fy are the respective focal lengths.

If we know the plane and camera parameters, we can compute

the coordinates of a 3D object point X = (X,Y, Z)T on the

plane from its projection on the image plane x = (x, y)T by

intersecting the camera ray with the laser plane:

Z =
1

ai
x−px
fx

+ bi
y−py
fy

+ ci

X = Z
x− px
fx

Y = Z
y − py
fy

.

(9)

3.4 Self-calibration Approach

Self-calibration in this work is considered as the problem of es-

timating the parameters of all observed laser planes. From the

recorded sequence of images the laser curves are extracted as

polygonal chains. We find the points that exist on multiple laser

planes by intersecting the polylines. This computation is acceler-

ated by spatial sorting, such that only line segments that possibly

intersect are tested for intersections. Moreover, we simplify the

polylines to reduce the number of line segments. However, we

need to do this with a very low threshold (less than half a pixel)

in order not to degrade the accuracy of the extracted intersection

positions.

The plane parameters are estimated in a two step process based

on the approach described in (Furukawa and Kawasaki, 2009).

First, by solving a linear system of coplanarity constraints the

laser planes are reconstructed up to 4-DOF indeterminacy. Sec-

ond, further indeterminacies are recovered from the orthogonal-

ity constraints between laser planes in the cross configuration in

a non-linear optimization.

First, using Eq. 8 the coplanarity constraint between two laser

planes πi and πj are expressed in the perspective system of the

camera for an intersection point xij = (xij , yij)
T as

1

Zi(xij , yij)
−

1

Zj(xij , yij)
=

(ai − aj)
xij − px

fx
+ (bi − bj)

yij − py
fy

+ (ci − cj) = 0 .

(10)
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We combine these linear equations in a homogeneous linear sys-

tem:

Av = 0 , (11)

where v = (a1, b1, c1, . . . , aN , bN , cN )T is the combined vector

of the planes’ parameters and A is a matrix whose rows contain

±(xij − px)fx
−1, ±(yij − px)fx

−1 and ±1 at the appropriate

columns to form the linear equations of Eq. 10.

This problem has a trivial solution for v, which is the zero vec-

tor. Therefore, we solve the system under the constraint ‖v‖ = 1
using Singular Value Decomposition (SVD). If the system is solv-

able and it is not a degenerate condition, we obtain the perspective

solution of the plane parameters (ap, bp, cp) with 4-DOF indeter-

minacy. The solution is represented by an arbitrary offset o and

an arbitrary scale s:

(a, b, c) = s(ap, bp, cp) + o . (12)

A degenerate condition can be caused, e.g., by planes with only

collinear intersection points. For example, consider the intersec-

tion points one, two and three (visualized by circles) in Fig. 3 that

lie one the dashed curve. These intersections are collinear on the

image plane, which means that they lie in the same plane in 3D

space. In this case the parameters of the dashed line cannot be

recovered even if all other planes are determined. Therefore, it is

necessary to remove these curves before trying to solve the linear

system.

The described problem does not only occur with single laser curves

but also with groups of curves. For example, consider the solid

lines in Fig. 3 as one group and the dashed and dotted lines as

a second group. These two groups are only tied together by the

intersection points four, five and six, which are collinear. In this

case the group of dashed and dotted planes has indeterminacies

even if all solid planes are determined.

The second step is finding all plane parameters up to scale by

minimizing a non-linear optimization problem. With the cross

line laser configuration we obtain an additional orthogonality con-

straints between each of the two cross laser planes which is used

to recover the offset vector. The offset is computed, such that the

error of the orthogonality constraints is minimized. We find the

offset vector ô that minimizes the sum of the inner product be-

tween planes in the set C = {(i, j)|(πi ⊥ πj)} of orthogonal

laser planes:

ô = argmin
o

∑

(i,j)∈C

n(ai, bi, ci,o)
T
n(aj , bj , cj , o) , (13)

Figure 3: Collinear intersections between laser curves.

Figure 4: Reflections of the laser line due to glossy surfaces and

resulting distorted point cloud reconstruction.

where n is the normal of the plane computed from the plane pa-

rameters and offset vector. The scale cannot be recovered with

only two laser planes and needs to be estimated from other mea-

surements, such as a known distance in the scene.

We only use a subset of the laser planes to solve for the plane

parameters. The other planes are then reconstructed by fitting a

plane to the intersection points with planes of the already solved

subset of laser planes. Although it is possible to compute 3D

reconstruction with less planes we found empirically that 100 -

200 planes are necessary to find a robust solution.

3.5 Computing Robust Laser Plane Estimates

In order to choose a solvable subset of planes we remove all

planes that have only collinear intersection points, which we test

using principal component analysis (PCA). Moreover, we apply

heuristics to select planes that have distinct orientations and po-

sitions in the image. To do this we pick planes spread apart in

time. Consecutive image frames are very similar if we move the

projector slowly. Additionally, we reject planes that have more

than one intersection with each other. There are situations where

it is valid that two planes have multiple intersections. However,

in practice this mostly happens for almost identical planes or due

to erroneous or noisy intersection detections.

Problematic for the self-calibration are incorrect intersection con-

straints. This problem occurs quite often when scanning glossy

surfaces. Depending on the incidence angle of the laser light re-

flections are visible as depicted in the top image in Fig. 4. It is

not always possible to reduce this effect by discarding detected

laser lines with low brightness because this discards also lines

on darker surfaces. This means that additional line segments are

detected that form erroneous intersection with other laser curves.

This significantly distorts the 3D reconstruction as shown in the

bottom image in Fig. 4.
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Figure 5: Subset of the extracted laser lines on the left and reconstructed point cloud on the right.

We address this problem by explicitly detecting these outliers

among the intersections and label them as invalid. To do this

we compute the intersection point in 3D space using the plane

parameters of both of the intersecting planes. Since the plane pa-

rameters are noisy there is an error between the two computed

point positions. For each laser curve we label all intersections

as invalid based on a threshold that have a higher error than the

median error of all intersections of that particular curve. Then we

recompute the self-calibration without taking these invalid inter-

section constraints into account.

Moreover, the line points associated with the reflection cannot

be reconstructed correctly, because they do not lie in the original

laser plane. These reflections are typically detected as distinct

line segments by the laser line extraction algorithm. Removing

line segments that have only invalid intersection points is an ef-

fective technique for removing these erroneous points from the

final point cloud result.

In general, it is difficult to verify that a valid 3D reconstruction

is found. We cannot discern if the solution is good or bad by

only looking at the residuals of Eq. 11 and Eq. 13 since we are

optimizing for these values and they are expected to be small.

Therefore, we look at the error of the planes that we did not take

in the plane parameter optimization step. Specifically, we com-

pute the root-mean-square angular error for all orthogonal laser

planes.

A disadvantage of the presented method compared to other struc-

tured light approaches, e.g., gray code projector based systems,

is that a high number of images is necessary since only two lines

can be reconstructed from a single images. However, in order

to achieve real-time reconstruction it is only feasible to compute

self-calibration for a subset of the detected laser lines in the im-

ages. Moreover, not all laser lines are estimated directly using the

proposed method, such as curves with collinear intersections. All

other planes are only determined by the intersection points with

the subset of solved laser planes.

In future work this initial solution could be further improved by

iteratively optimizing an error function which takes the constraints

of all planes into account. This is computationally less expensive

than directly solving all constraints. However, first experiments

show that the influence of noisy detections skews the solution.

Possibly, the influence of these noisy or inaccurate intersections,

which do not agree well with the computed estimate, can be re-

duced by applying a loss function that weights intersection con-

straints based on the distance from the computed planes solution.

4 RESULTS

Fig. 5 shows examples of the achievable results. On the left a sub-

set of the extracted laser lines is depicted. On the right the final

reconstructed point cloud is shown with RGB color mapped to

the points. The top scene showing the table tennis balls and Lego

bricks was reconstructed from 4 minutes of video with 9,065

valid laser planes detected. The final point cloud created from

all valid laser curves has a size of 5,522,983 points. The bot-

tom scene showing the hand was reconstructed from 3.5 minutes

of video with 7,817 valid laser planes detected. The final point

cloud created from all valid laser curves has a size of 11,613,200

points. For both examples the self-calibration was computed us-

ing a subset of 400 laser curves.

For the experiments a consumer camera with an APS-C sized sen-

sor was used in video mode. The scenes were captured with a

wide angle lens with a focal length of 16 mm. We record video at

30 fps in Full-HD resolution (1920 x 1080 pixels). A high shutter

speed is beneficial since we move the laser by hand. An exposure
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Figure 6: Cross line laser projector in wooden frame employed

for the experiments.

time in the range of 5 ms to 10 ms was used in the experiments in

order to reduce motion blur.

The projector is built from two 450 nm and 520 nm line lasers

with a fan angle of 90◦ and an adjustable output power of up to

40 mW. The lasers were mounted in a custom-build frame con-

structed from laser cut wood as depicted in Fig. 6. It is also

possible to use diffractive optical elements (DOE) to project a

cross with a single laser. However, line lasers typically emit a

significantly thiner line, which improves accuracy, and using two

lasers with different colors simplifies the separation of the two

laser curves in the image. We set the laser focus such that the line

is as thin as possible over the whole depth range of the scene.

5 CONCLUSIONS

In this paper we investigated how uncalibrated structured light

using line laser is applied in the presence of noisy detections.

We showed how outliers, e.g., from reflections, are detected and

removed from the computation of self-calibration in order to im-

prove the results. Choosing good parameters for the reconstruc-

tion step is challenging because the scale of the scene is un-

known. Scaling the parameters, e.g., by the depth range of the

reconstructed point cloud is not possible for all values. There-

fore, automatically determining good parameters remains to be

investigated in future work.
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