
Sliced Curvature Scale Space for Representing and
Recognizing 3D objects

Billy Okal
Social Robotics Laboratory

Albert-Ludwigs-Universität Freiburg
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Abstract—Perception plays a key role in the development of
intelligent autonomous systems. In particular object recognition
and registration tasks are crucial to any intelligent autonomous
system such as autonomous cars or personal robots. The repre-
sentation of 3D object sensor measurements largely affects the
choice of higher level processing possible on the sensor data.
We explore the use of scale space theory via the curvature
scale space and extend it to represent 3D objects in our new
SCSS (Sliced Curvature Scale Space) framework. We further
develop techniques of further processing the SCSS representation
including feature extraction and dimensionality reduction for use
in learning frameworks. We perform an array of experiments
to validate the effectiveness of our method and demonstrate
recognition performance using support vector machines. The
results indicate that our new representation retains the nice
qualities of the original curvature scale space method while being
robust and compact for 3D object representation and recognition.

I. INTRODUCTION

In the development of intelligent autonomous systems,
interaction ability among such systems and the users-humans
is a key indicator of success. These interactions are largely
dependent on the ability to perceive and interpret the environ-
ment these systems operate in. The key challenges in achieving
the aforementioned result include development of appropriate
sensors to acquire environmental information, design of robust
representation schemes for the collected data and finally devel-
oping means of decoding such data into meaningful cues for
interaction. While there has been significant advances n sensor
mechatronics allowing acquisition of environmental data at
very high rates, representation and interpretation are still not
adequate as evidenced by the ongoing research in these areas.
This is even more pronounced in the 3D case, meaning the
impact of recent success like the development of the Kinect
devices are held back by lack of appropriate representation and
interpretation of the depth data for use in intelligent robotics
tasks.

Scale space theory provides a promising framework for
representing signals in arbitrary dimensions at multiple scales.
A nice overview of scale space theory is given in [1], [2].
The multi-scale representation is motivated by the fact that
when no prior information about the scale at which sensor
measurements were taken, then it is only sensible that the
measurement signals be represented at all possible scales. This
representation is achieved by smoothing a signal with a kernel
of varying width and has connections the mammalian receptive

field operation as shown in neurophysiological studies by [3],
[4]. The curvature scale space (CSS) by [5] has been suc-
cessfuly applied in 2D cases with demonstrated success and
provides a suitable basis for expansion to 3D. We are interested
in leveraging this basis for developing a new representation for
3D objects.

II. RELATED WORK

Given the interesting nature of this task, there have been
a number of attempts in developing a representation for 3D
object sensor data, each making a fair share of trade-offs
in terms of expressiveness, computational needs, robustness
to viewpoint, scale, affine transformations, occlusions etc.
Early approaches used CAD based representation which uti-
lizes combinations of standard geometric primitives to model
objects as explained in [6]. Other approaches have used
range images [7] especially in robot navigation, polygonal
meshes as in computer graphics applications. Point clouds
are commonly used in robotics domain as explained in [8],
[9]. Most the approaches described so far are typically not
expressive enough to easily draw high level cues on and
require further refinements such as filtering and additional
feature extraction. Chua and Jarvis have also proposed point
signatures [10] for representing 3D objects and these encode
the structural neighbourhood of a point although the choice of
this neighbourhood is not trivial. A related approach is the use
of shape signatures [11] by Hamza and Krim which exploits
the geodesic shape of an object in a probability distribution
and uses information theoretic measures to compute object
similarities. One of the drawbacks of their method is that
the measure they propose is not symmetric and it not always
defined hence requiring additional checks in practical use. The
use of wavelets [12] and radial basis functions is also common
in signal processing related applications, however these scheme
usually have complicated procedures for computing object
properties that make them less practical. Spin images [13] by
Andrew Johnson and Martial Herbert are another representa-
tion with properties including invariance to pose and simplicity
of computation. Other common representation schemes are
reviewed in [6] survey. We are mainly interested in the
curvature scale space representation and extending it to 3D
domain.

Object recognition of the other hand has enjoyed a wealth
of attempts in the past and most approaches are dependent
on the underlying representational power. The main categories



of methods for object recognition include appearance based
methods, contour methods, model-based methods, methods in-
volving exhaustive search and correlation filter methods. In ap-
pearance based methods, the object is usually represented as a
point in some high dimensional space and statistical techniques
applied to compute distances between such points to get object
similarities. These methods are reviewed in [6]. Contour based
methods aim to exploit the geometry of object like boundaries
and this generally makes them view dependent unless special
care is taken. Mokhatarian and Murase developed a complete
isolated object recognition system based on silhouettes in [14]
that also employs the curvature scale space representation.
The same representation was also used by image retrieval
in [15]. Extending their approach to more realistic multiple
object scenarios is not trivial. Stiene et al. have also used
an extension of CSS called Eigen-CSS for object recognition
in range scans [16]. They use support vector machines to
learn to classifly objects. Eigen-CSS [17] improves upon the
original CSS by making it robust to rotations. Correlation
filter methods utilize the correlation between certain properties
of objects to evaluate similarities and are common in 2D
domain where image correlations are directly used. Exhaustive
search methods like RANSAC (Random Sample Consensus)
are common in registration related applications where point
correspondences are directly evaluated. Most of these ap-
proaches can be aided by leaning techniques when sufficient
features are available. We adopt the learning approach in
evaluating our representation’s recognition power.

The rest of the paper is organized as follows; in Section III
we delve into the details of our representation including how to
compute it and extraction of features. In Section IV we show
some of the results of using the SCSS representation and finally
we conclude and mention further work in Section V.

III. OUR APPROACH

In this section, we briefly review the concept of curvature
scale space and extend it to develop our SCSS representation.
A more comprehensive theory of CSS is available in [18].

A. Curvature Scale Space (CSS)

The curvature scale space representation which is also
included in the MPEG-7 format [5] is developed by repeatedly
convolving a signal with a Gaussian kernel. Given a 2D curve
parametrized as Γ = (x(s), y(s)), the curvature κ(s, σ) at level
σ is computed using Equation 1. The process is known as
evolution.

κ(s, σ) =
Xs(s, σ)Yss(s, σ)−Xss(s, σ)Ys(s, σ)

(Xs(s, σ)2 + Ys(s, σ)2)3/2
(1)

where

Xs(s, σ) = x(s)⊗ gs(s, σ) (2)
Ys(s, σ) = y(s)⊗ gs(s, σ) (3)
Xss(s, σ) = x(s)⊗ gss(s, σ) (4)
Yss(s, σ) = y(s)⊗ gss(s, σ) (5)

and gs(s, σ), gss(s, σ) are the first and second partial deriva-
tives of the Gaussian kernel respectively. The CSS image is

then made by plotting the location of zero-crossings of the
curvature signal κ(s, σ) for all levels. Such an image is shown
in Figure 2.

Fig. 1. Simple synthetic curve given by x(t) = 5 cos(t)− cos(6t), y(t) =
15 sin(t)− sin(6t)

Fig. 2. CSS example for a simple synthetic curve shown in Figure 1

The CSS representation works well for 2D cases with
properties like robustness to scale, various transformations,
partial occlusion etc. We now extend this framework to work
in 3D with point clouds and meshes.

B. Sliced Curvature Scale Space (SCSS)

The CSS representation described above works well for 2D
cases but extending it to 3D is not trivial. One possible ap-
proach is to use range images which encode some information
about the depth dimension, but this does not represent a 3D
system. We therefore adopt a slicing mechanism whereby we
view a 3D object as a set of infinitely close thin plate slices
packed together. We can then apply the ordinary CSS technique
for each of the slices and devise a way of combining the
results into a coherent feature which we call the SCSS (Sliced



Curvature Scale Space). It is important to note that the resulting
feature is independent of the slicing direction making the
representation invariant to viewpoints. Alternative approach to
slicing is to directly model the object surface but this generally
requires data of high resolution and surface closedness both is
which are rare in real world robotics applications. The overall
procedure of computing the SCSS is described in the following
sections.

Given a 3D object represented as a mesh or point cloud,
we take a fixed number of slices along an arbitrary direction
and extract the boundary curve of these slices. The choice of
slicing resolution is not trivial and has to be experimentally
checked to ensure fine features are not missed with the
discretization. Sometimes the points clouds and meshes of
object are not empty on the inside and hence it is necessary to
add additional measure to extract only the boundary contour
of the slices. Furthermore, depending on the sampling density
of the points clouds or meshes used, additional re-sampling
of the extracted boundary curves may be required. We call
these boundary contour curves slice signals. Re-sampling the
slice signals can be done using many approaches. We explored
the use of Kochanek-Bartels splines [19] and re-sampling
via Fourier transformation in the frequency domain by zero-
padding. The Kochanek-Bartels are cubic Hermit splines with
additional control of the tangent based on continuity, bias
and tension parameters. One can also ’follow’ the curve and
add new samples by checking the distance between existing
samples. The resulting set of slice signals are then used to
compute the SCSS feature by repeatedly packing CSS features
along the chosen slicing direction. The curvature in the SCSS
representation is then dependent on the slice value and is given
by Equation 6.

κ(s, c̄, σ) =
Xs(s, c̄, σ)Yss(s, c̄, σ)−Xss(s, c̄, σ)Ys(s, c̄, σ)

(Xs(s, c̄, σ)2 + Ys(s, c̄, σ)2)3/2
(6)

where c̄ is the slice value and the remaining terms are defined
analogous to Equation 1. The resulting SCSS representation is
a matrix whose row are the CSS images for the slice signals
at given slice values.

Some of the key properties of the original CSS represen-
tation include the fact that closed object remain closed under
the evolution process. Furthermore, noise in the signal may
create small contour changes but the maxima derived remain
the same and local information about the object is preserved.
The representation is also compact at only a few integers are
needed to represent an object. We posit that these feature
directly carry over to the SCSS representation with minimal
performance reduction. The compactness property is evident
in the fact that we still need only a few integers representing
the maxima in the SCSS matrix to encode an object. This
is number is definitely higher than in the CSS case, but we
develop techniques to reduce the number in the next sections
using dimensionality reduction. Also in the limiting case as the
number of slices increases to infinity, the SCSS representation
captures all the local information on a 3D object surface.

C. Feature Extraction

In order to use the SCSS representation developed in
the preceding sections in object recognition and registration

set-ups, the amount of information used to encode a single
object need to be reduced for efficient processing and also
to eliminate potential noise. It is important to remove only
unwanted elements and keep all informative pieces and is pos-
sible the structural relation between them. We explore standard
dimensionality reduction techniques of principal component
analysis and non-negative matrix factorization to achieve this.
We also investigate the extension of Eigen-CSS to 3D.

1) EigenSCSS: The original CSS representation in 2D
domain has one problem that if the contour curve is rotated by
some angle, the resulting CSS image representation is shifted
horizontally by a proportional amount which makes object
comparison non-trivial as the starting point has to be first
located. The Eigen-CSS method corrects this by computing
marginal sums of the CSS image to get a row sum r and
column sum c. The row sum is further made rotation invariant
by phase correlation using Equation 7. The column sum is
already rotation invariant. Together they are then used in object
comparison.

r̃ = |F−1( |F(r)| )| (7)

where F and F−1 are the Fourier Transform and its inverse
respectively. It is straightforward to extend this operation to
the SCSS representation to rid of the rotation issue. The
resulting row and column are then combined as a feature vector
x = [r̃c]T and x projected onto its eigenspace by a procedure
summarized in [16]

2) Dimensionality Reduction: To further process the data
in the SCSS representation we treat the SCSS matrix as
image and each pixel as feature and then utilize principal
component analysis to select a smaller subset of features that
maximally explain the object in terms of variance. The choice
of the number of principal components to retain is arrived
at experimentally by plotting the cumulative eigenvalues. In
particular, we use the non-linear version Kernel-PCA detailed
in [20] in order not to impose linearity constraints.

Because the SCSS representation does not contain any
negative values and the features sought are local in nature, it
is suits matrix factorization methods like NMF (Nonnegative
Matrix Factorization) for use in dimensionality reduction. The
NMF method which is detailed in [21] seeks to decompose
the original matrix X of features into smaller matrices W and
H so that the original vectors x can be represented as linear
combinations of columns of W weighted by components of
H. In fact is has been shown by [22], [23] that NMF can
produce a parts based representation of the data hence giving
interpretable models. Given a matrix A containing feature
vectors, NMF wishes to approximate this matrix by other low
rank matrices W and H by solving the following non-linear
optimization problem given in Equation 8.

min ||Am×n −Wm×kHk×n||2F , s.t. W ≥ 0,H ≥ 0 (8)

where k is the required rank. There is no global solution for the
minimization problem since it is only convex in either W or
H but not both. In practice multiple starting positions are tried
out while checking the error difference of found local minima
using metrics such as Frobenius norm described in the next
section. The resulting matrices W and H are usually sparse
meaning they can be stored efficiently. There are number of



algorithms for solving the optimization problem available in
standard literature accompanied by efficient implementations
in most common languages.

D. Classification of Objects

In order to recognize object using the features that we
have developed in the preceding sections, we employ a dis-
criminative learning approach to test the discriminative power
of the features. We use support vector machines (SVM)
detailed in [24] for classification of 3D objects in a multi-class
classification setup. Generally, given a dataset of observations
x and labels y, SVMs aim to find a model given by Equation 9.

y(x) = ωTφ(x) + b (9)

where ω is the set of parameters of the model, b is the bias
and φ(x) is feature space transformation using various kernels.
The most common kernels include radial basis functions
(RBF), linear and polynomial kernels. These common kernels
are shown in Equations 10, 11 and 12 for linear, polynomial
and RBF kernels.

k(x,x′) = x · x′ (10)

k(x,x′) = (x · x′ + 1)d (11)

k(x,x′) = exp(−γ||x− x′||2) (12)

In practice, the performance of a set of kernels is compared
to decide of which one to use. Other parameters of the SVM
are also tuned during experimentation.

IV. RESULTS

We demonstrate performance in object similarities by
showing similarities across a number of common objects. We
use the Frobenius norm as a metric to compute the similarities
between objects. Concretely, given a m × n sized matrix A,
the Frobenius norm is defined as the square root of the sum
of its absolute elements.

A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√

Tr(AAH) (13)

where Tr is the trace and AH is the conjugate transpose. In
order to compare two matrices A and B for similarity, we as-
sume that the matrices have similar sizes and that their columns
or equivalently rows correspond i.e. columns/rows one matrix
can be represented as a permutation of columns/rows of the
other matrix. Hence computing $ = ||A − B||F gives a
measure of how similar they are. If $ is close to 0, then the
matrices are very similar and vice versa. Figure 3 shows SCSS
representation of a cup both viewed as an image and in 3D,
the extracted maxima and the correspondence of the handle
feature indicated with the red box.

The object similarities are shown in Table I with the
common objects; coffee cup, banana, beer bottle, cereal box

and a football. It is worth nothing that the football is unusually
similar to a banana. This is because the banana without the end
features is just a football that is scaled and stretched along one
axis. These similarities are even better illustrated in Figure 4.

Cup Banana Cereal Box Beer Bottle Football
Cup 0 20027.477 19744.158 19768.158 19632.135
Banana 20027.477 0 14065.791 13633.769 9771.715
Cereal Box 19744.012 14065.791 0 16423.921 16040.761
Beer Bottle 19768.158 13633.769 16423.921 0 14622.983
Football 19632.135 9771.715 16040.761 14622.983 0

TABLE I. SIMILARITIES BETWEEN OBJECT BASED ON SCSS IMAGES

Fig. 4. Illustration of similarities between five objects (0=cup, 1-banana,
2=cereal box, 3=beer bottle, 4=football)

We also performed experiments to check the repeatability
of the SCSS representation when the slices are taken from
varying viewpoints of an object. In particular, we use the
Stanford bunny model and show two SCSS images generated
along different axes in Figure 5 and Figure 6. It is easy to
notice that the SCSS images are very close even though the
bunny has a very irregular surface, generating very different
contours for the different viewpoints. This irregular surface
gives the different impresion between the two images. We also
computed the numerical similarity between the two images
using the Frobenius norm discussed above and found 3470.917
which was much less than similarity values with the other five
objects and shown in Table II with the key value in bold.
The numerical comparison results serve to reinforce our claim
about the repeatability.

We also perform further experiments in learning for object
recognition. Since we have five object classes, we employ a
one-vs-the-rest strategy for each classification experiment and
repeat this for every dimensionality reduction method. The
results are shown in Table III and Figure 7. In each of the
cases the SVM was run with parameters C = 1.2, γ = 0.7
and degree of the polynomial equal to 3. The ’original’ data in
the table and plot correspond to dimensionality reduction by
rescaling of the original SCSS images. The SVM implemen-
tation was based on the standard libsvm [25] library via the
scikit-learn [26] python framework with tolerance of 0.001.
The associated dimensionality reduction procedures were also
implemented in scikit-learn. From the results, one can notice
that there is a slight improvement in recognition when the
features are first transformed using Kernel PCA. The difference



Fig. 3. Demonstration of maxima feature extraction and their correspondence to original object’s attributes (TOP LEFT: Original cup 3D points, TOP RIGHT:
The SCSS representation in 3D, BOTTOM LEFT: SCSS Image and BOTTOM RIGHT: Extracted maxima features)

Bunny side Cup Banana Football Cereal box Beer Bottle
Bunny front 3470.917 18414.378 10470.791 12464.294 13478.597 15797.838

TABLE II. SCSS SIMILARITY ON THE SAME OBJECT (BUNNY) FROM DIFFERENT VIEWPOINTS

Fig. 5. Bunny SCSS from front viewpoint, see Table II for numerical
comparison wth other objects

Fig. 6. Bunny SCSS from side viewpoint, see Table II for numerical
comparison with other objects



Kernel Type/Dim method Polynomial RBF kernel Linear
Original data 0.92 0.92 0.88
Kernel PCA 0.96 0.96 0.95
NMF 0.32 0.36 0.52

TABLE III. CLASSIFICATION RATES USING DIFFERENT SVM
CONFIGURATIONS AND DIMENSIONALITY REDUCTION METHODS

is small because the features processed are localized on the
object and hence simple by averaging neighbors is sufficient.
We attribute the poor performance of NMF dimensionality
reduction to insufficiency of training data given the strictness
in the optimization of NMF and the fact that NMF does not
provide a unique factorization. We however believe that with
more data the procedure may perform even better that Kernel
PCA given its parts based representation.
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Fig. 7. Recognition rates with various SVM kernel types and dimensionality
reduction methods

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed and developed the Sliced
Curvature Scale Space (SCSS) as a means for representing
3D objects using the sensor information acquired. The SCSS
representation is anchored on the already successful CSS
representation in 2D cases and directly ’carries over’ the
key properties making it a robust means of representing 3D
objects. As a drawback, the SCSS representation contains
large amounts of data that it not efficient for processing and
we have therefore proposed a number of standard and non-
standard ways of reducing the amount of data per object to be
stored when using SCSS representation. We have demonstrated
this using principal component analysis, non-negative matrix
factorization and simple rescaling of SCSS images and found
favourable results. We have further demonstrated that the
features extracted from our representation scheme are indeed
discriminative by way of classifying various objects using the
well known support vector machines framework. The exper-
iments with classification also serve to reinforce our belief
that the features are indeed localized on the object surfaces
which allows simple dimensionality reduction schemes to be
effective.

In the future, we believe that using a paralleled version of
our method for computing the SCSS representation will pro-
vide better speeds since all the key parts can be paralleled. We
also believe that having better trained learning models using
much more training data will improve the recognition rates. We

also wish for better theoretical work on connecting SCSS with
other scale space approaches that could provide insights into
new ways of generating SCSS and learning metrics for directly
comparing SCSS elements in higher dimensional spaces.
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