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Abstract. In this paper we present experimental results on a novel ap-
plication of visual attention mechanisms for the selection of points of
interest in an arbitrary scene. The imaging sensor used is a multi-modal
3D laser scanner. In a single 3D scan pass, it is capable of providing range
data as well as a gray-scale intensity image. The scanner is mounted
on top of an autonomous mobile robot and serves control purposes. We
present results achieved by applying the visual attention system of Itti et
al. [8] to recorded scans of indoor and outdoor scenes. The vast majority
of the primary attended locations pointed to scene objects of potential
interest for navigation and object detection tasks. Moreover, both sensor
modalities complement each other, resulting in a greater variety of points
of interest than one modality alone can provide.

1 Introduction

Common tasks in the control of autonomous mobile robots are collision avoid-
ance, navigation, and the manipulation of objects. In order to execute these tasks
correctly, the robot needs to detect objects and free space in its environment fast
and reliably. One method to find potential points of interest in the environment
is to model human visual attention.

In human vision, attention helps to identify relevant data and so to efficiently
select information from the broad sensory input. These effects are even more
desired in computational applications like image processing. Our work is based
on the model of visual attention by Itti et al. [8]. In this model, different features
like intensity, color and orientation are evaluated in parallel and fused into a
single saliency map that topographically codes salient locations in a visual scene.
These locations can be analyzed later by object recognition modules and the
found objects can help to accomplish robot control tasks.

This model, like many others, includes no depth feature, although in robotic
applications depth is often employed for object detection tasks. Objects usually
have range discontinuities at their borders which can help to detect them. Models
comprising depth as a feature typically use stereo vision to compute it [10, 2].
But stereo vision is computationally expensive, and only a fraction of the image
pixels contribute to the computed 3D point clouds.



As an alternative, 3D laser scanners are a class of sensors suitable for the fast
acquisition of precise and dense depth or range information. The multi-modal 3D
laser scanner used for our work [12] provides the technical means to acquire both
range data as well as an intensity image of a scene in a single 3D scan pass. Since
the data from the different sensor modalities result from the same measurement,
we know exactly which remission or intensity value belongs to which range data.
There is no need to establish correspondence by complex algorithms.

Such a multi-sensor offers new algorithmic possibilities. It is to be expected
that range data and remission values complement each other, providing some
redundancy that can be exploited. Contrasts in range and in intensity need not
necessarily correspond for one object. That is, an object producing the same
intensity like its background may not be detected in a gray-scale image, but
probably in the range data. On the other hand a flat object on a flat background
– e.g. a poster on a wall or a letter on a desk – that could be clearly distinguished
in an intensity image, may be too flat to be detected in the range data.

In this paper we use the data from the 3D laser scanner as input to the
attentional model by generating a special input image by combining range and
intensity data in a suitable way. We show the applicability of the laser data for
attentional mechanisms and compare these results to the ones from correspond-
ing camera images. For our experiments, we used recorded scan data from indoor
and outdoor scenes. The 3D laser scanner is mounted on top of a robot (Fig. 1),
and data acquisition is steered by the robot’s CPU.

The remainder of this article is structured as follows. We start with analyzing
the state of the art in robotic 3D scene imaging and in models of visual attention.
Then we describe our system setup, that is, the multi-modal 3D scanner and our
use of the visual attention system of Itti et al. In the main section we describe
the acquisition and evaluation of the data and analyze the results. Finally, we
summarize the arguments and give an outlook on future work.

2 State of the Art

Some groups have developed methods to build 3D volumetric representations of
environments using 2D laser range finders. Thrun et al. [7], Früh et al. [6] and
Zhao et al. [16] combine two 2D laser scanners for acquiring 3D data. One scanner
is mounted horizontally, one vertically. Since the vertical scanner is not able to
scan lateral surfaces of objects, Zhao et al. use two additional vertically mounted
2D scanners shifted by 45◦ to reduce occlusions [16]. The horizontal scanner is
employed to compute the robot pose. The precision of 3D data points depends
on that pose and on the precision of the scanners. All of these approaches have
difficulties to navigate around 3D obstacles with jutting out edges. They are
only detected while passing them.

A few other groups use true 3D laser scanners that are able to generate
consistent 3D data points within a single 3D scan. The RESOLV project aimed
at modelling interiors for virtual reality and tele-presence [11]. They employed a
RIEGL laser range finder. The AVENUE project develops a robot for modelling



urban environments [1]. This robot is equipped with an expensive CYRAX 3D
laser scanner.

The multi-modal 3D laser range finder employed for this work [12] is a precise,
fast scanning, reliable, and cost effective multi purpose sensor. Range data and
remission images are acquired in one 3D scan pass. The interpretation of these
data may require exhaustive time ressources. One approach to reduce these is
to use attentional machanisms that help to find regions of interest in the data.

Many computational models of human visual attention are based on the
psychological work of Treisman et al., known as feature-integration theory [13],
and on the guided search model by Wolfe [15]. The first explicit computational
architecture for controlling visual attention was proposed by Koch and Ullman
[9]. It already contains the main properties of the more elaborated model of
Itti et al. [8] which forms the basis of our work. This model belongs to the
group of feature-based models that use classical linear filter operations for feature
extraction, what makes them especially useful to real-world scenes. Another
approach provide the connectionist models, e.g. the selective tuning model by
Tsotsos et al. [14].

Attentional systems using depth information can be found in [10] and [2],
where stereo vision is applied to retrieve depth information. In robotics, atten-
tional mechanisms are often used to direct the gaze (i.e. a camera) to interesting
points in the environment. In [4], a robot shall look at people or toys and in [3] it
uses attention to play at dominoes. However, the use of attentional mechanisms
for robot control tasks is rarely considered.

3 Experimental Setup

3.1 The Multi-modal Custom 3D Laser Scanner

For the data acquisition in our experiments, we used a custom 3D laser range
finder (Fig. 1, left). The scanner is based on a commercial SICK 2D laser range
finder. In [12], the custom scanner setup is described in detail. The paper also
describes reconstruction and scan matching algorithms and their use for robot
applications. Here, we provide only a brief overview of the device.

A 3D scan is performed by step-rotating the 2D scanner around a horizontal
axis by a total of up to 105 degrees. The 2D scanner is very fast (processing
time about 13 ms for a 180◦ scan with 181 measurements) and precise (typical
range error ˜ 1 cm). A typical medium resolution 3D scan producing 256 layers
of 362 values each, with an angular resolution of 0.5 degrees both horizontally
and vertically, takes about 7.5 seconds and yields 92 672 data points. In lowest
resolution mode, a 3D scan measures 128× 180 points in about 1.75 seconds, in
highest resolution mode, it yields 256× 720 measurements in about 15 seconds.

The scanner can operate in two modes. In the usual mode, it returns range
data in a predefined resolution. In an alternative mode, it is able to yield two
different kinds of data for each measured point in a single scan pass: A distance
value and a remission value that quantifies the intensity of the reflected laser



Fig. 1. Left: The custom 3D range finder mounted on top of the mobile robot KURT
2. Right: An office scene imaged with the 3D scanner in remission value mode. Medium
resolution, 256 × 360 pixels

light. The latter data type can directly be converted into a gray scale intensity
image of the scanned parts of the scene. Compared to a normal camera image, the
remission value image is spherically distorted (Fig. 1, right). This effect is due
to the different measuring principle. The scanner has only one light sensitive
element, which receives a beam reflected by a rotating mirror (for horizontal
scanning), and is then rotated around a horizontal axis (for vertical scanning).

The current scanner software processes only the range data yielding, e.g., a
rough 3D surface approximation of the environment [12]. For robot control tasks
this needs to be processed further in order to identify objects and free space
for navigation. The attention system shall be used to quickly identify points of
interest as starting points for further segmentation and object detection tasks.

3.2 The Artificial Visual Attention System

Our experiments are based on an available implementation of the attentional
model of Itti et al. [8] (large central box in Fig. 2). In their model, input is
provided in the form of static color images taken from any kind of camera. The
input is first decomposed into a set of topographic feature maps usually using
intensity, color and orientation as feature dimensions. Each feature is computed
by a set of linear center-surround operations, which are particularly well-suited to
detecting locations which locally stand out from their surroundings. The feature
maps are fed into a master saliency map (SM) which combines salient points from
all feature maps. The most salient point in this map is found by a winner take
all network (WTA). After shifting the focus of attention (FOA) to this location,
local inhibition is activated in the SM, in the area of the FOA. This mechanism
models the inhibition of return (IOR) phenomenon observed in humans. It yields
dynamical shifts of the FOA and prevents the FOA from immediately returning
to a previously attended location.

In our system (Fig. 2), input images are generated from the range data and
remission values provided by the 3D scanner. The latter ones can immediately be
used as a gray-scale image in a straightforward manner. The depth values from
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Fig. 2. Simplified system architecture diagram

the range data require a more elaborate transformation. The basic approach is
to interpret the depth values of the range data as intensity values, representing
small depth values as light intensity values and large depth values as dark ones.
Since close objects are considered more important for robot applications, we
introduced an additional double proximity bias. Firstly, we consider only objects
within a radius of 10 m of the robot’s location. Secondly, we code the depth values
by using their square roots, so pixel p computes from depth value d by:

p =
{

I − (
√

d/max ∗ I) : d ≤ max
0 : d > max

(1)

with I = 255 denoting the maximum intensity value and max = 1000 the
maximum distance in cm. This measure leads to a finer distinction of range dis-
continuities in the vicinity of the robot and works better than a linear function.

In order to generate salient locations from both sets of scanner data in one
processing stage, we fuse a range and a remission image into one colorized image
which serves as input to the model of Itti et al. To accomplish this, the trans-
formed range data are treated as intensity values of the new input image, but the
remission values are coded as color (hue) information of the new input image, i.e.
we utilize the so far unused color feature dimension. High intensities are coded in
red hues, low intensities in greens (Fig. 3). This results in suitable color images
because the color feature map takes into account blue-yellow contrasts as well as
red-green contrasts. This mapping enables us to utilize the attentional system
as is without the need to adapt it. It would be also possible to code remission as
intensity and depth as color but for implementation reasons our versions yields
slightly better results. Of course, it is also still possible to use only either the
range or the remission image as input to the system.



Fig. 3. From left to right: A remission image, the corresponding range image and
the combined colorized image. In gray-scale its hardly possible to see the red-green
components from the remission image, so the image is very similar to the range image.

4 Results

We have tested our approach on scans of indoor as well as outdoor scenes. In
Fig 3, we show a remission image, a range image, and the combined color image.
Since the color image does not print well in gray-scale, we have decided to
display only the separately processed range and remission images in later figures
(Fig. 4, 5). The circles indicate the FOAs, showing only the first resp. the first
two FOAs. If there is more than one FOA shown, the arrow indicates their order
of detection.

In a first test set we show the general applicability of the 3D laser scanner as a
sensor for attentional mechanisms (Fig. 4). In the remission images (left column)
the presented objects are detected at the first try in almost all cases except in
the first row, where the cable reel is not regarded as an attentional point. In
the range images (middle column), the FOAs always find the presented objects,
because they are well separated from the background. These results show, that
data from the 3D-laser scanner is generally well-suited to find attentional points
as long as objects have a popping-out intensity or a certain distance to their
background. More difficult is the detection of objects in crowded scenes like
office environments (cf. Fig. 1) where these conditions are often not met.

The second test set shows a comparison of attentional points in either laser
sensor mode and in corresponding camera images (Fig. 5). The columns show,
from left to right, the remission, range and camera images each with some FOAs.
The first row shows an example where all modes obtain the same results: the
traffic sign is always detected by the first FOA.

An advantage of the laser data over the camera image can be found in row 2,
where the traffic sign is easily detected by remission and range image but missed
in the camera image. However the fire extinguisher in row 4 is only detected in
the camera image because of its red color (1. FOA).

The complementary effect of the two laser modes is illustrated in rows 3 and
4. In row 3, the 2nd FOA in the remission image is placed on the icon on the
ground marking a parking space for disabled people, which is impossible to be
detected in the depth image. On the other hand, range shows its value in the
last row, where the cable reel is detected immediately but missed completely



Fig. 4. Test result set 1: Attentional points in laser data. Columns from left to right:
Laser remission images with attentional points, laser range images with attentional
points, reference scene images.

in the remission image. The presented examples show in a convincing way the
advantage of having different sensor modes at hand.

To evaluate the performance of our system, we generated the first 5 FOAs of
15 scenes and tested whether they showed an object of potential interest (OPI).
An OPI is an object the robot could derive benefit from, e.g. obstacles like the
cable reel or landmarks like the fire extinguisher. The FOAs were generated for
remission and range images yielding 5 ∗ (2 ∗ 15) = 150 FOAs. Of these FOAs, 81
(54%) pointed to OPIs. Regarding this results one should consider that in most
of our scenes the number of salient spots that generate FOAs is greater than



Fig. 5. Test result set 2: Comparison of attentional points in camera images and in laser
data. Columns from left to right: Laser remission images, laser range images, camera
images. 1. row: same results in all modes. 2. row: traffic sign not found in camera
image. 3. row: lower traffic sign not found in camera image, handicapped person sign
not found in range image. 4. row: fire extinguisher only found in camera image, cable
reel only found in range image.

the number of OPIs, so usually not all foci point to OPIs. Furthermore, if there
is only one OPI in a scene, at most three of the first five FOAs can lie on an
OPI, because IOR forces the focus to go away from the OPI before it can return
again.

Tab. 1 shows the distribution of the FOAs. Of the first attended locations,
86% show a potential object of interest. The 2nd and 3rd ranked FOAs find less
objects, because there are frequently only one or two objects in the scene. The



Table 1. Distribution of the 5 most salient FOAs on a test set of 30 images.

Number of the FOA (decreasing saliency) 1. 2. 3. 4. 5.

Attended objects of potential interest [%] 86 56 30 53 43

4th and 5th FOAs have higher values than the 3rd one, because an inhibited
object often attracts the focus again after a while.

5 Conclusion and Outlook

We have introduced a new application of visual attention algorithms for robot
control purposes. The input images for the attentional system were provided by a
3D laser scanner. We have shown that the attentional system was able to generate
a high number of salient locations, both in indoor and outdoor real-world scenes.
It was demonstrated that under certain conditions range and remission values
complement each other.

Multi-modality of a 3D sensor opens a wide range of new algorithmic possi-
bilities, as we have demonstrated in this work. More expensive laser range finders
are able to yield up to two more data qualities, namely color and temperature.
These data could also be fed into the attention model, and it is to be expected
that this setup would yield even more complementary points of interest.

A limiting factor for the application of a scanning device is the low scan
speed. The minimum speed of 1.7 seconds for a low resolution 3D scan does
not allow for its use as single sensor for robot navigation in quickly changing
environments. But it is well-suited for applications like security inspection tasks
in facility maintenance and interior survey of buildings, for instance.

Since the scan speed is determined mostly by the scan mechanics, it makes
sense to consider doing without it. Currently, several research prototypes of
non-scanning 3D laser “cameras” are under development, e.g. at KTH [5] and
at DaimlerChrysler. Such a device can also return range values and a gray-scale
image, too, but faster than a scanning device.

Concerning visual attention a next step will be to use the laser scanner in
combination with a camera which can be used to utilize additional color in-
formation. Additionally it can be directed to points of potential interest to do
further processing like object recognition. The found objects can support colli-
sion avoidance, navigation and the manipulation of objects.

We also plan to develop a new system that combines both bottom-up, feature-
based generation of FOAs, and top-down modulating mechanisms. For robot
control, bottom-up attention is well-suited for exploring unknown environments,
whereas top-down modulation may alter scan paths in order to effectively search
for expected objects with known features like particular landmarks.
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