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Abstract: This paper shows how to use the result of Google’s simultaneous 
localization and mapping (SLAM) solution, called Cartographer, to bootstrap a 
continuous-time SLAM algorithm that was developed by the authors and 
presented in previous publications. The presented approach optimizes the 
consistency of the global point cloud, and thus improves on Google’s results. 
Algorithms and data from Google are used as input for the continuous-time 
SLAM software. In preceding work, the continuous-time SLAM was successfully 
applied to a similar backpack system which delivers consistent 3D point clouds 
even in the absence of an IMU. Continuous-time SLAM means that the trajectory 
of a mobile mapping system is treated in a semi-rigid fashion, i.e., the trajectory is 
deformed to yield a consistent 3D point cloud of the measured environment.  
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1. Introduction 

On October 5, 2016, Google released the source code of its real-time 2D  
and 3D simultaneous localization and mapping (SLAM) library Cartographer1. The 
utilized algorithms for solving SLAM in 2D have been described in a recent paper 
by the authors of the software (Hess et al., 2016). It can deliver impressive results—
especially considering that it runs in real-time on commodity hardware. A 
publication describing the 3D mapping solution is still missing. The released 
software however, solves the problem. In addition, Google published a very 
demanding, high-resolution data set to the public for testing their algorithms. Also, 
custom data sets are easy to process, as Google’s software comes with an 

1  https://opensource.googleblog.com/2016/10/introducing-cartographer.html  
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integration into the robot operating system (ROS) (Quigley et al., 2009). ROS is the 
de-facto standard middleware in the robotic community. It allows to connect 
heterogeneous software packages via a standardized inter-process communication 
(IPC) system and is available on recent GNU/Linux distributions. 

Google’s sample data set was recorded in the museum “Deutsches Museum” 
in München, Germany. It is the world’s largest museum of science and technology, 
and has about 28,000 exhibited objects from 50 fields of science and technology. 
The data set was recorded with a backpack system, which features an inertial 
measurement unit (IMU) and two Velodyne PUCK (VLP-16) sensors. The 
processed trajectory was 108 meters long and contained 300,000 single 3D scans 
from the PUCK sensors. 

Due to a high demand on flexible mobile mapping systems, mapping 
solutions on pushcarts, on trolleys, on mobile robots, and backpacks have recently 
been developed. Human-carried systems offer the advantage of overcoming 
doorsteps and the operator can open closed doors etc. To this end, several vendors 
build human-carried systems which are also often called personal laser scanners. 

This article shows how to use the result of Google’s SLAM solution to 
bootstrap our continuous-time SLAM algorithm. Our approach optimizes the 
consistency of the global point cloud, and thus improves on Google’s results. In 
this article, the algorithms and data from Google are used as input for our 
continuous-time SLAM solution, which was recently published in (Elseberg  
et al. 2013). In preceding research, the presented algorithmic solution was 
successfully applied to a similar backpack system set up by the authors which 
delivers consistent 3D point clouds even in the absence of an IMU (Nüchter et al., 
2015). 

In the following, this article will discuss the related work with a focus on 
unconventional mobile mapping systems and the work on calibration, referencing 
and SLAM. Then, the focus is shifted towards the registration of 3D scans in more 
detail and the ICP algorithm described and the globally consistent scan matching is 
derived. This is finally extended to a continuous-time SLAM solution, which takes 
Google’s Cartographer 3D Mapping as input. 

2. Related Works 

2.1. Laser Scanner on Robots and Backpacks 

Mapping environments has received a lot of attention in the robotics 
community, especially after the appearance of cost effective 2D laser range finders. 
Seminal work with 2D profiles in robotics was performed by (Lu and Milios, 1994). 
After deriving 2D variants of the by now well-known ICP algorithm, they derived 
a PosegraphSLAM solution (Lu and Milios, 1997) that considers all 2D scans in a 
global fashion. Afterwards, many other approaches to SLAM were presented, 
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including extended Kalman filters, particle filters, expectation maximization and 
GraphSLAM. These SLAM algorithms aimed at enabling mobile robots to map the 
environments where they have to carry out user-specific tasks. Thrun et al. (2000) 
presented a system, where a horizontally mounted scanner performed 
FastSLAM—a particle filter approach to SLAM—while an upward looking scanner 
was used to acquire 3D data, exploiting the robot motion to construct 
environments in 3D. Lu and Milios’ approach was extended to 3D point clouds 
and possesses six degrees of freedom (DoF) in (Borrmann et al., 2008). 

In 2004 an early version of a backpack system was presented. Saarinen  
et al., 2004, used the term Personal Localization And Mapping (PLAM). They used 
a horizontally mounted SICK LMS200 scanner in front of the human-carried 
system and put additional sensors and the computing equipment into a backpack. 
Chen et al. (2010), presented a backpack system that featured a number of 
lightweight 2D profilers (Hokuyo scanner) mounted in different viewing 
directions. In previous work, the authors applied the algorithms to a backpack 
system without an IMU (Nüchter et al., 2015). The system consists of a horizontally 
mounted SICK LMS100 scanner and a spinning Riegl VZ400. Similar to the work of 
Thrun et al. (2000) a horizontal scanner is used to estimate an initial trajectory that 
is afterwards updated to regard the six DoF motion. The term Personal Laser 
Scanning System was coined by Liang et al. (2014). They use a single FARO 
scanner and rely on the global navigation satellite system (GNSS) system. 
Similarly, the commercially available ROBIN system features a RIEGL VUX 
scanner and GNSS. In contrast, the Leica Pegasus is a commercially available 
backpack wearable mobile mapping solution, which is composed of two Velodyne 
PUCK scanners, cameras and a GNSS. The PUCKs scan 300.000 points per second 
and have a maximal range of 100 meters. Sixteen profilers are combined to yield a 
vertical field of view of ±15 degree. 

The Google Cartographer backpack was initially presented in September 2014. 
Back then, the backpack system was based on two Hokuyo profilers and an 
internal measurement unit (IMU). The current version features two Velodyne 
PUCK scanners. Figure 1 shows the system from Google and our backpack 
solution. 

2.2. Calibration, Referencing, and SLAM 

To acquire high-quality range measurement data with a mobile laser scanner, 
the position and orientation of every individual sensor have to be known. 
Traditionally, scanners, GPS and IMU are calibrated against other positioning 
devices whose pose in relation to the system is already known. The term Boresight 
calibration is used for the technique of finding the rotational parameters of the 
range sensor with respect to the already calibrated IMU/GPS unit. In the airborne 
laser scanning community, automatic calibration approaches are known (Skaloud 
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and Schaer, 2007), and similarly vehicle-based kinematic laser scanning has been 
considered (Rieger et al., 2010). In the robotics community, there exist approaches 
for calibrating several range scanners semi-automatically, i.e., with manually 
labelled data (Underwood et al., 2009) or using automatically computed quality 
metrics (Sheehan et al., 2011), (Elseberg et al., 2013). Often, vendors do not make 
their calibration methods public and unfortunately, the authors of this paper have 
no information on the calibration of the Google Cartographer backpack. In general, 
calibration inaccuracies can, to some extent, be compensated with a SLAM 
algorithm. 

In addition to from sensor misalignment, timing related issues are second 
sources of errors. All subsystems on a mobile platform need to be synchronized to 
a common time frame. This is often accomplished with pure hardware via 
triggering or with mixes of hardware and software such as pulse per second (PPS) 
or the network time protocol (NTP). However, good online synchronization is not 
always available for all sensors. Olson, 2010, has developed a solution for the 
synchronization of clocks that can be applied after the fact. In ROS, sensor data is 
time-stamped when it arrives and it is recorded in an open file format (.bag files). 
Afterwards, one works with the time-stamped data using nearest values or 
interpolation. 

As the term direct referencing or direct Geo-referencing implies, it is the direct 
measurement of the position and orientation of a mapping sensor, i.e., the laser 
scanner, such that each range value can be referenced without the need for 
collecting additional information. This means that the trajectory is then used to 
“unwind” the laser range measurements to produce the 3D point cloud. This 
approach has been taken by (Liang et al., 2014). 

Some systems employ a horizontally mounted scanner and perform 2D SLAM 
on the acquired profiles. Thrun et al. (2000), used FastSLAM, whereas Nüchter  
et al. (2015) used SLAM based on the truncated signed distance function  
(TSD SLAM), or alternatively, HectorSLAM (Kohlbrecher et al., 2011). These  
2D SLAM approaches produce 2D grid maps. Similarly, Google’s Cartographer 
code is for creating 2D grid maps (Hess et al., 2016). Afterwards, the computed 
trajectory and the IMU measurements are used to “unwind” the laser range 
measurements to produce the 3D point cloud. 

The Google Cartographer library achieves its outstanding performance by 
grouping scans into probability grids that they call submaps and by using a branch 
and bound approach for loop closure optimization. While new scans are matched 
with and subsequently entered into the current submap in the foreground, in the 
background, the library matches scans to nearby submaps to create loop closure 
constraints and to continually optimize the constraint graph of submaps and scan 
poses. The authors differentiate between local scan matching which inserts new 
scans into the current submap and which will accumulate errors over time and 
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global SLAM which includes loop closing and which removes the errors that have 
accumulated in each submap that are part of a loop. Both local and global 
matching are run at the same time. 

During local scan matching, the Cartographer library matches each new scan 
against the current submap using a Ceres-based scan matcher (Agarwal and 
others). A submap is a regular probability grid where each discrete grid point 
represents the probability that the given grid point is obstructed or free. These two 
sets are disjoint. A grid point is obstructed if it contains an observed point. Free 
points are computed by tracing the laser beam from the estimated scanner location 
to the measured point through the grid. The optimization function of the scan 
matcher makes use of the probability grid as part of its minimization function. 

During global SLAM, finished submaps (those that no longer change) and the 
scans they contain are considered for loop closing. As is the case during local scan 
matching, the problem is passed to Ceres as a nonlinear least squares problem. The 
algorithm is accurate down to the groups of points defined by the regular 
probability grid of each submap. By taking the submap grid size as translation step 
delta and the angle under which a grid point is seen at maximum range as the 
rotation step delta, a finite set of possible transformations is created. This solution 
space is searched using a branch and bound approach where nodes are traversed 
using a greedy depth first search and the upper bound of the inner nodes is 
defined in terms of computational effort and quality of the bound. To compute the 
upper bound efficiently, grids are precomputed for tree heights that overlay the 
involved submaps and store the maximum values of possible scores for each 
obstructed grid point. This operation is done in ( ) with  being the number of 
obstructed grid points in each precomputed grid. 

Hess et al. (2016), describe the 2D version of the algorithm, which uses the 
horizontally mounted 2D profiler. The provided data sets also contain data from a 
setup with Velodyne PUCK scanners (cf. Figure 1). Their algorithm is able to 
process 3D data and to output poses with six DoF, however, a description of  
their 3D approach is missing from their paper. Nevertheless, one can understand 
from their published source code that their 3D implementation is mostly an 
extension of their 2D approach to three dimensions with a 3D probability grid. 
Some changes have been made to improve performance. For example, the 3D grid 
is not fully traversed to find free grid cells but only a configurable distance up to 
the measured point is checked. 

Only a few approaches optimize the whole trajectory in a continuous fashion. 
Stoyanov and Lilienthal, (2009), presented a non-rigid optimization for a mobile 
laser scanning system. They optimize point cloud quality by matching the 
beginning and the end of a single scanner rotation using ICP. The estimate of  
the 3D pose difference between the two points in time is then used to optimize the 
robot trajectory in between. In a similar approach, Bosse and Zlot, (2009), use a 
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modified ICP with a custom correspondence search to optimize the pose of six 
discrete points in time of the trajectory of a robot during a single scanner rotation. 
The trajectory in between is modified by distributing the errors with a cubic spline. 
The software of Riegl RiPRECISION MLS automatically performs adjustments of 
GNSS/INS trajectories to merge overlapping mobile scan data based on planar 
surface elements. Our own continuous-time SLAM solution improves the entire 
trajectory of the data set simultaneously based on the raw point cloud. The 
algorithm is adopted from (Elseberg et al., 2013), where it was used in a different 
mobile mapping context, i.e., on platforms such as the LYNX mobile mapper or the 
Riegl VMX-250. As no motion model is required, it can be applied to any 
continuous trajectory. 

 
Figure 1. Above left: Google’s Cartographer system featuring two Hokuyo laser 
scanners (image: Google blog). Above right and below left: Google’s 
Cartographer system with two Velodyne PUCKs and the Cartographer team 
(image courtesy of the Cartographer team). Below right: Second author operating 
Würzburg’s backpack scanner. 
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3. Registration of 3D Laser Scans 

3.1. Feature-Based Registration 

Many state-of-the-art registration methods rely on initial pose (position and 
orientation) estimates acquired by global positioning systems (GPS) or local 
positioning using artificial landmarks or markers as reference (Wang et al. 2008). 
Pose information is hard to acquire and in many scenarios is prone to errors or not 
available at all. Thus, registration without initial pose estimates and place 
recognition are highly active fields of research. 

In addition to range values, laser scanners record the intensity of the reflected 
light. These intensities provide additional information for the registration process. 
Böhm and Becker, (2007), suggest using SIFT (scale-invariant feature transform) 
features for automatic registration and present an example of a successful 
registration on a 3D scan with a small field of view. Wang and Brenner, (2008), 
extended this work by using additional geometry features to reduce the number of 
matching outliers in panoramic outdoor laser scans. Kang et al. (2009), propose a 
similar technique for indoor and outdoor environments. Weinmann et al. (2011), 
use a method that is based on both reflectance images and range information. After 
extraction of characteristic 2D points based on SIFT features, theses points are 
projected into 3D space by using interpolated range information. For a new scan, 
combining the 3D points with 2D observations on a virtual plane yields 3D-to-2D 
correspondences from which the coarse transformation parameters can be 
estimated via a RANSAC (random sample consensus) based registration scheme 
including a single step outlier removal for checking consistency (Weinmann,  
et al., 2011). They extend their method (Weinmann and Jutzi, 2011) to calculate the 
order of the scans in unorganized terrestrial laser scan data by checking the 
similarity of the respective reflectance images via the total number of SIFT 
correspondences between them. Bendels et al., (2004), exploit intensity images 
often recorded with the range data and propose a fully automatic registration 
technique using 2D-image features. The fine registration of two range images is 
performed by first aligning the feature points themselves, followed by a so-called 
constrained-domain alignment step. In the latter, rather than feature points, they 
consider feature surface elements. Instead of using a single 3D-point as feature, 
they use the set of all points corresponding to the image area determined by the 
position and scale of the feature. 

Other approaches rely only on the 3D structure. Brenner et al., (2008), use 3D 
planar patches and the normal distribution transform (NDT) on several 2D scan 
slices for a coarse registration. Similarly, Pathak et al., (2010), evaluated the use of 
planar patches and found that it is mostly usable. A solution using the NDT in 3D 
is given (Magnusson et al., 2009). While this approach computes global features of 
the scan, several researchers use features that describe small regions of the scan for 



 

60 

place recognition and registration (Huber 2002) (Steder et al., 2010) (Barnea and 
Filin, 2008). Flint et al., (2007), use a key point detector called ThrIFT, to detect 
repeated 3D structures in range data of building facades. 

In addition to coarse, feature-based registration, many authors use the well-
known iterative closest point algorithm (ICP) for fine registration. 

3.2. Registration without Using Features— The ICP Algorithm 

The following method is the de facto standard for registration of two 3D point 
clouds, given a good initial pose estimate. ICP requires no computation of features. 
Instead, it matches raw point clouds by selecting point correspondences on the 
basis of smallest distances and by minimizing the resulting Euclidean error. This 
iterative algorithm converges to a local minimum. Good starting estimates 
significantly improve the matching results, i.e., they ensure that ICP converges to a 
correct minimum. The complete algorithm was invented at the same time in 1991 
by Besl and McKay, (1992), by Chen and Medioni, (1991) and by Zhang, (1992). The 
method is called the Iterative Closest Points (ICP) algorithm. 

Given two independently acquired sets of 3D points,  (model set) and  
 (data set) which correspond to a single shape, one wants to find the 

transformation ( , ) consisting of a rotation matrix  and a translation vector  
which minimizes the following cost function ( , ) = ( )  (1) 

All corresponding points can be represented in a tuple ( , )  where 
 and . Two calculations need to be made: First, the 

corresponding points, and second, the transformation ( , ) that minimizes ( , ) 
on the basis of the corresponding points. The ICP algorithm uses the closest points 
as corresponding points. A sufficiently accurate starting guess enables the ICP 
algorithm to converge to the correct minimum.  

Current research in the context of ICP algorithms mainly focuses on fast 
variants of ICP algorithms (Rusinkiewicz and Levoy, 2001). If the inputs are 3D 
meshes, then a point-to-plane metric can be used instead of Equation (1). Minimizing 
the use of a point-to-plane metric outperforms the standard point-to-point one, but 
requires the computation of normal metrics and meshes in a pre-processing step. 

4. Globally Consistent n-Scan Matching 

Chen and Medioni, (1992), aimed at globally consistent range image 
alignment when introducing an incremental matching method, i.e., all new scans 
are registered against the so-called metascan, which is the union of the previously 
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acquired and registered scans. This method does not spread out the error and is 
order-dependent. 

Bergevin et al., (1996), Stoddart and Hilton, (1996), Benjemaa and  
Schmitt, (1997, 1998), and K. Pulli, (1999) present iterative approaches. Based on 
networks representing overlapping parts of images, they use the ICP algorithm for 
computing transformations that are applied after all correspondences between all 
views have been found. However, the focus of research is mainly 3D modelling of 
small objects using a stationary 3D scanner and a turn table. Therefore, the used 
networks consist mainly of one loop (Pulli, 1999). These solutions are locally 
consistent algorithms that retain the analogy of the spring system (Cunnington and 
Stoddart, 1999), whereas true globally consistent algorithms minimize the error 
function in one step. 

A probabilistic approach was proposed by Williams and Bennamoun, 
(1999), where each scan point is assigned a Gaussian distribution in order 
to model the statistical errors made by laser scanners. This causes high 
computation time due to the large amount of data in practice. Krishnan, 
et al., (2000), presented a global registration algorithm that minimizes the 
global error function by optimization on the manifold of 3D rotation 
matrices. 

To register scans in a globally consistent fashion, a network of poses is 
formed, i.e., a graph. Every edge represents a link    of matchable poses. The 
error function is extended to include all links and to minimize for all rotations and 
translations at the same time. =  ( )   (2) 

For some applications, it is necessary to have a notion of the uncertainty of the 
poses calculated by the registration algorithm. The following is an extension of the 
probabilistic approach first proposed by Lu and Milios, (1997) to six DoF. This 
extension is not straightforward, since the matrix decomposition, i.e.,  
Equation (20), cannot be derived from first principles. For a more detailed 
description of these extensions, refer to Borrmann et al., (2008). In addition to the 
poses , the pose estimates  and the pose errors  are required. 

The positional error of two poses  and  is described by: 

, =  =   ,  (3) 

here,  is the compounding operation that transforms a point into the 
global coordinate system. For small pose differences, ,  can be linearized 
by use of a Taylor expansion: 
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,     (  ( , )  ( , ) ) (4) 

where  denotes the derivative with respect to  and . Utilizing the matrix 
decompositions  and  of the respective derivatives that separate the 
poses from the associated points gives:   , = ( , )        =  ( , )   (      ) (5) 

Appropriate decompositions are given for both the Euler angles and 
quaternion representation in the following paragraphs. Because  as well as  
are independent of the pose, the positional error ,  is minimized with respect to 
the new pose difference , i.e., 

, =  (       =  (   ) (6) 

is linear in the quantities  that will be estimated so that the minimum of .  and 
the corresponding covariance are given by  

, =  ( )   (7) 

, =  ^2 ( ) (8) 

where 2  is the unbiased estimate of the covariance of the identically, 
independently distributed errors of : = ( ) ( )(2 3) . (9) 

Here,  is the concatenated vector consisting of all ( , )  and  the 
concatenation of all s. 

Up to now, all considerations have been on a local scale. With the linearized 
error metric ,  and the Gaussian distribution , , ,  a Mahalanobis distance 
that describes the global error of all the poses is constructed: = ( , , )  , ( , , )

=  ( , ( ))   (10) 
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In matrix notation,  becomes: = ( ) (  ). (11) 

Here,  is the signed incidence matrix of the pose graph,  is the concatenated 
vector consisting of all ,  and  is a block-diagonal matrix comprised of ,  as 
submatrices. Minimizing this function yields new optimal pose estimates. The 
minimization of  is accomplished via the following linear equation system: ( ) =

(12) =  (13) 

The matrix  consists of the submatrices 

, =  ,    ( = )
,           ( = ) (14) 

The entries of  are given by: 

=  ,   , . (15) 

In addition to , the associated covariance of  is computed as follows: =   (16) 

Note that the results have to be transformed in order to obtain the optimal 
pose estimates. =     (17) =  (  . (18) 

The representation of pose  in Euler angles, as well as its estimate and error 
is as follows: 

=  , =  , =   (19) 
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The matrix decomposition =  is given by 

=
1 0 0 0 cos(  ) + sin(  ) cos cos( ) cos( ) sin( )0 1 0 sin( ) cos( ) cos( ) sin( )0  0  1    cos( ) cos sin(  ) +  sin  0  0  0  1  0 sin0  0  0  0 sin( ) cos( ) cos0  0  0  0  cos  cos sin( )

 

 

(20) 

=  1  0  0  0  ,   ,0  1  0  ,   ,   00  0  1  ,  0  ,            (21)    

As required,  contains all point information while  expresses the pose 
information. Thus, this matrix decomposition constitutes a pose linearization 
similar to those proposed in the preceding sections. Note that, while the matrix 
decomposition is arbitrary with respect to the column and row ordering of , this 
particular description was chosen due to its similarity to the 3D pose solution 
given in (Lu and Milios, 1997). 

5. Continuous-Time SLAM  
Unlike other state-of-the-art algorithms, (Stoyanov and Lilienthal, 2009 and 

Bosse et al., 2012), our continuous-time SLAM algorithm is not restricted to purely 
local improvements. Our method makes no rigidity assumptions, except for the 
computation of the point correspondences. For instance, the method requires no 
explicit motion model of a vehicle, thus it works well on backpack systems. The 
continuous-time SLAM for trajectory optimization works in full six DoF. The 
algorithm requires no high-level feature computation, i.e., it requires only the 
points themselves. 

In the case of mobile mapping, one does not have separate terrestrial 3D 
scans. In the current state-of-the-art in the robotics community developed by Bosse 
et al. (2012), for improving overall map quality of mobile mappers, the time is 
coarsely discretized and the scene is described by features, i.e., local planar 
patches. This results in a partition of the trajectory into sub-scans that are treated 
rigidly. Then, rigid registration algorithms such as the ICP and other solutions to 
the SLAM problem are employed. Obviously, trajectory errors within a sub-scan 
cannot be improved in this fashion. Applying rigid pose estimation to this non-
rigid problem directly is also problematic since rigid transformations can only 
approximate the underlying ground truth. When a finer discretization is used, 
single 2D scan slices or single points result that do not constrain a six DoF pose 
sufficiently for rigid algorithms. 

More mathematical details of our algorithm are in the available open-source 
code and are given in Elseberg et al. (2013). Essentially, the algorithm first splits 



 

65 

the trajectory into sections, and matches these sections using the automatic high-
precision registration of terrestrial 3D scans, i.e., globally consistent scan matching 
that is the 6D SLAM core. Here, the graph is estimated using a heuristic that 
measures the overlap of sections using the number of closest point pairs. After 
applying globally consistent scan matching on the sections, the actual continuous-
time or semi-rigid matching as described in (Elseberg et al., 2013) is applied, using 
the results of the rigid optimization as starting values to compute the numerical 
minimum of the underlying least square problem. To speed up the calculations, the 
algorithm exploits the sparse Cholesky decomposition by Davis (2006). 

Given a trajectory estimate, the point cloud is “unwound” into the global 
coordinate system and uses a nearest neighbour search to establish 
correspondences at the level of single scans (those that can be single 2D scan 
profiles). Then, after computing the estimates of pose differences and their 
respective covariance, the algorithm optimizes the trajectory. In a pre-dependent 
step, trajectory elements in every k step are considered and l trajectory elements 
around these steps are fused temporarily into a meta-scan. 

A key issue in continuous-time SLAM is the search for closest point pairs. An 
octree and a multi-core implementation using OpenMP is used to solve this task 
efficiently. A time-threshold for the point pairs is used, i.e., the algorithm matches 
only to points if they were recorded at least td time steps away. 

Finally, all scan slices are joined in a single point cloud to enable efficient 
viewing of the scene. The first frame, i.e., the first 3D scan slice from the PUCKs 
scanner, defines the arbitrary reference coordinate system. 

6. Bootstrapping Continuous-Time SLAM with Google’s SLAM Solution 

To improve the Cartographer 3D mapping, the graph is estimated using a 
heuristics that measures the overlap of sections using the number of closest point 
pairs. After applying globally consistent scan matching on the sections for several 
iterations, the actual continuous-time SLAM is started. 

The data set provided by Google is challenging in several ways: Due to the 
enormous amount of data, clever data structures are needed to store and access the 
point cloud. The trajectory is slit every 300 PUCK-scans and ±150 PUCK-scans are 
joined into a meta-scan. These meta-scans are processed with an octree where a 
voxel size of 10 cm is used to reduce the point cloud by selecting one point per 
voxel. We prefer a data structure that stores the raw point cloud over a highly 
approximate voxel representation. While the latter one is perfectly justifiable for 
some use cases, it is incompatible with tasks that require exact point measurements 
such as scan matching. Our implementation of an octree prioritizes memory 
efficiency. The implementation uses pointers in contrast to serialized pointer-free 
encodings in order to efficiently access the large amounts of data. The octree is free 
of redundancies and is nevertheless capable of fast access operations. Our 
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implementation allows for access operations in (log ). The usage of 6 bytes for 
pointers is already sufficient to address a total of 256 terabyte. Two-bit fields signal 
if there is a child or leaf node, thus our implementation needs a few bit operations 
and 8 bytes are sufficient for an octree node. 

The pre-processing step of the continuous-time SLAM runs for 20 iterations, 
where the edges in the graph are added, when more than 400 point pairs between 
these meta-scans are present. The maximal allowed point-to-point distance is set  
to 50 cm. Figure 2 and 6 present results, where the consistency of the point cloud 
has been improved. Figure 3 details the changes in the trajectory’s position and 
orientation. It is an open traverse, thus the changes are mainly at the end of the 
trajectory. Processing was done on a server featuring four Intel Xeon CPUs E7-4870 
with 2.4 GHz (40 cores, 80 threads). The overall computing time for the 
optimization of the Google data set was 10–12 days (few interruptions). 

  

  

  
Figure 2. Results of continuous-time simultaneous localization and mapping 
(SLAM) on Google’s Cartographer sample data set from Deutsches Museum in 
München. Left: input. Right: output of our solution. Shown are three 3D views 
(perspective) of the scene. Major changes in the point cloud are highlighted in 
red. 
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Figure 3. Results of continuous-time SLAM on Google’s Cartographer sample 
data set from Deutsches Museum in München. Left: input. Right: output of our 
solution. Shown are sections of the point cloud. Major changes in the point cloud 
are highlighted in red. 

In a second experiment, the trajectory from Google has been discretised on a 
much coarser level in order to process the complete trajectory. The smallest 
element is now two complete PUCK sweeps. The changes in the trajectory are 
given in Figure 4. At this level, the trajectory is adjusted at a coarser scale, i.e., the 
changes of the inner accuracy are smaller, cf. Figure 5. 
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Figure 4. Visualization of the changes in the trajectory computed by our method 
to bootstrapped trajectory. Left: distance. Right: orientation. 

  
Figure 5. Visualization of the changes in the trajectory over the complete 
trajectory of the data set. The part presented in Figure 3 is located in the center of 
the plots. 
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Figure 6. Results of continuous-time SLAM applied to the complete data set. 
Throughout the data set, the changes are minor, however, in open spaces, the 
visual impression is still improved. 

7. Summary, Conclusions and Future Work 

This work revisits a continuous-time SLAM algorithm and its application on 
Google’s Cartographer sample data. The algorithm starts by splitting the trajectory 
into sections, and matches these sections using the automatic high-precise globally 
consistent registration of terrestrial 3D scans. 

This article has shown how to use the result of Google’s novel SLAM solution 
to bootstrap an existing continuous-time SLAM algorithm. Our approach 
optimizes the consistency of the global point cloud, i.e. the inner accuracy, and 
thus improves on Google’s results in a local and global fashion. A visual inspection 
shows the improvements. Personal localization and mapping or personal laser 
scanning systems will be an emerging research topic in the near future, since the 
hardware is becoming affordable. The research is also applicable to SLAM systems 
that work with structured-light scanners such as Microsoft’s Kinect, time-of-flight 
cameras such as the kinectv2, or flash LiDARs (light detection and ranging). An 
intrinsic challenge remains: How to handle the enormous amount of 3D point 
cloud data. The time complexity and the memory needs exceed current computing 
capabilities. 

A further conclusion of the article is that the ICP-algorithm with its many 
variants and extensions is the basic method that is common in the robotics SLAM 
community and photogrammetry and computer vision community. Bundle 
adjustment, also called the GraphSLAM method, dominates the mapping methods. 
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Needless to say, a lot of work remains to be done. First of all, we plan to 
evaluate the 2D mapping method as we have indicated above. Secondly, as 
calibration is as crucial as SLAM, we will apply our calibration framework 
(Elseberg et al., 2013) to the data files provided by Google. Furthermore, we will 
transfer our continuous-time SLAM to different application areas, e.g., underwater 
and aerospace mapping applications. 
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