
Collision detection between point clouds using an efficient k-d

tree implementation

Johannes Schauer, Andreas Nüchter

Informatics VII: Robotics and Telematics, Julius-Maximilians-University Würzburg,
Am Hubland, Würzburg 97074, Germany

Abstract

Context: An important task in civil engineering is the detection of collisions of a
3D model with an environment representation. Existing methods using the structure
gauge provide an insufficient measure because the model either rotates or because
the trajectory makes tight turns through narrow passages. This is the case in either
automotive assembly lines or in narrow train tunnels.

Objective: Given two point clouds, one of the environment and one of a model
and a trajectory with six degrees of freedom along which the model moves through
the environment, find all colliding points of the environment with the model within
a certain clearance radius.

Method: This paper presents two collision detection (CD) methods called kd-CD
and kd-CD-simple and two penetration depth (PD) calculation methods called kd-PD
and kd-PD-fast. All four methods are based on searches in a k-d tree representation
of the environment. The creation of the k-d tree, its search methods and other
features will be explained in the scope of their use to detect collisions and calculate
depths of penetration.

Results: The algorithms are benchmarked by moving the point cloud of a train
wagon with 2.5 million points along the point cloud of a 1144 m long train track
through a narrow tunnel with overall 18.92 million points. Points where the wagon
collides with the tunnel wall are visually highlighted with their penetration depth.
With a safety margin of 5 cm kd-PD-simple finds all colliding points on its trajectory
which is sampled into 19392 positions in 77 s on a standard desktop machine of
1.6 GHz.

Email addresses: johannes.schauer@stud-mail.uni-wuerzburg.de (Johannes Schauer),
andreas@nuechti.de (Andreas Nüchter)

URL: http://www.nuechti.de (Andreas Nüchter)

Preprint submitted to Advanced Engineering Informatics January 26, 2015

Conclusion: The presented methods for collision detection and penetration
depth calculation are shown to solve problems for which the structure gauge is an in-
sufficient measure. The underlying k-d tree is shown to be an effective data structure
for the required look-up operations.

Keywords: Collision Detection, Interference Detection, K-D Tree, Kinematic Laser
Scanning, 3D Point Clouds

1. Introduction and problem formulation

The minimum clearance outline or structure gauge has an important place in the
planning of rail and automotive infrastructure as well as for factory assembly lines [1].
It is the swept volume of the minimum cross section that must be kept free of any
obstacles. Measuring the structure gauge of railroad and motorway tunnels, bridges5

and production lines is a simple way to calculate whether vehicles, their cargo or
arbitrary objects can pass through them. The structure gauge is an exact measure
as long as the moving object travels along a straight line and does not rotate. But
if the trajectory is not straight or rotation is involved, then the structure gauge can
only serve as a rough estimation which becomes more imprecise the shorter the turn10

radius or the larger the rotation of the moving object. Normal railroads and rural
motorways usually are constructed with long turn radii and large safety margins,
so the structure gauge is a sufficient measure to determine whether a vehicle can
pass along a route. But there exist many examples where the structure gauge is an
insufficient measure:15

• transportation of exceptionally long, rigid cargo along motorways and railroads

• turns in very narrow tunnels, bridges or other passages

• street turns with a very small turn radius (for example in urban environments)

• rotating objects along production lines

The collision detection method presented in this paper solves this problem but can20

also be applied to general collision detection tasks. The difference to most other
collision detection algorithms is that this method is purely point based and does not
require to calculate a solid 3D mesh representation.

This method was first applied by the authors to find collisions in an automotive
production line which involved sharp turns and rotations of the car body but the25

respective paper focuses on the techniques to register the environment [1]. In the

2

Figure 1: Top view of the train wagon (in dark and light gray) and its curved loading
gauge as it passes through a turn. The dark gray areas mark the volumes of the train
wagon outside of its loading gauge. The striped volume indicates the volume of the train
wagon between its two bogies. The dotted line indicates the wagon’s trajectory.

following, the same method with some further improvements will be applied to a
train moving through a very narrow tunnel where a structure gauge based approach
does not sufice to find collisions but where there will be collisions in reality because
of the turn the tunnel makes.30

A similar measure to the structure gauge is the loading gauge which is the swept
volume of the cross section of a train wagon moved along a track. The difference
between the two is the engineering tolerance or clearance. The structure gauges
along a track together with the maximum loading gauge determine whether or not a
train with certain cargo can go along a given route or how much space around new35

tracks has to be kept clear and is subject to a number of decades old standards and
regulations [2].

If the “track transition curve” at the start and the end of most turns is ignored,
then turns of train tracks always represent circle segments (i.e. circular arcs) [3].
Since the rotation centers of the two bogies of a train wagon both stay in the exact40

center between the train tracks, the part of the train wagon connecting the bogies
will form the line segment of a secant cutting the circle segment of the track. Thus,
the parts of the wagon between the bogies in the inside of the turn will take more
space of the structure gauge within a turn compared to when the train wagon travels
along straight tracks. Similarly, the parts of the train wagon on both ends outside of45

the bogies will take additional space as well. Figure 1 visualizes the problem. The
curvature represents the loading gauge of the train wagon in gray. The dark gray
areas represent the volume of the train wagon which is outside of its loading gauge
during the turn. The amount of needed additional space is depending on the turn
radius. To address the problem, there exist different regulations for structure gauge50

sizes depending on the turn radius [4].

3

z

y

x
pitch

roll

yaw

Figure 2: The train wagon is oriented and moves along the y-axis.

The algorithms that will be presented in the following requires three objects as
input: The first input is the pointcloud of the environment. In the example presented
throughout the paper, it was collected by driving a Optech Lynx Mobile Mapper
along the train tracks but can also be acquired using the methods presented in [1].55

The second input is a point cloud of the model. Here, it was acquired by taking
seven terrestrial 3D scans of a real train wagon with a Riegl VZ-400 laser scanner
and then registering them using 3DTK – The 3D Toolkit [5]. The third input is the
trajectory of the train tracks.

The goal is to determine which points of the environment collide with the model60

on its path, given a certain safety margin (the minimal allowed clearance) and how
deep any colliding points of the environment penetrate the model. To this end a k-d
tree of the environment is created, the model is moved through it along its trajectory
and a k-d tree search is performed around the points of the model to find colliding
points and their penetration distance.65

The contributions of this paper are summarized as:

• a method to perform collision detection of a single arbitrary (and deformable)
point cloud (the model) with a static environment in two variants (kd-CD and
kd-CD-simple)

• two methods to calculate penetration depth of the model with the environment70

(kd-PD and kd-PD-fast)

• a highly optimized k-d tree implementation and query functions to perform
collision detection

4

A right handed coordinate system will be assumed in this paper. Figure 2 shows
the local coordinate system of the train wagon. The z-axis is the up vector and the75

train wagon is moved along its y-axis. The wagon is centered such that its center
of mass is in the origin of the coordinate system. This is important for calculating
rotations and penetration depths.

The remainder of the paper is organized as follows: The next section covers related
work to the one presented in this paper. Section three presents the k-d tree data80

structures and algorithms. Section four and five present our methods for collision
detection and penetration depth calculation using the k-d tree, respectively. Section
six show benchmark results while section seven concludes this paper.

2. Related Work

Collision detection, which is also called interference detection or intersection85

searching, is a well studied topic in computer graphics [6, 7, 8, 9, 10] because of its im-
portance for dynamic computer animation and virtual reality applications [11, 12, 13].
On the other hand, their work is limited to collision detection between geometric
shapes and polygonal meshes whereas most sensor data is acquired as point clouds.
While collision detection is also relevant for motion planning in the field of robotics,90

it is a less studied problem there. Collision detection between point clouds was for
example researched by Klein and Zachmann [14] who use the implicit surface created
by a point cloud to calculate intersections. Another example is the recent work by
Hermann et al. [15] who use voxels to check for spatial occupancy for robot motion
planning.95

Existing techniques make use of very similar approaches. One method is to
apply a spatial hierarchical partitioning of the input geometry using octrees [16, 17],
AABB-trees [18], BSP-trees [19] or k-d trees [20] . Other solutions apply regular
partitioning using voxels [21, 15, 22]. The goal of any partitioning is to be able to
quickly search and check only the relevant geometries in the same or neighboring100

cells. The method presented in this paper will make use of a hierarchical k-d tree
for the environment in combination with a regular partitioning of the model into a
grid of bounding spheres.

Another method is to use hierarchies of bounding volumes like spheres [23], axis
aligned bounding boxes [24], oriented bounding boxes [25] or discrete oriented poly-105

topes [26]. Optimizing the regular grid that was generated for the model into a
hierarchical structure will be left for future work.

Collision detection methods can be divided in those for static and deformable
objects [27, 28]. While the method presented in this paper does not easily allow

5

changes in the environment because that does require a recalculation of its k-d tree,110

arbitrary changes in the point cloud of the model are possible without any perfor-
mance impacts.

Another classification is whether the algorithm easily allows multiple moving
objects. Using a brute-force approach such algorithms have a runtime of O(n2) for
n objects because every possible pair of objects is checked for collisions. Modern115

approaches like the I-COLLIDE system [29] use a “sweep and prune” approach to
minimize the amount of necessary checks. Another approach is to dynamically adjust
the search tree to account for object movements [30]. The method in this paper does
not handle multiple moving models.

Calculating the penetration depth of one object into another is important to120

calculate the force of collisions and respond accordingly in virtual reality applica-
tions [11]. It is also important for visualization purposes, to differently highlight
objects reaching into a safety margin with an indication of how much they violate
the constraint. This application was shown in prior work on this topic by the authors
of this paper [1].125

The k-d tree implementation this work bears similarities to R+-trees [31] insofar
it recalculates a new bounding box for each child node. In contrast to R+-trees, the
k-d tree implementation presented here does not make efforts to create a balanced
tree. In [32] our k-d tree implementation was benchmarked against three nearest-
neighbor search libraries based on the k-d tree data structure: ANN [33], libnabo [34]130

and FLANN [35] and came out amongst the fastest implementations.

3. Data Structures for efficient collision detection and depth of penetra-
tion calculation

In this section our highly-optimized k-d tree implementation is presented. It is
implemented in 3DTK [5] in C++. It currently implements multiple search func-135

tions, can be parameterized to be used with 3D point data of different precision
and container type, allows to present search results as pointers, array indices or as
3D coordinate data and allows parallel execution through OpenMP. Its correctness
has been verified by a test suite which combines brute force implementations of the
search functions (test all points for satisfaction of the search criterea) against the140

result of a search in the k-d tree.

The recursive function FixedRangeSearch which returns a STL vector of all
points within a certain radius r around a coordinate P will be used as an example
throughout this section. In the following code examples all class members which are
not directly useful for the execution of FixedRangeSearch are omitted for brevity.145

6

Figure 3: Boxes are in UML, relationships (arrows) are not. KDTreeImpl is templated by
KDtreeIndexed with the parameters listed in the comment. The node and leaf structure
are a C++ union. The params member of KDTreeImpl is static. UML packages are used to
indicate file membership and to group for readability. Only the fixedRangeSearch search
function and its recursive counterpart FixedRangeSearch are listed for brevity.

7

For an overview, consider figure 3. The template class KDTreeImpl provides the
implementation of search functions and at the same time represents an inner node
or a leaf node of the k-d tree. Multiple classes instantiate KDTreeImpl, one of them
being KDtreeIndexed which is of particular use for the collision detection method
in this paper. The classes and functions seen in figure 3 will be explained in more150

detail in the following sub-sections.
The general operation of the search functions will be presented by using the

function fixedRangeSearch as an example. The function is implemented in the class
KDTreeIndexed. It sets up the KDParams structure with the search parameters and
then calls the recursive function FixedRangeSearch (notice the leading underscore)155

implemented in KDTreeImpl. The function FixedRangeSearch in turn implements
the actual search operations.

3.1. Tree data structure

1 template<class PointData, class AccessorData, class AccessorFunc,

2 class PointType, class ParamFunc> class KDtreeImpl {

3 public:

4 void create(PointData, AccessorData *, int);

5 protected:

6 static KDParams<PointType> params[MAX_OPENMP_NUM_THREADS];

7 int npts; // equal zero for inner nodes, otherwise leaf

8 union {

9 struct {

10 double center[3];

11 double dx, dy, dz;

12 int splitaxis;

13 KDtree* child1, *child2;

14 } node;

15 struct { AccessorData* p; } leaf ;

16 };

17 void _FixedRangeSearch(const PointData&, int);

18 };

19 template<class T> class KDParams {

20 public:

21 double maxdist_d2;

22 double *p;

23 vector<T> range_neighbors;

24 }

Listing 1: k-d tree implementation classes

Listing 1 shows an excerpt from the template class KDtreeImpl. Each instance
of the class represents an inner or leaf node in the k-d tree.160

The public create function in line 4 recursively creates a k-d tree by splitting the
points it received as an argument into two, creating two new instances of KDtreeImpl

8

and calling their create function with one of the new point sets, respectively. The
inner working of the create function is explained in section 3.2.

The static member params in line 6 is set once for every new search in the k-165

d tree. It avoids having to pass the search parameters for each recursive function
call and thus reduces the size of required operations on the stack. As it is a static
member, it will only be stored in memory once, i.e., hardware cache friendly. The
KDParams class in this shortened excerpt stores the point around which to search p,
the squared search radius maxdist d2 and the search result vector range neighbors.170

Since it is possible to carry out searches in the same k-d tree in parallel, an array of
size MAX OPENMP NUM THREADS exists.

The member npts in line 7 stores the number of points this node contains. If
this value is non-zero, the node is a leaf node. Otherwise, the node is an inner node.

Depending on the node type, a union structure in line 8 stores data about the175

node. Inner nodes store their center coordinate (line 10), the node size (line 11), the
coordinate axis by which the node is split (line 12) and pointers to the two children
the node is split into (line 13). Leaf nodes store a pointer p to an array representing
the contained points (line 15).

3.2. Building the k-d tree180

A k-d tree is created by instantiating KDtreeImpl and calling its create method
with the points one wants to fill the k-d tree with. The create method will then
recursively instantiate new KDtreeImpl child nodes until all points are distributed
into leaf nodes. The create method is shown as an abbreviated excerpt in listing 2
is explained in more detail in the following.185

The first check in line 2 decides whether the current node is an intermediate node
or a leaf node. If the number of points passed to the create function is less than or
equal to 10 then this node will become a leaf node storing all points it is given and
recursion stops. Otherwise the node is an inner node. This is recorded in the npts

member in line 8. The number 10 is chosen as the bucket size because of run-time190

evaluations done in [36] (see figure 5 in that paper).
The clipped lines 9-11 calculate an axis aligned bounding box for the points the

function is given. The bounding box is represented as its center point and its half
length, width and height. Thus, the values node.dx, node.dy and node.dz store the
distance from the center to the sides of the bounding box. The axis by which to split195

the bounding box into two is found in lines 12-18. The split is done by determining
the longest axis and splitting the bounding box in half by that axis.

Lines 19-23 partition the points the create function is given. To reduce the
amount of required copies, the original array with points is reused and split into half.

9

1 KDtreeImpl::create(PointData pts, AccessorData *indices, int n) {

2 if (n > 0 && n <= 10) { // Leaf nodes, copy data

3 npts = n;

4 leaf.p = new AccessorData[n];

5 for (int i = 0; i < n; ++i) leaf.p[i] = indices[i];

6 return;

7 }

8 npts = 0; // inner node

9 // finding bounding box

10 // node.center, node.dx, node.dy, node.dz

11 [...]

12 // calculate longest axis

13 if (node.dx > node.dy)

14 if (node.dx > node.dz) node.splitaxis = 0;

15 else node.splitaxis = 2;

16 else

17 if (node.dy > node.dz) node.splitaxis = 1;

18 else node.splitaxis = 2;

19 // distributing data to fields left and right for the

20 // following nodes according to splitval

21 double splitval = node.center[node.splitaxis];

22 AccessorData *left;

23 [...]

24 // creation of subtrees

25 node.child1 = new KDtreeImpl();

26 node.child1.create(pts, indices, left-indices);

27 node.child2 = new KDtreeImpl();

28 node.child2.create(pts, left, n-(left-indices));

29 }

Listing 2: k-d tree creation

Only points which happened to be on the wrong side are swapped with wrong points200

on the other side. On average this halves the amount of required copy operations. In
the end, indices will point to the left hand side half of the original array while left

will point to the right hand side half of the array. The last lines 24-28 instantiate two
new KDtreeImpl objects and call their create function with the respective, sorted
half of the original input data.205

3.3. k-d tree layout

The create function explained in section 3.2 will result in a partitioning of the
input points as shown in figure 4 which shows a simplified two-dimensional represen-
tation of the input points and the resulting tree structure in memory. In contrast
to a classical k-d tree, the search volume of child nodes is reduced by recalculating210

a bounding box for the enclosed points. This technique is similar to how R-trees
operate and helps to create a tighter boundary for the enclosed points which in turn
results in performance improvements during look-ups. This is because restricting

10

A

B

C

D
E

Inner Node Inner Node

Root

Leaf C Inner NodeLeaf BLeaf A

Leaf D Leaf E

Figure 4: Left: 23 points (black circles) and the bounding boxes (solid lines), their
centers (crosses) and their split axis (dotted lines) of the 2-dimensional k-d tree created
from them. The letters identify the created groups of points per leaf node. Right: The
tree representation of the created 2D k-d tree. The color of the solid boxes corresponds
to the bounding boxes in the left figure. Boxes with dotted outlines are leaf nodes. The
names of the leaf nodes correspond to the letters in the left figure.

the bounding volume of child nodes to a new bounding rectangle allows to abort a
search quickly instead of having to search the k-d tree until leaf nodes are reached215

and inspected.
Considering figure 4, the create function is first called with all 23 points as an

argument. Since 23 > 10, a new inner node will be created by calculating the node
center and its bounding box (in red). The bounding box is wider than it is high so
the points will be partitioned by a vertical axis through the bounding box center.220

Two new KDtreeImpl instances are created for each side and get passed 11 and 12
points, respectively. Since both values are greater than 10 again, new inner nodes
will be created with their bounding boxes shown in blue. The following iteration will
then result in two leaf nodes on the left hand side (6 points in the upper region and
5 points in the lower region) and one leaf node on the right hand side with one point.225

One last iteration over the remaining 11 points on the right hand side will create two
last child nodes. Leaf nodes do not require a bounding box because when they are
encountered during a k-d tree search, all the points they contain are checked and no
further recursion has to be done.

3.4. Searching the k-d tree230

Spacial search in point clouds are parameterized by two properties: the location
(where to search for results) and the subject (what to return). The following five
search areas are implemented by 3DTK:

(a) radius r around a point P1

11

(b) radius r around an infinite line defined by a point P1 and a direction vector v235

(c) radius r around an infinite ray defined by P1 and v

(d) radius r along a finite line segment defined by points P1 and P2 and

(e) inside an axis aligned bounding box defined by P1 and P2 as the corners with
minimum and maximum coordinate values, respectively

Additional search volumes that can be added in the future would be oriented bound-240

ing boxes, cylinders or general polytopes. In most volumes, it is possible to perform
searches for the following result types:

(1) the point closest to P1

(2) the k points closest to P1

(3) all points within the search volume245

(4) the point closest to the given line, ray or line segment

(5) the k closest points to the given line, ray or line segment

After eliminating the inapplicable combinations, one ends up with 19 meaningful
search functions. A full list is omitted for brevity. For example, the common nearest-
neighbor search (NNS) is searching for the closest point to P1 (1) in a radius r250

around a point P1 (a). For the collision detection method presented in this paper,
the following four functions are needed:

• FindClosest: closest point to a coordinate: (a) and (1)

• fixedRangeSearch all points around a coordinate: (a) and (3)

• segmentSearch 1NearestPoint closest point to P1 in a line segment: (d) and255

(1)

• segmentSearch all all points around a line segment: (d) and (3)

3.5. fixedRangeSearch

All recursive search functions are divided into three functional parts. Firstly, the
node is checked whether it is an inner node or a leaf node. If it is a leaf node, then260

all points the node contains are checked for satisfiability of the search criteria and
the function returns. The second part is reached if the node is an inner node and
thus the first part did not cause the function to return. In that case, a check is done
whether the node can possibly contain parts of the result. If not, then the function
returns. Otherwise, thirdly, the search recurses into one or both child nodes.265

12

1 void KDtreeImpl::_FixedRangeSearch(const PointData& pts,

2 int threadNum) {

3 AccessorFunc point; ParamFunc pointparam;

4 if (npts) { // node is leaf

5 for (int i = 0; i < npts; i++) {

6 double myd2 = Dist2(params[threadNum].p,

7 point(pts, leaf.p[i]));

8 if (myd2 < params[threadNum].maxdist_d2)

9 params[threadNum].range_neighbors.push_back(

10 pointparam(pts, leaf.p[i]));

11 }

12 return;

13 }

14 // quick test whether subtree has to be searched

15 double approx_dist_bbox =

16 max(max(fabs(params[threadNum].p[0]-node.center[0])-node.dx,

17 fabs(params[threadNum].p[1]-node.center[1])-node.dy),

18 fabs(params[threadNum].p[2]-node.center[2])-node.dz);

19 if (approx_dist_bbox >= 0 && sqr(approx_dist_bbox)

20 >= params[threadNum].maxdist_d2) return;

21 // recursive case

22 double myd = node.center[node.splitaxis]

23 - params[threadNum].p[node.splitaxis];

24 if (myd >= 0.0f) {

25 node.child1->_FixedRangeSearch(pts, threadNum);

26 if (sqr(myd) < params[threadNum].maxdist_d2)

27 node.child2->_FixedRangeSearch(pts, threadNum);

28 } else {

29 node.child2->_FixedRangeSearch(pts, threadNum);

30 if (sqr(myd) < params[threadNum].maxdist_d2)

31 node.child1->_FixedRangeSearch(pts, threadNum);

32 }

33 }

Listing 3: k-d tree search

Consider listing 3 which shows the function FixedRangeSearch as implemented
in the KDtreeImpl class. It fills the result vector in the KDParams static member
with all points in the k-d tree which lie around a certain squared radius maxdist d2

around a point p.

The parameterized functions of type IndexAccessor and ParamAccessor in line270

3 are used to return coordinate data or data of the type stored in the results vector for
each point in the leaf node, respectively. They do not pose a performance overhead
as they are inlined by the compiler.

In case the node is found to be a leaf in line 4, all points in the leaf are checked
whether their squared distance myd2 to P is less than r. If they do, then they are275

appended to the result vector.

After all points in the leaf node have been checked, the function returns. If the

13

node is not a leaf node but an inner node, then the next part from line 15-20 checks
whether further recursion into the child nodes of this node is required. This check
whether to abort will be outlined in the next subsection 3.6.280

The last part of each search function in lines 22-32 recurses into the child nodes.
First, a check for the point’s position relative to the split axis of the current node
(as calculated in line 22) decides which child node to recurse first. Whether or not
the other child node is recursed into as well depends on whether the bounding cube
of the search radius around P can possibly extend into the other child as well or not.285

3.6. Quick check whether to abort

A heuristic was developed that allows a quick check whether or not to continue
searching further down the current branch of the k-d tree. Lines 15-18 in listing 3
implement this check in C++. This code compiles to only 16 SSE2 instructions and
requires no branching operations like a trivial check otherwise would.290

The algorithm works by calculating a value dP which is then compared to the
search radius to decide whether or not to abort the search in the k-d tree. In the
following formula, P is the three dimensional coordinate of the point around which
the search is to be done. The current node of the k-d tree is parameterized by its
center coordinate C and its axis aligned bounding box size 2dx, 2dy and 2dz.295

dP = max(|Px − Cx| − dx,

|Py − Cy| − dy,

|Pz − Cz| − dz)

(1)

In words, suppose the six sides of the node’s axis aligned bounding box form
six axis aligned planes: each plane being the infinite extension of the six sides of
the node’s bounding box. Opposing sides of the node’s bounding form pairs of
parallel planes. Three of these plane pairs are created, one pair along each dimension.
Then the distance of P to the closest plane of each pair of planes is found. If P is300

between a pair of planes, then its distance is represented as a negative value. Then
the maximum distance of the resulting three distance values is taken (one for each
dimension). If the maximum value dP is negative, then all three coordinate values
of P must lie inside the current node’s bounding box and the search has to recurse
into one or both child nodes. If the maximum value is positive and larger than the305

search distance, then the current node cannot contain any results and the function
returns without recursing deeper into the tree.

The heuristic can easily be visualized in two dimensions by considering figure
6. Instead of a bounding box, a bounding rectangle is shown in yellow. Instead of

14

a b c d

1

2

3

4
a
ll

in
P

 i
n
 b

u
t
s
e
a
rc

h

s
p
a
c
e
 p

a
rt

ly
 o

u
t

P
 o

u
t
b
u
t
s
e
a
rc

h

s
p
a
c
e
 p

a
rt

ly
 i
n

a
ll

o
u
t

all inP in but search

space partly out

P out but search

space partly in

all out

in
 y

-d
ir

e
c
ti
o
n

in x-direction

same as

c4

same as

b3

same as

b4

same as

a2

same as

a3

same as

a4

Figure 5: A two-dimensional overview of all possible locations a circular search ra-
dius (green) can have relative to the axis aligned bounding rectangle (yellow) of a two-
dimensional k-d tree, ignoring rotations and mirroring. Each column represents a different
horizontal position of the search radius relative to the bounding rectangle while each row
represents a different vertical position. The lower-right triangle is faded out because it
mirrors the upper left triangle along the diagonal. The black and red lines represent the
positive and negative, respectively, distance from the search radius to the linear extension
of the closest side of the bounding rectangle. The dark and light blue cells mark those
positions in which parts of the search radius are found to lie in the bounding rectangle. In
these cases, the search is not aborted as the search results might lie within the bounding
box. In the other cases (cells with a white background) the search is aborted. The dark
blue cell (b2) marks the case where this conclusion might lead to a false positive. See figure
6 for a more detailed overview.

15

dx

dy

r

Y2

Y1

X1 X2

ey

ex

C

P

Figure 6: A close-up of cell b2 in figure 5. It shows the search radius (green) in a position
which visualizes the false positive which will find the search radius to be intersecting with
the axis aligned bounding rectangle (yellow) while there is no intersection in practice.
Furthermore it shows the center of the bounding rectangle C, its size dx and dy, the center
of the search radius P and its radius r as well as the linear extensions of the sides of the
bounding rectangle X1, X2, Y1 and Y2. The distance ex calculates as |Px − Cx| − dx −
r. Since the result is negative, the line is colored in red. Similarly, ey is calculated as
|Py − Cy| − dy − r.

16

axis aligned bounding planes, axis aligned lines are shown in black, solid lines. This310

two-dimensional representation is used to create a matrix of all possible locations of
the search volume relative to the bounding box in figure 5. The search is aborted in
all cases displayed in cells with a white background.

Figure 6 also visualizes the point where this check is not precise and generates
a false positive (also shown with a dark blue background in figure 5). Since only315

the bounding cube of the search radius r around P is concerned, it can happen that
both bounding cubes intersect while the actual search sphere does not intersect. In
this case, the check will not abort the recursion even though no result can possibly
be found in the current node in this situation. This inexactness is not a problem for
values of r which are of similar order of magnitude as leaf node sizes in the search320

area. In that case, the overhead of searching for matching points in the few leaf
nodes that are wrongly classified is far less than the overhead that is created by a
more expensive but exact check which requires branching. A similar enhancement
to sphere/box intersection checks by replacing branching with the max operator is
shown in [37].325

If the search radius r grows bigger, then it might be worth to add a second,
more exact check after the quick inexact check. This is done for our k-d tree search
functions around line segments. While inexact, checking whether parts of a node’s
bounding sphere intersect with the line segment’s bounding sphere first, before doing
an exact check, increased the runtime by two to three orders of magnitude. It is up330

to further research whether it is worthwhile to develop a more clever method which
is able to decide for the best check to abort in each situation.

3.7. Subclassing the k-d tree

While the class KDtreeImpl contains the algorithms to build and search a k-d
tree, it needs to be subclassed by a class that specifies the parameters of KDtreeImpl,335

provides a frontend for the search functions and which fills the parameter container
KDParams with the correct values.

Parametrization of the KDTreeImpl class allows to access coordinate data of differ-
ent precision and container type through the PointData parameter. AccessorData

allows different ways to access this data (through indices or pointers) while the340

AccessorFunc allows different ways of retrieving coordinate data with double preci-
sion from an array of PointData elements through an index given by the AccessorData
type. The PointType parameter also governs how point data is stored in the shared
parameter container KDParams. The ParamAccessor returns data of type PointType
from the PointData type data array, given an index of type AccessorData.345

17

This type of parameterization allows different use cases for the k-d tree. Orig-
inally, coordinate data was stored as pointers to three-tuple double arrays. This
variant stores the data in the indices array, therefore having the identity function for
AccessorFunc and ParamFunc and have Void as the PointData parameter. Later,
support for the DataXYZ type was added which stores point data and attributes in a350

struct.

3.8. An indexing k-d tree

1 struct IndexAccessor {

2 inline double *operator() (double** data, size_t index) {

3 return data[index];

4 }

5 };

6 struct ParamAccessor {

7 inline size_t operator() (double** data, size_t index) {

8 return index;

9 }

10 };

11 class KDtreeIndexed : private KDTreeImpl<double**,

12 size_t, IndexAccessor, size_t, ParamAccessor> {

13 public: vector<size_t> fixedRangeSearch(double *, double);

14 private: double **m_data;

15 }

Listing 4: An indexed k-d tree variant

For collision detection, we make use of the indexing functionality of KDtreeImpl.
Data and indices are passed to the k-d tree during creation and the search functions
return individual indices or vectors of indices. This is useful to quickly calculate a355

partitioning of the points into colliding and non-colliding points without having to
perform pointer arithmetic and relying on a certain layout of the point data in mem-
ory. Returning the indices of a range search allows to quickly update boolean collision
values in a second vector. As IndexAccessor and ParamAccessor are inlined by the
compiler, they do not lead to a performance degradation.360

Consider listing 5. The constructor of KDtreeIndexed (line 1) simply creates
the underlying k-d tree by supplying it with the given point values and an indexing
array (line 3). The function FixedRangeSearch fills the KDParams structure with
info about the desired point P and search radius r in lines 7 and 8 and then calls the
recursive search function that is implemented by KDtreeImpl in line 9. The search365

function saves its result in the KDParams structure, so they are copied to the final
result vector in lines 10-14.

18

1 KDtreeIndexed::KDtreeIndexed(double **pts, size_t n) {

2 m_data = pts;

3 create(pts, prepareTempIndices(n), n);

4 }

5 vector<size_t> KDtreeIndexed::FixedRangeSearch(double *p,

6 double maxdist2, int threadNum) {

7 params[threadNum].maxdist_d2 = maxdist2;

8 params[threadNum].p = p;

9 _FixedRangeSearch(m_data, threadNum);

10 vector<size_t> result;

11 for (auto it : params[threadNum].range_neighbors) {

12 #pragma omp critical

13 result.push_back(*it);

14 }

15 return result;

16 }

Listing 5: Searching an indexed k-d tree

4. Collision detection

Two variants of collision detection are implemented using the k-d tree. One
variant, called kd-CD-simple, is based on a range search around each point of the370

model using FixedRangeSearch and the other, called kd-CD, is based on a seg-
ment search between two subsequent points of the model on its trajectory using
segmentSearch all. In both variants, the model is moved along its trajectory and
a range or segment k-d tree search with radius r is performed at each position.

When points are found to be colliding, then this information is saved in a separate375

boolean vector which stores for each point in the environment whether it ever collided
with the model on its trajectory or not. The search radius r determines the precision
of both algorithms. The smaller the search radius, the more precise the collision
detection is. For smaller search radii, the model has to be sampled dense enough
to not leave any unoccupied volume. The search radius r is the required “safety380

distance” between the model and the environment within which no point of the
environment must lie. At the end, the collision information from the boolean vector
is used to partition the environment into colliding and non-colliding points.

4.1. kd-CD-simple

In this variant, on each position of the model on its trajectory, a fixed range385

search using FixedRangeSearch is done around each point of the model. All points
of the environment that are found to be within range r of any point of the model
at any position on its trajectory are updated to be colliding. The performance of

19

search areas (at pos. 1)

search areas (at pos. 2)

search areas (at pos. 3)

1 2 3

(a) kd-cd-simple: with T = 3 points on
the trajectory and M = 3 points of the
model, M × T = 9 FixedRangeSearch

operations have to be carried out.

1 2 3

search areas (1st step)

search areas (2nd step)

(b) kd-cd: with T = 3 points on the tra-
jectory and M = 3 points of the model,
M× (T −1) = 6 segmentSearch all op-
erations have to be carried out.

Figure 7: The two collision detection variants in two dimensions. A model consisting of
three co-linear points is moved through the environment along a trajectory (dashed line)
with three positions (indicated by numbers at the top). The first position of the three
points of the model is marked with red dots, the second position of the model with green
and the third position with blue dots. The area that is searched for collisions with the
environment is indicated by the transparent colored areas.

20

kd-CD-simple is improved by sampling the model in a way such that the search radii
around its points overlap in the desired amount.390

Figure 7a shows a simplified, two-dimensional visualization of the algorithm. A
model consisting of three co-linear point is moved along a trajectory with three
positions. At each position, a FixedRangeSearch is carried out around each point
of the model. The figure shows a disadvantage of this approach: if the trajectory is
not sampled densely enough, then some volumes along the path will not be checked395

for collisions as can be seen at the upper points in the graphic.

For a linear, non-parallel execution the time complexity of the algorithm is
O(MT log n) where M is the number of points in the model, T is the number of
sampled positions on the trajectory and n the number of points in the environment.
For parallel execution, the time complexity is O(MT

p
log n) where p is the number of400

worker processes. The complexity is as such because M times T searches in the k-d
tree of the environment have to be done, where each search is of complexity O(log n).
The complexity in the parallel case highlights that all M times T searches in the k-d
tree can be carried out in parallel.

4.2. kd-CD405

Instead of searching a fixed radius around every point of the model at each po-
sition on its trajectory like kd-CD-simple, this variant linearly connects the same
point of the model at two consecutive positions on its trajectory and searches a fixed
radius around all the line segments that are created in this manner.

Figure 7b shows a simplified, two-dimensional visualization of the algorithm. The410

model of three co-linear points is moved along a trajectory with three positions just as
for the kd-CD-simple example. But instead of executing a FixedRangeSearch around
each point of the model, a search is done around the line segments connecting the
same point at two consecutive positions on the trajectory. The area that is searched
this way is highlighted in orange and dark-green in the figure for the first and second415

search-pass, respectively.

This means that with T positions on the trajectory, this method will execute
M(T − 1) k-d tree searches using segmentSearch all. Thus, the time complexity
of this algorithm is very similar to the one of kd-CD-simple O(M(T − 1) log n) and
becomes close to the one of kd-CD-simple for large numbers of T .420

Since the trajectory can be less densely sampled than would be required for
kd-CD-simple, kd-CD can thus require less search operations while maintaining a
similar result quality. It also has the advantage that in contrast to the kd-CD-simple,
the volumes of the environment that are searched for collisions are not spheres but

21

cylinders with half spheres on both ends. This “smoothes” the found colliding points425

along the direction of movement of the model.

5. Depth of penetration calculation

Two variants to calculate depth of penetration will be presented: kd-PD-fast
and kd-PD. They perform differently depending on the kind of input data and yield
different results depending on the sampling rate of the model trajectory. kd-PD-fast430

is generally faster but produces only good results for objects protruding the path of
the model through the environment. It does not produce correct results when the
model moves alongside a wall and collides with it.

kd-PD-fast is an embarrassingly parallel operation just as the collision detection
methods. The other variant, kd-PD, is easy to parallelize as well and the only435

part of kd-PD that has to be synchronized between workers is the updating of the
penetration depth because it requires reading and checking the already stored depth
of penetration per colliding point.

5.1. kd-PD-fast

This variant is a good heuristic for protruding sharp objects into the work space.440

At each position along the trajectory, it iterates through all points of the environ-
ment that are found to be colliding and finds the closest non-colliding point using
FindClosest. The distance between the two points is then recorded as the depth
of penetration. Thus, the time complexity of this algorithm is the same as for the
collision detection algorithms and can be completely parallelized.445

This variant works well for objects that “stick” into the path of the model because
the penetration depth of the tip of that object will be about as deep as its distance
to the closest non-colliding point. This method is shown to work well for automotive
assembly lines as shown in prior work of the authors [1].

5.2. kd-PD450

kd-PD represents a general penetration depth method. Consider figure 8 which
illustrates this method. Figure 8 shows a top view of the train wagon model at
one point of its trajectory inside the tunnel. It is shown colliding with the right
hand side tunnel wall. The algorithm iterates over every point of the model Pn

and finds its projection to the wagon center An. Since the central axis is the y-455

axis in the coordinate system of the train wagon (compare figure 2), this projec-
tion is simply done by setting the x and z coordinates to zero. Then a segment
search using segmentSearch 1NearestPoint on the line segment from Pn to An

22

ce
n
tr

al
 a

x
is

tr
ai

n
 w

ag
o
n

tu
n
n
el

 w
al

l

An

Pn

Cn

central axis

tunnel wall

train wagon

Figure 8: Left: a top view of the train wagon (blue) at a position through the tunnel
(green). Right: a magnified and rotated part of the left figure with point names. The
gray area represents the segment search volume between point Pn of the train wagon and
point An on the wagon’s central axis (red). The dotted black line is the distance between
Pn and Cn which is the point that is found to be closest to Pn within the search area. The
dotted circle shows the search radius around Cn. All points of the tunnel wall within this
radius are updated with the same distance that Cn has to Pn if that distance is greater
than the previously stored one.

23

Figure 9: As the wagon (dark gray) moves along the tunnel (light gray), each point of
the tunnel wall is updated with its maximum distance to the wagon exterior (stripes) on
any point along the trajectory

is performed for every point of the model: for each point Pn the closest point
Cn of the colliding environment within the search radius is found. A fixed range460

search using FixedRangeSearch of radius r around Cn is performed and all points
within that search radius including Cn are collected. This collecting of points has
to be performed because otherwise, many points of the environment are missed by
segmentSearch 1NearestPoint. The distance between Cn and Pn is calculated and
that distance is assigned to all points that are found by FixedRangeSearch if the465

new distance value is greater than the old one. This set of calculations is done for
each point of the model on each position of its trajectory. In the end, every collid-
ing point of the environment has attached to it the greatest distance found by this
method over the whole trajectory. As is seen from figure 8, the maximum error of
the calculated penetration distance is the size of the search radius.470

Figure 9 visualizes this method for two subsequent positions on the trajectory.
The figure shows the calculated distances between each point of the model and each
set of points in the colliding environment.

This method requires that the individual points of the trajectory are not further
apart than the search radius. While this is also one of the reasons why this method is475

more computationally expensive than the first heuristic, it also yields better results
when applied to a collision with the tunnel wall. Figure 10 illustrates the difference.

The time complexity in the non-linear case is the same as for kd-PD-fast and
for the collision detection algorithms. In parallel execution, some time has to be

24

(a) Penetration depth as calculated by kd-PD-fast. The colors
indicate the distance to the closest non-colliding point of the
tunnel wall.

(b) Penetration depth as calculated by kd-PD. The colors in-
dicate the maximum penetration depth of the tunnel wall into
the moving train wagon on any point of its trajectory.

Figure 10: A comparison of the penetration depth as calculated by kd-PD-fast (top) and
kd-PD (bottom). Both figures show a narrow piece of tunnel from the outside with the
calculated penetration depth indicated by the point color. Non-colliding points are shown
in dark red.

25

Figure 11: The Optech Lynx Mobile Mapper on the back of a train wagon.

Figure 12: A photo of the scanned train wagon with a bogie distance of 20 m.

spent synchronizing the access to the data structure that stores the currently closest480

penetration distance before updating it.

6. Experiments and results

A 3D point cloud of train tunnel was provided to us by the company TopScan
GmbH. The point cloud contains 18.92 million points of outdoor data. The point
cloud was collected by a Optech Lynx Mobile Mapper mounted on a van which was485

placed on a train wagon (see figure 11). TopScan also provided the trajectory data
to us which is comprised of 23274 positions over a distance of 1144 m. The trajectory
contains positional as well as orientation data.

26

Figure 13: The Riegl VZ-400 laser scanner set up next to the train wagon.

27

Figure 14: The registered point cloud of all seven scans. The red line connects the
positions of the scanner.

To retrieve a point cloud of a suitable model to move through the environment,
the train wagon that is seen in figure 12 was manually scanned using a RIEGL VZ-490

400 laser scanner (see figure 13). Seven scans were taken from all sides of the wagon
and registered using 3DTK’s SLAM implementation (figure 14).

The train wagon is manually extracted from the resulting registered point cloud
by using 3DTK’s show application (see figure 15). As the train wheels are still part of
the wagon, they will always result in an expected collision with the rails themselves.495

It is then aligened inside the axis aligned bounding box of the wagon displayed
in figure 2. The alignment process is shown in figure 16a. As calibration data of the
precise location of the scanner relative to the environment is missing, our results can
only serve a demonstration purpose of our methods (see figure 16b). The final point
cloud of the wagon contained 2.5 million points.500

The trajectory provided to the authors included orientation information in three
degrees of freedom as well. Since a train wagon is mounted on two bogies and since
the origin of the coordinate system of the train is located in its center (see figure 2),
using this trajectory directly would mean that the wagon would rotate around its own
center along the trajectory. This produces wrong results since instead, the bogies of505

the train have to remain on the tracks while the center follows accordingly. A new
trajectory is calculated from the original trajectory by assuming a bogie distance of
20 m and moving the train wagon such that the center of both bogies is always on
the original trajectory. Since this operation requires the original trajectory to be a
continuous function and not a sampled trajectory, a spline is fitted across all points510

of the trajectory with a sum of squared residuals over all the spline’s control points
of 10 m. This amounts to the spline only a few millimeter away on average from the
original trajectory. The FITPACK library [38] is used to calculate the spline. The

28

(a) Marking points belonging to the wagon (in red).

(b) The extracted model of the train wagon.

Figure 15: Extracting the point cloud of the train wagon.

29

(a) Frontal view of the train wagon and
the rectangular base of its bounding box

(b) Aligned train wagon (yellow) inside
the tunnel environment (gray) and tra-
jectory (red).

Figure 16: Aligning the point cloud along the axis aligned bounding box of figure 2.

30

result of this computation also adjusted the yaw and pitch of the trajectory.

To benchmark the developed algorithms, the train wagon model as well as the515

trajectory are sampled with several different point distances. For the train wagon,
the original amount of 2.5 million points is reduced using 3DTK’s scan red program
which allows an octree based reduction of a point cloud with a given voxel size. As
the search volume for collision detection must not contain any holes, a model of
equidistant points is created by saving the center of each occupied octree voxel as520

point of the reduced model. This creates a 3D square lattice of points. Five different
reductions of the train wagon point cloud are created to run benchmarks on them
and are visualized in figure 17. Due to the structure of the underlying octree, the
voxel size dm is repeatedly halved starting from a maximum voxel size of 0.924 m
and down to a voxel size of 5.8 cm. For each of the five reductions, the search radius525

is chosen to create a bounding sphere of an octree voxel of the respective size. That
way, all space occupied by the model is searched for collisions without leaving any
holes. This means that the voxel size dm computes from the bounding sphere and
search radius r as dm = 2

3

√
3r. Similarly, the trajectory is sampled such that the

individual positions are between 5.8 cm and 14.78 m apart. Table 1 gives an overview530

of the chosen search radii, the according voxel size and trajectory position distances
and the resulting number of points in the model and on the trajectory.

The benchmarks omit runtime results that only modify either the amount of
points in the model or the amounts of positions in the trajectory. Both collision
detections algorithms, kd-CD-simple and kd-CD, scale completely linearly and is535

completely parallelized by splitting the workload over different sets of points in the
model or positions in the environment. The benchmarks are done on a Intel Core
i5-4200U @ 1.6 GHz system with 16GB of system memory and only executed using
a single thread.

To test the claim that the structure gauge is an insufficient measure, given the540

provided environment and trajectory, a slice of the train wagon is moved through
the tunnel. The slice is created by collapsing the y-coordinate of the train wagon
model. The trajectory is created using above method but assuming a bogie length
of zero. This effectively lets the slice travel exactly along the trajectory with the
correct orientation perpendicular to the trajectory.545

A video1 was created to visually illustrate the difference between a structure
gauge based method and kd-CD-simple. The video shows the train moving along
its trajectory through the tunnel environment from the perspective of an observer
who follows closely behind the train wagon. The view is split into three frames

1http://youtu.be/ylp4mD5XZaQ

31

http://youtu.be/ylp4mD5XZaQ

(a) Minimum point distance dm = 0.058 m
for a search radius of r = 0.05 m makes a
model with 28622 points.

(b) Minimum point distance dm = 0.115 m
for a search radius of r = 0.1 m makes a
model with 7546 points.

(c) Minimum point distance dm = 0.231 m
for a search radius of r = 0.2 m makes a
model with 2041 points.

(d) Minimum point distance dm = 0.462 m
for a search radius of r = 0.4 m makes a
model with 461 points.

(e) Minimum point distance dm = 0.924 m
for a search radius of r = 0.8 m makes a
model with 93 points.

Figure 17: Five point models of the train wagon with different sampling densities. In all
reductions, points are aligned in a 3D square lattice.

32

Table 1: The first column shows the choice of collision detection search radius r. The
second column shows the resulting distance between the points of the wagon dm and the
points on the trajectory dt. The third column shows the resulting number of points in the
model. The fourth column shows the resulting number of points on the trajectory. The
second and fourth column are extended as the results in figure 19 are calculated for higher
distance values as well.

r in m dm = dt = 2
3

√
3r #model #trajectory

0.05 0.058 28622 19392
0.1 0.115 7546 9780
0.2 0.231 2041 4869
0.4 0.462 461 2434
0.8 0.924 93 1217

1.848 609
3.695 304
7.390 152
14.780 76

arranged next to each other. The leftmost frame shows the model of the train wagon550

in yellow moving through the environment in magenta. The center and right frame
do not show the train wagon model for better visibility. The center frame shows the
colliding points according to the structure gauge method in yellow. The rightmost
frame shows the colliding points and their penetration depth as calculated by kd-
CD-simple and kd-PD-fast. At multiple points during the video one observes that555

the center frame does not highlight points as colliding which are highlighted by the
rightmost frames. Those points are most often found on the right tunnel wall as the
train tracks make a turn to the right. This shows how the structure gauge based
method is not able to find some of the collisions that are found by kd-CD-simple.

Figure 18 shows the influence of the search radius on the runtime of both colli-560

sion detection variants, kd-CD-simple and kd-CD. While all other variables are kept
constant, the algorithm is benchmarked with different search radii. The figure shows
the runtime of both collision detection variants as well as the number of points that
are found to be colliding in each variant. One can observe that the segment based
variant finds more colliding points but that it is also slower than the fixed range565

search based method. Both variants increase exponentially in runtime with higher
search radii. With small radii in the centimeter scale, which is desirable for precise
results, the runtime of both variants stays below 10 seconds.

33

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06
c
o

m
p

u
ta

ti
o

n
 t

im
e

 i
n

 s

n
u

m
b

e
r

o
f

c
o

lli
d

in
g

 p
o

in
ts

search radius in m

#colliding points kd-CD-simple
computation time kd-CD-simple
#colliding points kd-CD
computation time kd-CD

Figure 18: Computation time of both collision detection variants, kd-CD-simple and kd-
CD, with different search radii r. The distance between individual points on the trajectory
dt and the distance between points in the model dm is chosen to be dt = dm = 0.231m.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

c
o

m
p

u
ta

ti
o

n
 t

im
e

 i
n

 s

n
u

m
b

e
r

o
f

c
o

lli
d

in
g

 p
o

in
ts

trajectory position distance in m

#colliding points
computation time

Figure 19: Computation time of kd-CD with different distances between individual points
on the trajectory with a model sampled with dm = 0.231m and a search radius of 0.2m.

34

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06
c
o

m
p

u
ta

ti
o

n
 t

im
e

 i
n

 s

n
u

m
b

e
r

o
f

c
o

lli
d

in
g

 p
o

in
ts

search radius in m

#colliding points kd-CD-simple
computation time kd-CD-simple

#colliding points kd-CD
computation time kd-CD

Figure 20: Computation time of both collision detection variants, kd-CD-simple and kd-
CD, with different search radii r. The distance between individual points on the trajectory
dt and the distance between points in the model dm is chosen such that dt = dm = 2

3

√
3r.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

c
o

m
p

u
ta

ti
o

n
 t

im
e

 i
n

 s

n
u

m
b

e
r

o
f

c
o

lli
d

in
g

 p
o

in
ts

search radius in m

#colliding points kd-CD-simple
computation time kd-PD-fast

computation time kd-PD

Figure 21: Computation time of both penetration depth variants, kd-PD-fast and kd-PD,
with different search radii r. The distance between individual points on the trajectory dt
and the distance between points in the model dm is chosen such that dt = dm = 2

3

√
3r.

Colliding points are computed using kd-CD.

35

In figure 19 the search radius is kept constant and the sampling rate of the
trajectory is modified to investigate the dependency of the segment based collision570

detection method on the segment size. One can observe that as the segment size
grows larger, the computation time quickly converges to a constant value of under 10
seconds. The amount of found colliding points slightly increases with larger segment
sizes as more colliding points will be found inside the curvature of the tunnel wall.

Figure 20 shows a more realistic setup in the sense that not only the search radius575

is modified but also the sampling rate of the trajectory and train wagon model. If
the search radius grows, lower sampling rates are possible because more volume is
covered. For each value of search radius the sampling rates have been chosen such
that no points of the environment are skipped as the model moves along its trajectory.
The graph in figure 20 shows that the both algorithms, kd-CD-simple and kd-CD,580

quickly approaches runtimes below five seconds as the amount of required k-d tree
searches decreases with higher search radii and thus lower sampling rates. On the
other hand, the graph also shows, that with the lowest and thus most precise search
radius of 5 cm which searches on a trajectory of 19, 392 positions a model of 28, 622
points, our k-d tree is able to make all required 19, 392× 28, 622 = 555, 037, 824 k-d585

tree searches in only 77 s. This means that the average k-d tree search in a dataset
of 18.92 Mill points takes 139 ns. This in turn means that collision detections of even
complex models with up to 287000 points can be done in real time speed of 25.0
frames per second with the presented k-d search tree implementation.

In the last figure 21 the two depth of penetration methods, kd-PD-fast and kd-PD590

are compared. One can see that kd-PD-fast stays below 20 s of computation time.
This is expected as the performance of kd-PD-fast only depends on the amount of
colliding points found. We can observe that kd-PD-fast increases in runtime slightly
as the mount of colliding points rises with increased search radius. kd-PD performs
badly for very small search radii for which a large number of k-d tree searches have to595

be performed but quickly approaches runtime values below one minute as the search
radius grows larger than 10 cm.

7. Conclusions and outlook

This paper presented a highly efficient k-d tree implementation which is used to
perform collision detection of a sampled arbitrary point cloud against an environment600

of several million points. It is shown that even though this is a partly brute-force
method as it checks all sampled points of the model, both, kd-CD-simple and kd-
CD perform well enough such that real queries of densely sampled trajectories are
completed in a matter of seconds. Two heuristics for calculating penetration depth,

36

kd-PD-fast and kd-PD have been presented which work for different scenarios and605

have different precision and runtime properties.
For future work, several routes to improve these methods exist. More work has

to be done to research which checks to abort the k-d tree traversal for different
search geometries and input data perform best. Another easy way to increase the
performance could be to change the sampling of the model from bounding spheres610

to different geometries like axis aligned bounding boxes which are similarly quick to
check for collisions. Lastly, instead of checking every point of the model, a hierarchy
of bounding spheres or other geometries could be used [11] but that would destroy
the property of the current algorithm that the input model is allowed to arbitrarily
deform.615

Both variants, kd-CD-simple and kd-CD, are embarrassingly parallel operations.
All k-d tree searches can be run in parallel and even updating of the boolean collision
vector can be done in parallel as its values are only ever written but not read during
collision detection. Thus, it should easily be possible to run the algorithm which is
currently executed in series in parallel instead. Verifying the possible performance620

improvements of this measure is up to further research.

[1] J. Elseberg, D. Borrmann, J. Schauer, A. Nüchter, D. Koriath, U. Rautenberg,
A sensor skid for precise 3d modeling of production lines, ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information Sciences II-5 (2014)
117–122. doi:10.5194/isprsannals-II-5-117-2014.625

URL http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.

net/II-5/117/2014/

[2] J. Siegmann, Lichtraumprofil und Fahrzeugbegrenzung im europäischen
Schienenverkehr, http://www.forschungsinformationssystem.de/servlet/

is/325031/, [Online; accessed 2014-07-14] (2011).630

[3] O. Lueger, Krümmungsverhältnisse, in: Lexikon der gesamten Technik und ihrer
Hilfswissenschaften, Stuttgart / Leipzig: DVA, 1904, pp. 718–724.

[4] EBO, Eisenbahn-Bau- und Betriebsordnung, http://www.

gesetze-im-internet.de/ebo/anlage_1_67.html, [Online; accessed 2014-
07-14] (1967).635

[5] A. Nüchter, J. Elseberg, P. Schneider, D. Paulus, Study of parameteriza-
tions for the rigid body transformations of the scan registration problem,
Computer Vision and Image Understanding 114 (8) (2010) 963 – 980.
doi:http://dx.doi.org/10.1016/j.cviu.2010.03.007.

37

http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-5/117/2014/
http://dx.doi.org/10.5194/isprsannals-II-5-117-2014
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-5/117/2014/
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-5/117/2014/
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-5/117/2014/
http://www.forschungsinformationssystem.de/servlet/is/325031/
http://www.forschungsinformationssystem.de/servlet/is/325031/
http://www.forschungsinformationssystem.de/servlet/is/325031/
http://www.gesetze-im-internet.de/ebo/anlage_1_67.html
http://www.gesetze-im-internet.de/ebo/anlage_1_67.html
http://www.gesetze-im-internet.de/ebo/anlage_1_67.html
http://www.sciencedirect.com/science/article/pii/S107731421000072X
http://www.sciencedirect.com/science/article/pii/S107731421000072X
http://www.sciencedirect.com/science/article/pii/S107731421000072X
http://dx.doi.org/http://dx.doi.org/10.1016/j.cviu.2010.03.007

URL http://www.sciencedirect.com/science/article/pii/640

S107731421000072X

[6] P. Jiménez, F. Thomas, C. Torras, 3d collision detection: a survey, Computers
& Graphics 25 (2) (2001) 269–285.

[7] M. Lin, S. Gottschalk, Collision detection between geometric models: A survey,
in: Proc. of IMA conference on mathematics of surfaces, Vol. 1, 1998, pp. 602–645

608.

[8] J. Bender, K. Erleben, J. Trinkle, Interactive simulation of rigid body dynamics
in computer graphics, in: Computer Graphics Forum, Vol. 33, Wiley Online
Library, 2014, pp. 246–270.

[9] D. Mainzer, G. Zachmann, Collision detection based on fuzzy scene subdivision,650

in: Symposium on GPU Computing and Applications (Singapore, 2013), Vol. 3,
2014.

[10] M. Tang, D. Manocha, J. Lin, R. Tong, Collision-streams: fast gpu-based colli-
sion detection for deformable models, in: Symposium on interactive 3D graphics
and games, ACM, 2011, pp. 63–70.655

[11] C. Tzafestas, P. Coiffet, Real-time collision detection using spherical octrees:
virtual reality application, in: Robot and Human Communication, 1996., 5th
IEEE International Workshop on, 1996, pp. 500–506. doi:10.1109/ROMAN.

1996.568888.

[12] J. S. Muñoz, C. A. D. León, H. T. Gómez, Development of a hierarchy collision660

detection algorithm in order to implement a laparoscopic surgical simulator,
Revista QUID (19).

[13] J. Hummel, R. Wolff, T. Stein, A. Gerndt, T. Kuhlen, An evaluation of open
source physics engines for use in virtual reality assembly simulations, in: Ad-
vances in Visual Computing, Springer, 2012, pp. 346–357.665

[14] J. Klein, G. Zachmann, Point cloud collision detection, in: Computer Graphics
Forum, Vol. 23, Wiley Online Library, 2004, pp. 567–576.

[15] A. Hermann, F. Drews, J. Bauer, S. Klemm, A. Roennau, R. Dillmann, Unified
gpu voxel collision detection for mobile manipulation planning, in: Intelligent
Robots and Systems (IROS), 2014, 2014.670

38

http://www.sciencedirect.com/science/article/pii/S107731421000072X
http://www.sciencedirect.com/science/article/pii/S107731421000072X
http://www.sciencedirect.com/science/article/pii/S107731421000072X
http://dx.doi.org/10.1109/ROMAN.1996.568888
http://dx.doi.org/10.1109/ROMAN.1996.568888
http://dx.doi.org/10.1109/ROMAN.1996.568888

[16] D. Jung, K. K. Gupta, Octree-based hierarchical distance maps for collision
detection, in: Robotics and Automation, 1996. Proceedings., 1996 IEEE Inter-
national Conference on, Vol. 1, IEEE, 1996, pp. 454–459.

[17] W. Fan, B. Wang, J.-C. Paul, J. Sun, An octree-based proxy for collision detec-
tion in large-scale particle systems, Science China Information Sciences 56 (1)675

(2013) 1–10.

[18] H. Y. Wang, S. G. Liu, A collision detection algorithm using aabb and octree
space division, in: Advanced Materials Research, Vol. 989, Trans Tech Publ,
2014, pp. 2389–2392.

[19] S. Ar, B. Chazelle, A. Tal, Self-customized bsp trees for collision detection,680

Computational Geometry 15 (1) (2000) 91–102.

[20] M. Held, J. T. Klosowski, J. S. Mitchell, Evaluation of collision detection meth-
ods for virtual reality fly-throughs, in: Canadian Conference on Computational
Geometry, Citeseer, 1995, pp. 205–210.

[21] A. Garcia-Alonso, N. Serrano, J. Flaquer, Solving the collision detection prob-685

lem, Computer Graphics and Applications, IEEE 14 (3) (1994) 36–43.

[22] D. Faas, J. M. Vance, Brep identification during voxel-based collision detection
for haptic manual assembly, in: ASME 2011 World Conference on Innovative
Virtual Reality, American Society of Mechanical Engineers, 2011, pp. 145–153.

[23] P. M. Hubbard, Approximating polyhedra with spheres for time-critical collision690

detection, ACM Transactions on Graphics (TOG) 15 (3) (1996) 179–210.

[24] H. A. Sulaiman, M. A. Othman, M. M. Ismail, M. Said, M. Alice, A. Ram-
lee, M. H. Misran, A. Bade, M. H. Abdullah, Distance computation using axis
aligned bounding box (aabb) parallel distribution of dynamic origin point, in:
Emerging Research Areas and 2013 International Conference on Microelectron-695

ics, Communications and Renewable Energy (AICERA/ICMiCR), 2013 Annual
International Conference on, IEEE, 2013, pp. 1–6.

[25] S. Gottschalk, M. C. Lin, D. Manocha, Obbtree: A hierarchical structure for
rapid interference detection, in: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, ACM, 1996, pp. 171–180.700

39

[26] J. T. Klosowski, M. Held, J. S. Mitchell, H. Sowizral, K. Zikan, Efficient colli-
sion detection using bounding volume hierarchies of k-dops, Visualization and
Computer Graphics, IEEE Transactions on 4 (1) (1998) 21–36.

[27] M. Teschner, B. Heidelberger, M. Müller, D. Pomeranets, M. Gross, Optimized
spatial hashing for collision detection of deformable objects, Tech. rep., Techni-705

cal report, Computer Graphics Laboratory, ETH Zurich, Switzerland (2003).

[28] G. v. d. Bergen, Efficient collision detection of complex deformable models using
aabb trees, Journal of Graphics Tools 2 (4) (1997) 1–13.

[29] J. D. Cohen, M. C. Lin, D. Manocha, M. Ponamgi, I-collide: An interactive and
exact collision detection system for large-scale environments, in: Proceedings of710

the 1995 symposium on Interactive 3D graphics, ACM, 1995, pp. 189–ff.

[30] R. G. Luque, J. L. Comba, C. M. Freitas, Broad-phase collision detection using
semi-adjusting bsp-trees, in: Proceedings of the 2005 symposium on Interactive
3D graphics and games, ACM, 2005, pp. 179–186.

[31] T. Sellis, N. Roussopoulos, C. Faloutsos, The r+-tree: A dynamic index for715

multi-dimensional objects.

[32] J. Elseberg, S. Magnenat, R. Siegwart, A. Nüchter, Comparison of nearest-
neighbor-search strategies and implementations for efficient shape registration,
Journal of Software Engineering for Robotics 3 (1) (2012) 2–12.

[33] D. M. Mount, S. Arya, Ann: a library for approximate nearest neighbor search-720

ing, 2005.
URL http://www.cs.umd.edu/~mount/ANN/

[34] S. Magnenat, libnabo.
URL https://github.com/ethz-asl/libnabo

[35] M. Muja, D. G. Lowe, Flann - fast library for approximate nearest neighbors.725

URL http://www.cs.ubc.ca/research/flann/

[36] A. Nuchter, H. Surmann, K. Lingemann, J. Hertzberg, S. Thrun, 6d slam with
an application in autonomous mine mapping, in: Robotics and Automation,
2004. Proceedings. ICRA’04. 2004 IEEE International Conference on, Vol. 2,
IEEE, 2004, pp. 1998–2003.730

40

http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/
https://github.com/ethz-asl/libnabo
https://github.com/ethz-asl/libnabo
http://www.cs.ubc.ca/research/flann/
http://www.cs.ubc.ca/research/flann/

[37] T. Larsson, T. Akenine-Möller, E. Lengyel, On faster sphere-box overlap testing,
journal of graphics, gpu, and game tools 12 (1) (2007) 3–8.

[38] P. Dierckx, Curve and surface fitting with splines, Oxford University Press, Inc.,
1993.

41

	Introduction and problem formulation
	Related Work
	Data Structures for efficient collision detection and depth of penetration calculation
	Tree data structure
	Building the k-d tree
	k-d tree layout
	Searching the k-d tree
	_fixedRangeSearch
	Quick check whether to abort
	Subclassing the k-d tree
	An indexing k-d tree

	Collision detection
	kd-CD-simple
	kd-CD

	Depth of penetration calculation
	kd-PD-fast
	kd-PD

	Experiments and results
	Conclusions and outlook

