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ABSTRACT:

Recently published approaches to SLAM algorithms process laser sensor measurements and output a map as a point cloud of the

environment. Often the actual precision of the map remains unclear, since SLAM algorithms apply local improvements to the resulting

map. Unfortunately, it is not trivial to compare the performance of SLAM algorithms objectively, especially without an accurate ground

truth. This paper presents a novel benchmarking technique that allows to compare a precise map generated with an accurate ground

truth trajectory to a map with a manipulated trajectory which was distorted by different forms of noise. The accurate ground truth is

acquired by mounting a laser scanner on an industrial robotic arm. The robotic arm is moved on a predefined path while the position and

orientation of the end-effector tool are monitored. During this process the 2D profile measurements of the laser scanner are recorded

in six degrees of freedom and afterwards used to generate a precise point cloud of the test environment. For benchmarking, an offline

continuous-time SLAM algorithm is subsequently applied to remove the inserted distortions. Finally, it is shown that the manipulated

point cloud is reversible to its previous state and is slightly improved compared to the original version, since small errors that came into

account by imprecise assumptions, sensor noise and calibration errors are removed as well.

INTRODUCTION

Nowadays, there exist a wide variety of simultaneous localization

and mapping (SLAM) algorithms for a lot of different applica-

tions. Online SLAM algorithms, such as Google’s recently pub-

lished cartographer (Hess et al., 2016), let laser scanner systems

simultaneously localize in an unknown environment and generate

high precision 2D or 3D maps of their surroundings in real-time.

In contrast to this, offline SLAM provides a post-processing step

for separate 3D point clouds. Recently, continuous-time SLAM

approaches are used to optimize the trajectories acquired dur-

ing mobile mapping (Barfoot et al., 2014; Anderson et al., 2015;

Bosse et al., 2012; Lehtola et al., 2016; Zhang and Singh, 2014;

Kaul et al., 2016). This is for example achieved by globally con-

sistent scan matching to find an optimal alignment of 2D profiles

to increase the inner accuracy of the point cloud. The bench-

marking of such algorithms is an important key aspect to test their

reliability and performance. To this end, a highly precise exper-

imental setup has to be built to obtain an accurate ground truth.

Distorting the ground truth trajectory yields a possibility to ver-

ify the performance of the algorithm by comparing the resulting

point clouds.

This paper focuses on benchmarking continuous-time SLAM. We

will show that inaccuracies of geometrical calibration and timing

issues are counterbalanced to some degree. We will describe in

detail the laser scanner measuring unit with its hardware and soft-

ware components, which is then used to benchmark our continu-

ous-time SLAM algorithm under different aspects.

Continuous Time SLAM

The automatic registration of terrestrial laser scans is considered

solved, e.g., by using natural features in projections as key points

(Houshiar et al., 2015) in combination with the ICP algorithm

(Besl and McKay, 1992). Its extension to globally consistent scan

matching has also been presented (Nüchter et al., 2010). The

later method creates a graph of overlapping scans and optimizes

a global error function. However, localization of a mobile laser

scanner (MLS) without using a global reference coordinate sys-

tem, e.g., global navigation satellite system (GNSS), and with

sensors attached only to the mobile scanner platform is one of

the grand challenges in laser scanning research. Barfoot et al.

(2014) and Anderson et al. (2015) used a regression to Gaussian

processes to optimize the trajectory that their mobile mapping

system has taken. Bosse et al. (2012) used a lightweight laser

scanner and spring system to achieve a smooth motion for a hand-

held mapping system. Lehtola et al. (2016) built an experimental

mobile mapping system based on a FARO scanner and a rolling

wheel. Similarly, constantly rotating scanners were used in the

setups of (Zhang and Singh, 2014; Kaul et al., 2016; Nüchter et al.,

2015). The task of continuous Time SLAM is to deform or trans-

form the trajectory, such that the quality of the point cloud is

improved.

A solution to continuous time SLAM is needed for various ap-

plications, ranging from indoor mapping and personal laser scan-

ning to autonomous driving. If the 3D scanner is fast, like for

instance the Velodyne HDL-64E scanner, then using motion com-

pensated 3D scans result in descent maps, when the point clouds

are treated as separate point clouds in an Online or Offline SLAM

solution (Moosmann and Stiller, 2011). In general, however, ev-

ery 3D measurement must be corrected from the SLAM algo-

rithm depending on its time-stamp.

Evaluating SLAM

In outdoor scenarios, GNSS provides a sufficient precise refer-

ence for benchmarking the trajectory of the mapping systems.

Furthermore, control points are used to evaluate the overall point

cloud quality. Furthermore, using reference blocks are often used

to check accuracy and repeatability.

Similar ideas are used in the robotics community to evaluate the

result of SLAM algorithms. Schwertfeger et al. (2011) uses refer-

ence blocks, so-called fiducials to evaluate maps created in Robo-

Cup. Later on, Schwertfeger and Birk (2013) scored topolog-

ical map structures. Wulf et al. (2008) used an independently



Figure 1. CAD model of assembled measuring unit combining:

SICK LMS141 2D laser scanner, a single board

computer and the necessary electrical components.

available, accurate environment map of an urban area and the

Monte Carlo localization (MCL) technique that matches sensor

data against the reference map in combination with manual qual-

ity control.

3DTK – The 3D Toolkit

3DTK – The 3D Toolkit (Andreas Nüchter et al., 2017) is an open-

source toolkit for efficient processing of 3D scans and point clouds

in general. It contains among other things algorithms and meth-

ods for point cloud registration, shape recognition, and for fast

viewing of scenes. This paper uses the toolkit for developing the

benchmarking methods.

SYSTEM OVERVIEW

Hardware Description

The laser profiler was attached to the robotic arm using a mod-

ified Schunk PT- AP-70 gripper and a custom designed mount-

ing bracket seen in figure 1. The measuring unit with the laser

scanner and all electrical components are bolted to the mounting

bracket, which provides a mechanical fixture for the gripper to

attach to. This setup enables to easily dismount the assembly and

modify it. The bracket was a 3D printed prototype created out

of polylactic acid (PLA) plastic already provided sufficient stur-

diness. The measuring unit was designed to work independently

and thus the assembly contains a LiPo battery, a DC/DC con-

verter (12 V to 5 V) and a Raspberry PI 3 model B single board

computer for data collection of the laser scanner data using the

robot operating system ROS (Quigley et al., 2009).

2.1.1 Robotic Arm The deployed robotic arm is a KUKA

KR16 industrial robot with six individual revolute joints. It is ca-

pable of very precisely traversing a trajectory and simultaneously

change the orientation of the tool tip using the spherical wrist of

the robot. This is needed for the laser scanner to obtain a full

360 ◦-view of its environment. For a more detailed description of

the predefined trajectory see section 4 The actual position of the

robot is monitored via network using the robot sensor interface

(RSI) provided by KUKA. The robotic arm has a path accuracy

of ±0.9 mm for linear motion and ±0.8 mm for circular motion

with a repeatability of ±0.2 mm and ±0.4 mm respectively. This

provides sufficient accuracy to receive a precise ground truth used

to verify the continuous-time SLAM algorithm.

2.1.2 Laser Scanner The SICK LMS 141 security prime laser

scanner is used for the measuring unit. It measures at a frequency

of 50 Hz and has an operating range of 0.5 m to 40 m. The 2D dis-

tance measurements are a representation of the scanning plane in

polar coordinates, with an angular resolution of 0.5 ◦ and a field

of view of 270 ◦. Measurement data output is provided via Ether-

net interface in real time. With a systematic error of ±30 mm and

Figure 2. Overview of the test setup - Laser scanner attached to

the KUKA KR 16 robotic arm.

a statistical error of ±12 mm up to 10 m range it is well suited for

the purpose of creating a high precision reference point cloud of

the environment.

Software Description

The functionalities of the system are distributed into three main

software components: Two ROS nodes for data collection and

one application for data processing. ROS is designed to distribute

the software components onto separate systems which commu-

nicate with each other using the native ROS publisher and sub-

scriber protocol with predefined topics and message types. When

this functionality is applied by connecting the recording nodes to

the same network it acts as one system. One ROS node is used

to collect the 2D laser scanner data (LMS1xx node) on the Rasp-

berry Pi which is connected via WiFi. A second ROS node, the

RSI handler, is implemented on a separated PC and used to ac-

quire the joint angles of the robotic arm in real-time. The result-

ing trajectory of the tool position of the robotic arm is computed

in the robot base coordinate system using the direct kinematic

equations of the robotic arm. To ensure a precise timing between

the two machines, the two devices are time-synchronized using

the Network Time Protocol (NTP). In a consecutive step the data

is combined to create a 3D reference point cloud as input for the

continuous-time SLAM algorithm. The system components and

its interactions are illustrated in Figure 3.

2.2.1 LMS1xx Node The LMS1xx package implements a ba-

sic ROS driver in C++ for the SICK LMS1xx line of LIDARs,

which is used for the configuration of the laser scanner as well as

the data acquisition. It collects a profile of 541 2D distance mea-

surements in polar coordinates with reflectance value at a rate of

50 Hz and publishes them as sensor msgs/LaserScan messages

to the ROS network. The Raspberry Pi running the node is con-

trolled via the ssh protocol over the network, simplifying the op-

eration and data acquisition.

2.2.2 RSI Handler Node The RSI handler node is developed

as a desktop application in Qt5. In the interface it is possible



Figure 3. Data acquisition and processing pipeline.

to configure the listening port for data, if a multicast subscrip-

tion to the network should be attempted and if the data should be

published to a ROS topic. The KUKA system publishes, via its

proprietary RSI API, the instantaneous joint angles for the robot

with the current time stamp. This data is published through UDP

to a dedicated computer in the robotics lab, which then relays the

information to a multicast group defined by the network admin-

istrator. The KUKA RSI API publishes data every 12 ms. The

RSI handler node resides in a computer that is a member of this

multicast group and then listens for incoming data. When data

is received, the direct kinematics for the tool position are solved

with the kinematic parameters provided by the manufacturer, and

this yields the homogeneous transformation matrix that is pub-

lished in a ROS topic for recording. The transformation matrix

contains the information for converting points in the frame of ref-

erence of the tool to the frame of reference of the base of the

robot.

2.2.3 3D Point Cloud Generation The data from the LMS1xx

node and the RSI handler node are collected in a single rosbag file

on a separate device which solely acts as a listener in the ROS

network. The resulting rosbag is then processed in the following

steps: First, the data of interest is selected by detecting the start

and stop point of the trajectory in the pose measurements of the

robotic arm. The ROS time stamps are then used to find the cor-

responding laser scans in that time interval. The laser scans are

exported in left-handed x−y−z convention to be suitable for fur-

ther processing with continuous-time SLAM, see section 3 Since

the trajectory of the robot tool is given as transformation matrices

with respect to the robot base, an additional transformation from

the laser scanner to the tool tip has to be performed.

The application also provides a feature to subsequently distort

the path in linear or sinusoidal fashion on different axes, i.e., in

six degree of freedom. Those distortions are used to benchmark

continuous-time SLAM. This feature is examined in greater detail

in section 4

2.2.4 Time Synchronization To create an accurate reference

3D point cloud, the two data sets, i.e., laser scanner measure-

ments and tool pose, have to be synchronized precisely. This is

achieved by using the NTP protocol, which synchronizes the in-

ternal clocks of both machines, so that the ROS nodes are time

synchronized. During data acquisition the same time stamps are

then used for recording data. So if network delays occur with

the packages from the Raspberry Pi to the computer that gathers

all data, they are neglectable since the previously recorded ROS

time stamps are used. However, further inaccuracies like the RSI

timing offset have to be taken into account.

Since the RSI data is processed on the KUKA control unit and

multicasted to the network, the tool pose measurements are de-
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Figure 4. Plot of the inputs used by the synchronization

algorithms. The vertical red lines mark the beginning

and end of the region of interest.

layed by a constant offset. To get the accurate timing two algo-

rithms have been developed to detect automatically the beginning

and ending of the experiment. Therefore, a short standstill period

is needed in the robot arm movement, that can then be detected in

the data of the robotic arm joint movements, as well as in the laser

recordings. The standstill period of the robot joints is detected by

searching for the period where the derivative of the recorded data

is zero. For the laser data each profile is compared to the previ-

ous one, finding point to point correspondences between the pro-

files assuming a common frame of reference for both. Then the

square-root-distance error between all point pairs is accumulated.

After calculating the error for all recorded profiles, the laser data

between the two pauses is taken, which is when these accumu-

lated errors sum to zero. Now with both start and stop times for

RSI and laser data, the offset can be calculated with significant

accuracy. Figure 4 shows a data set with the derivatives of the

tool position in all spatial directions and the change of the laser

data, using a standstill period of 7 s.

CONTINUOUS-TIME SLAM ALGORITHM

6D SLAM

To understand the basic idea of the used continuous-time SLAM,

we summarize its foundation, 6DSLAM, which was designed for

a high-precision registration of terrestrial 3D scans, i.e., globally

consistent scan matching (Borrmann et al., 2008). It is available

in 3DTK – The 3D Toolkit. The globally consistent scan matching

is an Offline SLAM solution for 3D point clouds, it is a Graph-

SLAM algorithm.

6D SLAM works similarly to the well-known iterative closest

points (ICP) algorithm, which minimizes the following error func-

tion

E(R, t) =
1

N

N
∑

i=1

∥

∥mi − (Rdi + t)
∥

∥

2

(1)

to iteratively solve for an optimal rotation T = (R, t), where

the tuples (mi,di) of corresponding model M and data points

D are given by minimal distance, i.e., mi is the closest point to

di within a close limit (Besl and McKay, 1992). Instead of the

two-scan-Eq. (1), we look at the n-scan case

E =
∑

j→k

∑

i

|Rjmi + tj − (Rkdi + tk)|
2
, (2)



where j and k refer to scans of the SLAM graph, i.e., to the graph

modeling the pose constraints in SLAM or bundle adjustment.

If they overlap, i.e., closest points are available, then the point

pairs for the link are included in the minimization. We solve for

all poses at the same time and iterate like in the original ICP.

The derivation of a GraphSLAM method using a Mahalanobis

distance that describes the global error of all the poses

W =
∑

j→k

(Ēj,k −E
′

j,k)
T
C

−1

j,k(Ē
′

j,k −E
′

j,k) (3)

=
∑

j→k

(Ēj,k − (X′

j −X
′

k))C
−1

j,k(Ēj,k − (X′

j −X
′

k)).

where E
′

j,k is the linearized error metric and the Gaussian dis-

tribution is (Ēj,k,Cj,k) with computed covariances from scan

matching as given in (Borrmann et al., 2008). X′

j and X
′

k denote

the two poses linked in the graph and related by the linear error

metric. Minimizing Eq. (2) instead of (3) does not lead to differ-

ent results (Nüchter et al., 2010). In matrix notation W in Eq. (3)

becomes

W = (Ē−HX)TC−1(Ē−HX).

Here H is the signed incidence matrix of the pose graph, Ē is

the concatenated vector consisting of all Ē′

j,k and C is a block-

diagonal matrix comprised of C−1

j,k as submatrices. Minimizing

this function yields new optimal pose estimates. Please note,

while there are four closed-form solutions for the original ICP

Eq. (1), linearization of the rotation in Eq. (2) or (3) seams to be

always required.

Globally consistent scan matching is a full SLAM solution for

3D point clouds. It is an offline algorithm and thus optimizes

all poses in the SLAM pose graph. As a result, processing more

scans will increase the algorithm’s run-time.

Continuous-time SLAM

In previous work, we developed an algorithm that improves the

entire trajectory simultaneously. The algorithm is adopted from

Elseberg et al. (2013), where it was used in a different mobile

mapping context, i.e., on wheeled platforms. Unlike other state

of the art algorithms, like (Stoyanov and Lilienthal, 2009) and

(Bosse et al., 2012), it is not restricted to purely local improve-

ments. We make no rigidity assumptions, except for the computa-

tion of the point correspondences. We require no explicit motion

model of a vehicle for instance, thus it works well on backpack

systems. The continuous-time SLAM for trajectory optimization

works in full 6 DoF. The algorithm requires no high-level feature

computation, i.e., we require only the points themselves.

In case of mobile mapping, we do not have separate terrestrial 3D

scans. In the current state of the art in the robotics community

developed by Bosse et al. (2012) for improving overall map qual-

ity of mobile mappers, the time is coarsely discretized. This re-

sults in a partition of the trajectory into sub-scans that are treated

rigidly. Then rigid registration algorithms like the ICP and other

solutions to the SLAM problem are employed. Obviously, trajec-

tory errors within a sub-scan cannot be improved in this fashion.

Applying rigid pose estimation to this non-rigid problem directly

is also problematic since rigid transformations can only approx-

imate the underlying ground truth. When a finer discretization

is used, single 2D scan slices or single points result that do not

constrain a 6 DoF pose sufficiently for rigid algorithms.

More mathematical details of the algorithm in the available open-

source code and are given in (Elseberg et al., 2013). Essentially,

we first split the trajectory into sections, and match these sec-

tions using the automatic high-precision registration of terres-

trial 3D scans, i.e., globally consistent scan matching that is the

6D SLAM core. Here the graph is estimated using a heuristic

that measures the overlap of sections using the number of clos-

est point pairs. After applying globally consistent scan matching

on the sections the actual continuous-time or semi-rigid match-

ing as described in (Borrmann et al., 2008; Elseberg et al., 2013)

is applied, using the results of the rigid optimization as starting

values to compute the numerical minimum of the underlying least

square problem. To speed up the calculations, we make use of the

sparse Cholesky decomposition by (Davis, 2006).

Given a trajectory estimate, we “unwind” the point cloud into

the global coordinate system and use nearest neighbor search to

establish correspondences at the level of single scans (those can

be single 2D scan profiles). Then, after computing the estimates

of pose differences and their respective covariances, we optimize

the trajectory. In a predependend step, we consider trajectory

elements every k steps and fuse the trajectory elements around

these steps l temporarily into a meta-scan.

A key issue in continuous-time SLAM is the search for closest

point pairs. We use an octree and a multi-core implementation

using OpenMP to solve this task efficiently. A time-threshold for

the point pairs is used, i.e., we match only to points if they were

recorded at least td time steps away. This time corresponds to

the number of separate 3D point clouds acquired by the SICK

scanner. For most data sets, this was set to 4 sec. (k = 100,

l = 200). In addition, we use a maximal allowed point-to-point-

distance which has been set to 25 cm.

Figure 5 shows the trajectory Circle that was programmed. It

was splitted for GraphSLAM into metascans. Every 100th scan

lines a metascan was built with a size of 200 scan lines (±100
scan lines). The visualization the multiview orthographic projec-

tion and a zoom into the horizontal view. A small shift has been

applied to visualize the overlap. Note: only the position of the

sensor is plotted, the orientation is not drawn.

After optimization, all scan slices are joined in a single point

cloud to enable efficient viewing of the scene. The first frame,

i.e., the first 3D scan slice from the SICK scanner defines the

arbitrary reference coordinate system of the resulting 3D point

cloud.

BENCHMARKING

The system described in section 2 is used to benchmark the con-

tinuous-time SLAM algorithm. A representation of the undis-

torted laboratory scenery captured with the laser scanner is de-

picted in figure 6. Numerous data sets have been acquired and

then distorted by different methods, processed and corrected. Next,

the robotic arm moves the measuring unit through space on three

different trajectories. For better readability in further sections

each data set is named after the shape of its path. The three tra-

jectories: Circle, Multiline and X are described in the following

subsections.

Robot Path Programming and Data Sets

Due to the fact that the 3D point clouds are processed with con-

tinuous-time SLAM, overlapping profiles of the same area in the

point cloud with sufficient quantity of corresponding points are

required. To achieve this, and simultaneously obtain a full 3D

representation of the environment, the tool tip of the robotic arm
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Figure 5. Trajectory describing a circular arc in the horizontal plane. Cf. Figure 7. From left to right: 3D view and detailed view.

Vertical, horizontal, and vertical orthographic projection.

Figure 6. 3D point cloud of the laboratory. In the foreground,

the trajectory is shown in red.

is rotated along its roll axis multiple times back and forth. For

that motion the spherical wrist of the robot is used, while the re-

maining axes are deployed to move the robotic arm on its path. A

uniform rotary motion in just one direction of more than 480 ◦ is

not feasible because of joint angle restrictions and winding cables

of the gripper. In general, the boundaries of the chosen path are

limited by the physical reachable positions and the configuration

singularities of the robotic arm.

For data set Circle the measuring unit is moved on a circular path

around the base of the robotic arm with a constant height, cf.

figure 5. During that motion the spherical wrist is used to make

four 480 ◦ rotations, where the direction of rotation is inverted

each time.

Data set Multiline is acquired by moving the measuring unit on a

straight - horizontal line at constant speed while simultaneously

rotating the scanner in one direction for 450 ◦. Due to restric-

tions in the arm configuration, the maximum of 480 ◦ cannot be

achieved by this trajectory. This motion is repeated four times

along the same axis while the measuring unit is raised by 20 cm

at the end of each horizontal segment. Also, the direction of ro-

tation and translation is inverted after each segment.

The processed point cloud of the last data set resembles an X

shape that is applied here for naming conventions instead of the

shape of the path. The trajectory used for data set X also moves

the measuring unit on a straight-horizontal line at a constant speed.

However, the measuring unit is not rotated during this motion but

solely tilted with a fixed angle of 45 ◦. This motion is repeated

two times back and forth along the same axis without any change

in height. Before the start of the next segment, the measuring

unit is rotated by 90 ◦ to create a slight overlap in the recorded

profiles. The purpose of this trajectory is to show the effects of

the correction algorithm when little or no overlap in the recorded

data is present.

Path Distortions and Results

To verify the performance of the continuous-time SLAM algo-

rithm, the recorded path is distorted by adding different offsets

to the tool pose to simulate noise. Afterwards the resulting point

cloud is corrected using the algorithm and the results are com-

pared to the original data. Two types of distortions are applied:

a constant offset that simulates an incremental error over time,

and a sinusoidal offset that is added to the path to one axis with

a constant wave number and amplitude. The parameters for the

applied distortions as well as for the continuous-time SLAM al-

gorithm are specified in Table 1.

To verify the performance of continuous-time SLAM, CloudCom-

pare (Girardeau-Montaut, 2017) was used to analyze changes in

the resulting point clouds. The originally recorded data set and

the corrected point cloud are illustrated as heat maps and col-

ored with reflectance values of the laser scanner. The originally

recorded data set is improved by using continuous-time SLAM.

This is done to remove sparse artifacts and misalignments due

to calibration errors, in order to enhance the consistency of the

point cloud. Further evaluations are based on this reference point

cloud. A comparison is established by superimposing the refer-

ence and a corrected point cloud, visualizing the absolute error in

a separate heat map.

Also, the corrected path is evaluated under two aspects: First by

comparing the absolute point-to-point distance, and second by

the change in orientation of the measuring unit in contrast to the

original path.

4.2.1 Data Set: Circle Figure 7 shows on the left side the

originally acquired and processed point cloud. The middle im-

age shows the resulting point cloud after processing the recorded

data with continuous-time SLAM. This point cloud is used as a

reference to calculate the error after correcting a distorted ver-

sion of the original data. Figure 8 shows the results of the applied

linear distortion. The maximum error compared to the reference

after correcting the distortion is 0.02 m as shown in the top right

picture. The maximum point to point error of the trajectory is

reduced from 1 m distortion to 0.14 m, the orientation is changed

by a maximum of 4.5 ◦. Figure 9 shows the results of the applied

sinusoid distortion. After 200 iterations, the errors are clearly re-

duced but not fully corrected. The maximum point to point error

is 0.25 m but also note that the error distribution shown at the

right of the error color bar indicates that the majority of points

have a point to point error that rarely exceeds 0.03 m. The highly

disturbed trajectory has a maximum distance of 0.25 m while the

orientation is changed by a maximum of 7 ◦.

4.2.2 Data Set: Multiline Figure 10 shows on the left side

the original data recording from the measuring unit. The middle

image shows the corrected point cloud, to eliminate any existing

misalignments. For this data set, this is the point cloud that is

used as comparison reference for the corrected point clouds after



Dataset Profiles Distortion Amplitude Wavenumber Metascan Overlap Iterations Duration

[m] Iterations [min]

Circle 15,194 None — — 100 200 200 2071

Linear 1 — 100 200 200 2125

Sinusoid 0.2 12.5 100 200 200 2125

Multiline 12,321 None — — 400 400 200 388

Linear 1 — 400 400 200 379

Sinusoid 1 0.2 20 400 400 200 440

Sinusoid 2 0.2 40 400 400 200 437

X 8400 Linear 0.5 — 4200 4200 50 1

Linear 0.5 — 250 500 100 24

Table 1. Parameters for applied distortions and continuous-time SLAM.

being distorted. Figure 11 presents the results after applying a

linear distortion. The maximum error after correcting the point

cloud compared to the reference is 0.04 m as shown in the top

right picture. The maximum point to point error of the trajec-

tory is reduced from 1 m distortion to 0.045 m, the orientation is

changed by a maximum of 0.45 ◦. Figure 12 shows the result

of applying a sinusoid distortion with an amplitude of 0.2 m and

a wavenumber of 20. The corrected data, shown in the middle,

is then compared to the reference frame to calculate the point to

point error, shown on the right. The maximum point to point error

is 0.3 m for this case, but also note the error distribution, which

shows that the majority of points rarely have point to point errors

greater than 0.03 m. The disturbed trajectory has a maximum dis-

tance of 0.45 m while the orientation changed by a maximum of

3 ◦. Finally Figure 13 shows the output of applying another sinu-

soid distortion but with a wavenumber of 40. The middle image

shows the corrected data, and this is then compared to the ref-

erence frame and the resulting point to point error is shown in

the right image. The resulting maximum error is 0.135 m, and

analysing the error distribution, most points do not have point to

point error greater than 0.04 m. The disturbed trajectory has a

maximum distance of 0.2 m while the orientation changed by a

maximum of 2 ◦.

4.2.3 Data Set: X Figure 14 shows on the left side the orig-

inal point cloud from the laser scanner. Due to the fact that the

scanner does not rotate, overlap is only achieved by the direc-

tion change of the scanner. As a consequence, consecutive pro-

files have zero overlap between them, in contrast to the previous

trajectories. The middle image shows the approach to correct

a linear distortion with carefully chosen parameters, but almost

no improvement is visible. The right image shows the same ap-

proach with different parameters, but due to no overlap between

consecutive metascans, the point cloud breaks.

CONCLUSIONS AND FUTURE WORK

This paper show a novel way to benchmark SLAM algorithms

based on a ground truth acquired from the motion of a robotic

arm. It can be used as a tool to show the influence of arbitrary

forms of noise on the ground truth trajectory and the capabilities

of the applied SLAM algorithm. The presented system enables

us, to systematically evaluate all six degree of freedom of a mo-

bile mapping system, which was not possible in the past, with

vehicle-based mobile mapping systems. The setup enables us to

compare 3D point clouds, but also sensor positions and orienta-

tions. The evaluation shows, that careful selection of parameters

is needed to enable the cenvergance to the global minimum.

Needles to say, a lot of work remains to be done. First of all, as

calibration is crucial for SLAM, the accuracy of the benchmark-

ing facility can be further improved. For instance, by determining

a more precise coordinate transformation between the coordinate

systems of the laser scanner reference frame and the tool refer-

ence frame of the robotic arm.

Furthermore, since even small timing errors induce inaccuracies

in the resulting point cloud, time synchronization between the

laser scanner frames and the robot pose remains an essential as-

pect. Direct access to the control unit of the robotic arm mini-

mizes this delay. Additionally, a system that triggers the start and

stop times of the benchmarking experiment is useful.

Moreover, attaching the measuring unit directly to the robotic

arm, thus omitting the gripper, would allow for more rotatabil-

ity and flexibility and reduce the number of erroneous influences.
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of Projections for Key Point Based Registration of Panoramic Terres-
trial 3D Laser Scans. Journal of Geo-spatial Information Science 18(1),
pp. 11–31.

Kaul, L., Zlot, R. and Bosse, M., 2016. Continuous-time three-
dimensional mapping for micro aerial vehicles with a passively actuated
rotating laser scanner. Journal of Field Robotics 33(1), pp. 103–132.

http://slam6d.sourceforge.net/
http://slam6d.sourceforge.net/
http://www.cloudcompare.org/
http://www.cloudcompare.org/


Figure 7. 3D point cloud of the laboratory. Left: Recorded data. Middle: Corrected point cloud used as reference. Right: Error

between recorded and corrected point clouds.
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Figure 8. Linear Distortion: Top Left: Input point cloud. Top Middle: Corrected point cloud. Top Right: Error between corrected and

reference point cloud. Bottom Left: Point to point distance between the corrected and original trajectory. Bottom Right:

Change of orientation vector between the corrected and original trajectory.
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Figure 9. Sinusoid Distortion: Left: Input Point Cloud. Middle: Corrected point cloud. Right: Error between corrected and reference

point cloud. Plots: Above: Point to point distance between the corrected and original trajectory. Below: Change of

orientation vector between the corrected and original trajectory.
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Figure 10. 3D point cloud of the laboratory. Left: Recorded data. Middle: Corrected point cloud used as reference. Right: Error

between recorded and corrected point clouds.
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Figure 11. Linear Distortion: Left: Input point cloud. Middle: Corrected point cloud. Right: Error between corrected and reference

point cloud. Plots: Above: Point to point distance between the corrected and original trajectory. Below: Change of

orientation vector between the corrected and original trajectory.
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Figure 12. Sinusoid Distortion: Left: Input Point Cloud. Middle: Corrected point cloud. Right: Error between corrected and reference

point cloud. Plots: Above: Point to point distance between the corrected and original trajectory. Below: Change of

orientation vector between the corrected and original trajectory.
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Figure 13. Sinusoid Distortion: Left: Input Point Cloud. Middle: Corrected point cloud. Right: Error between corrected and reference

point cloud. Plots: Above: Point to point distance between the corrected and original trajectory. Below: Change of

orientation vector between the corrected and original trajectory.

Figure 14. Linear trajectory without overlap between consecutive scans. Left: Original data as recorded. Middle: Corrected point

cloud with carefully selected parameters after applying a linear distortion. Right: Corrected point cloud with standard

parameters.
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