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Abstract— Structure from motion is a common approach
to generate 3D models of objects and structures. The ease
of the data acquisition and the wide selection of available
algorithms makes the technique easily accessible. Previous
benchmarks on the topic have been focused on scanning small
structures, specially for archaeology, or have been limited to
single or very few algorithms. In this work different algorithms
are benchmarked regarding accuracy and processing time for
datasets acquired in urban environments, with the goal of
analyzing the feasibility of utilizing this technique on search and
rescue operations. Real-world rescue scenarios are demanding
due to the presence of challenging surfaces and smoke.

I. INTRODUCTION

Surveying of search and rescue (SaR) scenarios usually

involves manual inspection by rescuers, and is a dangerous

and time consuming process. As the survival of victims

depends on the time it takes for being rescued, research in

new technologies that can automate this task without risking

human lives is of utter importance. Currently, this task is

aided with additional surveying by aerial photography and

also thermography taken from an helicopter, but the data

inspection for this methods is complex, as there is no spatial

information available for analysis. Structure from motion

(SfM) is a technique in the field of photogrammetry that

computes spacial information based only on image data.

A commonly available UAV with an integrated camera is

therefore sufficient to capture the required data. Due to the

low cost of the equipment used and the ease of acquiring

the information, it serves as a possibility to be used in

SaR scenarios. In this work we present benchmarks of SfM

reconstructions of urban scenarios using different available

softwares, and analyze the feasibility of this technique, to be

used in SaR situations.

II. RELATED WORK

Since SfM is a recent and constantly improving topic,

very few research has been done in asserting the accuracy

of different algorithms. At the workshop ”‘Multiview Re-

lationships in 3D Data”’ at ICCV 2017, Vladlen Koltun

encouraged researchers to provide benchmarks for 3D re-

construction algorithms. In a previous benchmark, he and
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others tested several SfM algorithm pipelines. They used the

harmonic average of the precision and recall (F-score) of the

models error compared to a laser scanner reference, as to

rank the outputs in both accuracy and completeness [1].

Most comparisons between different SfM algorithms have

been made in close range measurements of small objects, like

ornaments or sculptures. Nikolov et al. [2] tested six different

commercial SfM software packages, digitalizing six objects

with varying characteristics. Most algorithms provided sub-

millimeter accuracy for close range photos but failed to

resolve finer details due to oversmoothing.

Jaud et al. [3] compared AgiSoft PhotoScan [4] against

MicMac [5], by building a model of a landslide on the

Runion island with images taken from an hexacopter. The

generated models are compared to laser scanner measure-

ments, resulting in average errors between 3 - 4 cm. In steep

slopes the errors rise up to 17 cm.

Similarly, Pangagiotidis et al. [6] compared a reconstruc-

tion of tree stems using PhotoScan and compared to a

reference frame from terrestrial laser scans. They found

errors of up to 11 cm.

Mancini et al. [7] and Genchi et al. [8] also used UAVs

for capturing data and generating models for topography.

Comparison to ground truth results in an accuracy of 19 cm

for PhotoScan and 7 cm for Visual SfM respectively.

Our benchmark focuses on reconstruction of urban struc-

tures including accuracy and runtime evaluation of eight

SfM pipelines. The remainder of this paper is organized as

follows. Section III gives an overview of the benchmarked

algorithms. Section IV-A and IV-B describe the experimental

setup and evaluation process followed by a discussion of the

results in Section IV-C.

III. BENCHMARKED ALGORITHMS

The general pipeline steps for SfM reconstruction are de-

picted in Fig. 1. At first, feature detection is performed. The

majority of algorithms mentioned below use SIFT feature

detection. After the features are identified on every image,

every possible pair of images on the dataset is processed

to find matching features between the two images on the

pair. If a coherent match is found, then the pair is added as

input for the next step. In the sparse reconstruction step the

relative camera poses and orientations are estimated from the

computed pairwise matches and aggregated with other pairs

of images to build a 3D model of the photographed object.

This aggregation is either sequential, where the errors are
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Fig. 1: Structure from motion pipeline steps

minimized via a bundle adjustment algorithm as pairs are

added to the model; or global, where errors are minimized

by matching all pairs at once. Since the global approach has

very strict requirements to work properly (all features must

be visible by all cameras, for example), all SfM algorithms

implement the sequential sparse reconstruction approach.

The output of the sparse reconstruction stage is a 3D model

of the object formed by the detected features, and it also

includes the pose (location and orientation) of the cameras.

As a final stage, a densification stage follows in which the

goal is to assign spatial 3D coordinates to all or most of the

pixels in the input images, as to increase the count of points

in the 3D model and include color information [9].

In this work, we focus on the reconstruction steps up to

dense reconstruction, i.e., meshing is not considered.

a) Visual Structure from Motion: has been released in

2013 by Wu Changchang [10]. The complexity of the recon-

struction problem is reduced by preemptive feature matching

where only the h largest scales features are used to decide if a

pair contains matches or not before using a complete feature

match, acceleration of incremental multi-view reconstruction

by replacing matrix inversion with implicit estimation; and

doing bundle adjustment only for a subset of the latest n

cameras added to the model, and not to the complete model.

For dense reconstruction the Patch-based Multi-view Stereo

toolchain from [11] is used.

b) Open Multiple View Geometry: released in 2012 by

Moulon et al. [12] provides a pipeline for feature detection

and matching and incremental structure from motion. In

contrast to other SfM approaches, the camera pose estimation

is improved by introducing adaptive thresholds for the model

estimation instead of using globally fixed values.

c) Open Multiple View Stereovision: Dan Cernea et al.

released a set of algorithms for dense reconstruction of SfM

reconstruction. Based on the Patch-Match algorithm [13] the

basic concept is to focus on regions that are more likely to

have good matches based on the multi-view reconstruction.

Fig. 2: Aerial view of the practice hall at the Bavarian

Firefighter School in Würzburg. The building features large

white walls and reflective surfaces.

d) Multi-View Environment: provides a complete

pipeline for image based geometry reconstruction [14]. It

uses SIFT and SURF features jointly together which are

matched pairwise and tracked over several views. The dense

reconstruction based on [15] uses depth map estimation for

each view and fusing them with the floating scale surface

reconstruction algorithm [16].

e) COLMAP: was released in 2016 by Schönberger

et al. [17]. Its main goal is to provide a general-purpose

solution for structure from motion reconstruction that can

work with high reliability under a variety of conditions.

Improves the incremental structure from motion concept by

including geometric verification to improve the triangulation.

This includes exclusion of degenerated image configuration

as panoramic image pairs and preference of image pairs with

larger baselines

f) Agisoft PhotoScan [4]: is extensively used in re-

search and industry [18], [19], [20], [21], [22], so we include

the software in our evaluation.

IV. EXPERIMENTS AND RESULTS

A. Datasets and Preparation

Structure from motion algorithms have known limitations

when reconstructing structures with texture-less surfaces,

such as buildings with plain colour painted walls [23], as

well with reflective surfaces and foliage. For evaluation we

recorded two datasets at the Bavarian Firefighter School in

Würzburg, Germany. The chosen buildings represent possible

urban rescue scenarios.

A DJI Phantom 3 drone with a built-in camera was flown

around the buildings in a ”‘Point of Interest”’ flight mode to

record video data with the camera tilted by approximately

45
◦. Reference data is provided by terrestrial laser scanning

using a Riegl VZ 400 and scan registration with 3DTK —

The 3D Toolkit [24].

The first dataset includes the practice hall depicted in

Fig. 2. The building is used to train firefighters in a variety

of urban search and rescue scenarios. It houses a main street,

office and urban environments, etc (indoor). The building is



Fig. 3: Aerial view of the burning house at the Bavarian

Firefighter School in Würzburg. Light smoke is apparent at

the chimneys and the front wall.

TABLE I: Recorded data per model

Model Rec. Video Laser scans Num. of points

Practice hall 32.63 min 12 145M
Burning house 4.5 min 10 133M

a cuboid with a length of 76.8 m, a width of 48.5 m and

a height of 40 m. One of the sides features a large glass

surface (Fig. 2 black front facade, equal to the top structure).

This creates demanding reflections of surrounding structures.

The building also features two large white walls to the sides

without any prominent textures. For reference, which we will

call ground truth, 12 terrestrial 3D laser scans were acquired

around the building and on the main roof. The ceiling of the

secondary structure was not accessible.

The second dataset, shown in figure 3, includes the so

called burning house, that is used to provide realistic fire

fighting training scenarios. Therefore smoke and fire are

generated in an controllable environment. The structure re-

sembles a typical German residential house with a footprint

of 12.6 m × 12.5 m. Here, the ground truth point cloud

consists of ten terrestrial laser scans.

The recorded datasets are available at https:

//robotik.informatik.uni-wuerzburg.de/

telematics/download/SSRR2018/

For benchmarking SfM videos are recorded, images of

size 2704 × 1520 are extracted with a rate of 1.2 fps (six

frames every five seconds). For the second dataset, two more

benchmarks are done: one reducing the rate of the extracted

images to 0.6 fps (half-speed) and another one using the same

rate as the first benchmark, but halving the width and height

of the images (quarter-resolution). This is done to test how

reducing the available input data affects the quality of the

produced models. Table I gives details for the datasets.

B. Evaluation process

We evaluate eight different combinations of the algo-

rithms presented in Section III. Besides running the complete

pipeline within VisualSfM, MVE, COLMAP and Photoscan,

the sparse point clouds from VisualSfM and openMVG are

additionally used as input for the dense reconstruction of

openMVS and MVE. The combinations are illustrated in

Fig. 4. All algorithms are run with the parameter values

Fig. 4: Benchmarked Structure from Motion pipelines, in-

spired by [25].

they have defined as default. The camera intrinsic param-

eters are computed by automatic camera calibration during

reconstruction, instead of being provided to the algorithms.

As the feature match stage in the typical structure from

motion pipeline takes quadratic time to be executed as a

function of the number of input images, a list indicating

the pairs to be matched is provided to the algorithms.

This simplification is done based on the assumption that

comparing an image with the previous and next n images

is appropriate, since they are taken from a continuous video

and little overlap will occur on completely different segments

of recordings. Also segments of video that have the same or

similar features of the structure in view are also matched

together, as to ensure loop closure. This is also true across

multiple video files, as its images are also matched together

across the different segments so they can be incremented to

the same structure in the reconstruction stage. The same list

with the matching pairs is provided to all pipelines.

As metrics for our benchmarks, the total runtime it takes

the algorithm to complete the tasks and the cloud to cloud

error distance compared to the laser scanner models will

be used. Since the produced models via the SfM approach

will have an unknown scale, these are matched to the laser

scanner frame of reference using 3DTK using the unit quater-

nion minimization algorithm with scale adjustment [26].

Afterwards, the cloud to cloud error distance is computed

with CloudCompare [27]. This software is also used to

compute the expected error value and standard deviation are

according to a Weibull distribution [28] that will be used to

compare the results of the produced models.

a) Execution time: The data processing is to be done

on an Intel Core i7-4700MQ with four cores operating at

a frequency of 2.4 GHz and with Hyper-Threading enabled,

and a nvidia GeForce GTX 765M GPU with 2 GB of video

memory and 768 CUDA cores operating at a frequency of



850 MHz and 16 GB of memory. The computation times are

recorded for each step of the pipelines.

b) Accuracy of point clouds: The generated models are

aligned to the reference point cloud using 3DTK. Alongside

registration the scale of each SfM models is determined.

Accuracy of point clouds is evaluated by

• computing the cloud to cloud distance with CloudCom-

pare.

• analyzing the error distribution by fitting the cloud to

cloud error distance to a Weibull probability distribution

with CloudCompare.

C. Results

A visual inspection of the generated models for the

practice hall reveals that as expected, all algorithms showed

problems in reconstruction of the white side walls of the

building. However they were able to partially reconstruct the

reflective surface, although major parts appear as additional

structures inside the building.

Besides the regions where there was smoke in the record-

ings of the burning house, the models appear clean with

very little noise. The influence of the smoke is minor

except for those pipelines using MVE in dense reconstruction

(Fig. 6c, 6e and 6f).

For both datasets the generated models of PhotoScan

appear clean but compared to the other algorithms they are

relatively sparse. It has the tendency to smoothen edges and

smaller objects. This is especially noticeable at the corners

of the roof of the practice hall as marked in Fig. 5h as well

as the car in front of the burning house in Fig. 6h. On the

other hand the spatial distribution of the reconstructed points

is homogeneous.

The following findings are given for the practice hall

dataset in Fig. 5:

• As expected all generated point clouds contain a lot

of noise and artifacts due to reflections and white

walls. Noise in the roof makes the secondary structure

indistinguishable.

• Straight artifacts in multiple directions by MVE due to

the reflections on the model.

• Failed to reconstruct side walls without textures.

• Most pipelines were able to reconstruct some part of

the reflecting surface, except for PhotoScan.

• Color bleeding appears on edges of the models.

The following findings are given for the burning house

dataset in Fig. 6:

• Color bleeding is not an issue for this dataset.

• Compared to Visual SfM, COLMAP manages to recon-

struct texture-less surfaces better.

• Smoke seems to be not an influencing factor for most

algorithms, except on where the MVE dense reconstruc-

tion algorithm is used.

a) Execution time: The Feature Detection step is lin-

early dependent on the number of images, so the execution

times are comparably fast for all algorithms except for MVE.

Feature Detection with MVE takes up to ten times longer

than with Visual SFM or COLMAP. One reason is, that MVE

in contrast to the other methods additionally computes and

jointly uses SURF features. Another reason is, that MVE

does not use GPU parallelization, as the other algorithms

do.

Feature Matching with PhotoScan takes the longest time

for both datasets. In Contrast the preemptive feature match-

ing approach of Visual SfM and COLMAP result in the

fastest feature matching in this evaluation. However the speed

up of COLMAP by using GPU parallelization in comparison

to Visual SfM, that runs this step on the CPU is marginal.

Note that the execution times for openMVG are even smaller.

This is due fact, that openMVG only does preemptive feature

matching in this stage, while the full feature matching is

done in the sparse reconstruction. Since we provided a list

of matching image pairs to all the algorithms, openMVG

quickly terminates this step.

The simplifications in triangulation and bundle adjustment

let Visual SfM out perform the other algorithms in the

sparse reconstruction step with respect to the runtime. As

openMVG computes the feature matches in this step, the

sparse reconstruction takes a considerable large amount of

time. However summing up the total run times up to this

step, openMVG is faster than MVE and COLMAP for the

burning house.

Regarding dense reconstruction, it was interestingly found,

that MVE finishes fast when expanding its own sparse model,

while it needs up to 14 times longer to densify models

created by Visual SfM or openMVG. This is related to the

fact, that the sparse models of the latter methods provide

more points. In our experiments dense reconstruction with

COLMAP takes a large amount of time. This is due to its two

pass consistency checks. For the practice hall only PhotoScan

is comparable slow, while producing less dense point clouds.

Regarding the total runtimes pipelines using Visual SfM

are the fastest ones in this comparison as the incremen-

tal structure from motion step nearly runs in linear time.

COLMAP and PhotoScan are the slowest pipelines. Their

dense reconstruction consumes more time than the total

runtime of the Visual SfM pipelines.

b) Accuracy of point clouds: The results of the evalua-

tion to ground truth are given in Tab. II, when fitting the error

data to a Weibull distribution. Fig. 5 visualizes the computed

errors for the practice hall, Fig. 6 for the burning house

respectively. Yellow indicates high point to point distances,

darker colors represent low errors. The color scale goes from

0 m to 2 m.

The expected errors are in the order of magnitude of

decimeters for both datasets, as previous studies have also

found. The error is larger for the more complex structure of

the practice hall, with the large reflecting surfaces affecting

most of it. Also the standard deviation of the expected

error is often larger than the error itself, indicating that the

distribution is substantially spread to higher error values.

Comparing the pipelines, those using openMVG for sparse

reconstruction produce the most accurate models for both

datasets. High errors are present main in reflected areas of



(a) Visual SfM (b) Visual SfM + openMVS (c) Visual SfM + MVE (d) openMVG + openMVS

(e) openMVG + MVE (f) MVE (g) COLMAP Photometric (h) PhotoScan

Fig. 5: Generated Point clouds for the practice hall colored by the distance to the reference cloud. The large reflective

surface on the back of the building is also incomplete. The side wall of the building is completely missing.

(a) Visual SfM (b) Visual SfM + openMVS (c) Visual SfM + MVE (d) openMVG + openMVS

(e) openMVG + MVE (f) MVE (g) COLMAP Photometric (h) PhotoScan

Fig. 6: Generated Point clouds for the burning house colored by the distance to the reference cloud. Algorithms where the

expansion stage was made by MVE show the most noise in this view

TABLE II: Expected model to ground truth error and its standard deviation

Pipeline
Practice hall Burning house BH half speed BH half resolution

E [m] σ [m] E [m] σ [m] E [m] E Incr. σ [m] E [m] E Incr. σ [m]

Visual SFM 0.419 0.528 0.236 0.293 0.249 5.68% 0.099 0.258 9.52% 0.103
Visual SFM + openMVS 0.418 0.460 0.228 0.245 0.318 39.60% 0.128 0.320 40.50% 0.133

Visual SFM + MVE 0.320 0.388 0.141 0.142 0.241 71.51% 0.083 0.285 102.69% 0.116
openMVG + openMVS 0.260 0.394 0.116 0.129 0.173 49.60% 0.050 0.189 63.58% 0.054

openMVG + MVE 0.255 0.400 0.118 0.136 0.162 36.96% 0.044 0.221 87.25% 0.072
MVE 0.614 0.574 0.291 0.294 0.403 38.48% 0.188 0.399 37.04% 0.177

COLMAP Photometric 0.493 0.590 0.200 0.200 0.298 49.14% 0.131 0.340 69.90% 0.165
PhotoScan 0.597 0.680 0.225 0.260 0.375 66.66% 0.432 0.402 78.66% 0.452



TABLE III: Execution times in hours for Feature Detection (FD), Feature Matching (FM) and Sparse Reconstruction (SR)

Pipeline
Practice hall Burning house BH half speed BH half resolution

FD FM SR FD FM SR FD FM SR FD FM SR

Visual SFM 0.17 2.41 1.18 0.02 0.24 0.06 0.01 0.16 0.25 0.01 0.18 0.05
openMVG 0.34 0.17 18.15 0.05 0.02 0.25 0.02 0.01 0.07 0.01 0.01 0.06

MVE 0.89 10.94 1.22 0.12 0.17 0.34 0.02 0.09 0.07 0.03 0.17 0.24
COLMAP 0.10 1.99 6.09 0.02 0.20 0.45 0.01 0.12 0.15 0.01 0.13 0.28
PhotoScan 0.10 24.92 2.32 0.02 2.77 0.14 0.01 0.64 0.72 < 0.01 0.03 0.20

TABLE IV: Execution times in hours for Dense Reconstruction (DR), and total execution runtime for all pipelines

Pipeline
Practice hall Burning house BH half speed BH half resolution
DR Total DR Total DR Total Reduc. DR Total Reduc.

Visual SFM 5.00 8.76 0.31 0.63 0.25 0.66 -5.34% 0.13 0.37 41.77%
Visual SFM + openMVS 2.83 6.59 0.40 0.72 0.20 0.39 46.05% 0.40 0.64 11.31%

Visual SFM + MVE 3.88 7.63 2.17 2.49 0.96 1.15 53.66% 0.64 0.88 64.50%
openMVG + openMVS 2.42 21.08 0.39 0.71 0.19 0.28 60.53% 0.36 0.44 37.66%

openMVG + MVE 23.80 42.47 2.20 2.52 1.04 1.13 55.23% 0.56 0.64 74.62%
MVE 1.70 14.74 0.51 1.14 0.17 0.35 69.38% 0.13 0.57 49.96%

COLMAP Photometric 29.41 37.59 4.12 4.78 2.04 2.31 51.64% 4.04 4.47 6.54%
PhotoScan 37.73 65.08 1.67 4.61 0.31 1.68 63.55% 1.83 2.06 55.31%

the practice hall or areas with smoke in front of the burning

house. Although Fig. 6e shows a lot of noise due to the

smoke, the density in this particular area is lower than for

the rest of the model and thus the expected error is less

affected. The highest errors, consistently with the visual

inspection, are found for MVE. Compared to its combination

with openMVG the error is approximately 3 times higher.

The smoothed model of the practice hall built by Photo-

Scan shows similar high errors as MVE, however they are

mostly found on the edges of the building. As the model is

relatively sparse, the rounded edges have a high influence on

the expected error. For the burning house the smoothing has

smaller effects on the error, mainly because of the smaller

dimensions of objects.

Note that in Fig. 5g and Fig. 6g, the generated models

from COLMAP give the impression of more accurate models

overall. Nevertheless Tab. II shows that the errors of the

produced models with the openMVG + openMVS and open-

MVG + MVE pipelines are smaller than for COLMAP. This

is because these pipelines generated a sparse point cloud of

noise around the target structure that does not affect greatly

the average error, but is dense enough to occlude the structure

in the visualization made by CloudCompare.

c) Reducing amount of images and Resolution: In order

to test the influence of using smaller datasets for gains in

runtime, the pipelines for the burning house were rerun with

a half speed extraction from the source video and quarter

resolution. The resulting models visually do not significantly

differ from the original models wrt. artefacts. However the

error between the produced models and the laser reference

increases by up to 100 percent, as Tab. II shows. In average,

the error tends to increase by around 40 percent. On the

other hand, the error deviation decreases with the smaller

input dataset, indicating that the error is not as spread as

with the larger input dataset.

A comparison of the pipeline groups using the same sparse

reconstruction shows that the accuracy of the final models

strongly depends on the dense reconstruction method. On one

hand, the accuracy for Visual SfM with its default dense re-

construction algorithm only slightly decreases when altering

image amount and resolution respectively. On the other hand,

the expected error increases by almost forty percent when

using openMVS or MVE for dense reconstruction in Visual

SfM. Comparable changes in accuracy are found for the

remaining pipelines. In terms of accuracy loss, both variants

are comparable with a slight advantage for the half speed

variant.

Regarding runtime, the execution time for using only half

of the input images is in average around fifty percent. Using

quarter resolution the speed up is in general less. Due to

the scale invariance of SIFT, the amount of features should

be roughly the same, although with added noise. Although

important speed gains were made, the execution time with

reduced image data is still not in real time.

V. DISCUSSION, CONCLUSIONS AND FUTURE WORK

This work evaluated the generation of 3D models using

SfM in rescue scenarios. A UAV with an integrated camera

was used to acquire input images and the resulting 3D models

were benchmarked against ground truth from laser scan data.

The overall accuracy was in the range of decimeters.

A lesson learned from our experiments was that the high

execution time needed to compute the models does not allow

for any real-time application of the SfM yet, such as a quick

disaster response data recollection method. It is usable as

an auxiliary data recollection method though, as it is able

deliver results in less than one hour, if image count and size

is kept low. It also allows for safely exploring a hard to reach

area by ground without risking human lives. Most software

pipelines where found to not being sensitive to moderate

amounts of smoke in the scanned area.

As visual simultaneous localization and mapping (vS-

LAM) are emerging as methods that are able to run online,

we expect them to be used in applications for rescue systems

in the near future. In future work, we plan to replace

the sparse reconstruction by vSLAM, to reduce run-time.



However, the majority of the computing time is currently

spent in dense reconstruction.

Further future work will also concern UAV-based laser

scanning methods to provide real-time 3D maps to rescue

workers.
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