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Abstract
This article presents a robotic dataset collected from the largest underground copper mine in the world. The sensor mea-
surements from a 3D scanning lidar, a 2D radar, and stereo cameras were recorded from an approximately two kilometer
traverse of a production-active tunnel. The equipment used and the data collection process is discussed in detail, along
with the format of the data. This dataset is suitable for research in robotic navigation, as well as simultaneous localization
and mapping. The download instructions are available at the following website http://dataset.amtc.cl.
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1. Introduction

Located within the slopes of a volcano approximately 100
km south of Santiago, Chile, is the largest underground cop-
per mine in the world. It consists of seven sectors of inter-
connected mines and we were granted a special permission
to enter an active section of the mine, to collect a robotic
dataset through a 2 km traverse. Due to the unique oppor-
tunity to access an active section of the underground mine
with a robotic sensor suite, which has realistic variations
in lighting, changes in terrain, elevation, and the presence
of water, the dataset could be of interest to researchers in
providing robust solutions to robotic navigation and simul-
taneous localization and mapping (SLAM) in challenging
environmental conditions. Many other existing published
datasets (Furgale et al., 2012; Peynot et al., 2010; Pomer-
leau et al.,2012; Tong et al., 2013), and openly accessible
data (ASL, 2015; Bonarini et al., 2006; Magnusson et al.,
2007; Nüchter and Lingemann, 2015) already provide an
abundance of visual and lidar data. However, the particu-
lar location where the dataset was collected, along with the
availability of the radar data makes this a unique dataset.
The purpose of this paper is to describe the method in
which the dataset was generated, as well as how it can be
interpreted and accessed.

From a robotic mining perspective, this dataset is use-
ful for the preliminary development and evaluation of
autonomous vehicles for inspections of mines and caves,
abandoned mine exploration, as well as smart mining and
material exploitation, where the automated construction of

maps is necessary. From a more general robotic navigation
and mapping perspective, this dataset is useful for the val-
idation and the benchmarking of sensor fusion and SLAM
systems in a realistic environment with variable illumina-
tion and surface properties, mainly due to the presence of
water, uneven paths, and jagged walls. This dataset could
also be used for studying continuous time estimation meth-
ods as some of the sensors operated at low-frequency cycles
while the robot moved. Streams of information from indi-
vidual sensors can be used independently to evaluate differ-
ent types of algorithms such as visual odometry and point
cloud registration.

The Clearpath Robotics Husky A200 platform was used
to carry the various on-board sensors, which include a
stereo camera, a survey-grade 3D lidar, and a millimeter-
wave radar. Figure 1 shows the sensor platform as it
traversed a section of the tunnels that was relatively well
illuminated. Some parts of the tunnels were dark and had
a considerable amount of standing water, as well as water
dripping from the ceilings, which makes this dataset chal-
lenging to process. For instance, visual-only navigation is
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Fig. 1. The Husky A200 robot platform carrying a stereo camera,
3D lidar, and a radar, as it traverses through a tunnel in the copper
mine for dataset collection.

likely to fail in the parts of the tunnels without lighting,
while standing water can reflect lidar beams.

The dataset was collected over a four-hour access win-
dow in the tunnels. It is available in both human-readable
(text files and png images), as well as in a binary Robot
Operating System (ROS) bag format containing standard
ROS messages. For organizational purposes, the dataset
has been sub-divided into 87 parts. Of the 87 parts, 44
of them were recorded while the robot was stationary at
various locations inside the mine. Between the station-
ary measurement poses, the robot made 43 traverses dur-
ing which data from various sensors was also recorded.
Each of these traverses constitute one part of the dataset.
These 43 parts, along with the 44 parts for performing
the stationary measurements, make up the entirety of the
dataset.

The remainder of this article is structured as follows. Sec-
tion 2 describes in greater detail the robotic platform and
the sensors used in collecting the dataset. Section 3 details
the calibration and data collection process. Finally, Section
4 describes the format of the data and ways in which it can
be accessed.

2. Equipment and sensors

2.1. Robot platform

The Clearpath Robotics Husky A200 in Figure 1 was the
vehicle used for collecting the dataset. It carried the stereo
camera, 3D lidar, and radar on its upper sensor deck, while
hosting extra batteries for powering the sensors and two on-
board computers on its lower deck. The Husky is a skid-
steer vehicle, and both left and right wheel encoder readings
were recorded. The wheel-base distance between each pair
of front and rear wheels is 50 cm.

Fig. 2. A pair of images from the stereo camera taken at the start
of the dataset collection. In relation to Figure 6, the pose of the
robot is located at point A, and directed at point B with its for-
ward direction. A gate can be seen in the upper-left corner of both
images. The bright orange spots in the upper-center of the images
is a pool of water reflecting a set of ceiling-mounted warning
lights. The darker spots on the ground are damp surfaces.

2.2. Stereo camera

A Point Grey XB3 multi-baseline stereo camera was
mounted near the front of the Husky A200, with a forward-
facing orientation that is also downward-pitched at about 20
degrees to the horizontal plane of motion of the vehicle (see
Section 3 for its precise pose). The wider 24 cm baseline
configuration for the stereo camera was used. Synchronized
left and right (global-shutter) camera images were captured
at 16 Hz, both at a resolution of 1280 × 960 pixels per
image. A pair of images from the stereo camera taken from
the start of the dataset is shown in Figure 2. Note that in
many images, light from headlamps can be observed. Due
to safety regulations, they could not be turned off during
dataset collection.

2.3. 3D lidar

A Riegl VZ-400 survey-grade 3D lidar was mounted behind
the stereo camera. This sensor has a quoted range limit of
350 m, with a range accuracy of 5 mm, and beam diver-
gence of 0.3 mrad. It is capable of making 125, 000 mea-
surements per second. The generated point cloud contains
both positional and intensity information. The intensity
information is the relative reflectance in dB, which corre-
sponds to the ratio of the amplitude of the return signal to
the amplitude of a white flat (diffuse) target at the same dis-
tance and which is aligned orthogonal to the laser beam.
Thus, a white target has a 0 dB as intensity (Riegl Laser
Measurement Systems, 2009). A relative reflectance higher
than 0 dB results from targets reflecting with a directiv-
ity different from that of a Lambertian reflector, such as a
reflective marker being placed in the environment for sur-
veying. Non-reflections are not reported in this dataset, but
the direction (azimuth and elevation) of non-returns could
potentially be estimated by first converting a scan into polar
coordinates and then searching for the set of azimuth and
elevations with the missing data. Scans were obtained at
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Fig. 3. High resolution point clouds which were logged from the
Riegl lidar with high (whiter) pixel values corresponding to high
reflectance. Pixel intensities are also attenuated exponentially with
respect to the distance to the lidar. In relation to Figure 6, the top
scan was collected at Point B, where some reflective markers can
be seen (in bright white). These were used for evaluating the accu-
racy of the pose estimate provided in this dataset. The bottom scan
was recorded at point E.

two different resolutions. When the Husky A200 was sta-
tionary, high resolution point clouds were recorded at ver-
tical and horizontal resolutions of 0.04 degrees, and at a
scan rate of one full scan per 152.5 s1. When the robot
was moving between stationary scan positions, the lidar was
commanded to rotate and scan continuously at a higher fre-
quency of one (360 degree) rotation of the sensor every six
seconds. This produced scans at lower vertical and hori-
zontal resolutions of 1 degree. Two sample high resolution
lidar point clouds which were taken while the robot was
stationary are shown in Figure 3.

2.4. 2D radar

An AcuMine frequency-modulated continuous-wave high-
speed millimetric (94 GHz) 2D radar (Brooker et al., 2005)
was mounted near the rear of the Husky A200. The sen-
sor was operated in a continuous scanning mode where the
swashplate rotated at 1 Hz, with a radar sample rate of 435
Hz. Power return values were recorded every 0.5 m up to
an operational range of 200 m, and at angular resolutions of
0.68 degrees. The antenna beam width is 1.5 degrees, and
the beam is capable of penetrating small dust particles due
to its relatively longer wavelength when compared to the
lidar. An example of a (cropped) radar scan at a tunnel junc-
tion is shown in Figure 4. The origin of the sensor is located

Fig. 4. A 2D radar scan from point B of Figure 6. The sen-
sor is located towards the left side of the figure. The scale for
power return values in dB is on the right. Higher power returns
(from tunnel walls) are colored in red. A faint yellow halo cen-
tered about the sensor is caused by interference from the radar’s
power supply.

towards the left side of the figure. The faint yellow halo cen-
tered about the sensor is an artifact caused by interference
from the power supply of the radar. An in-depth explanation
of this phenomenon can be found in Adams et al. (2012).
At several scan locations, radar data is not available due to
hardware problems with the sensor. These locations have
been noted in Table 1. Fortunately, due to the range of the
sensor, sufficient overlaps exist between the collected radar
data to cover the traversed tunnels.

3. Data collection

3.1. Calibration

Prior to the dataset collection, calibration parameters for the
stereo camera, as well as the relative pose between each sen-
sor reference frame was determined. These frames are illus-
trated in Figure 5, with the precise relative transformations
reported in Table 2.

The base frame is centered between the four wheels of
the Husky A200, with the x-axis aligned with the forward
direction. The pose of the lidar frame is fixed by mechanical
design. The translation between the lidar and radar frame
is also determined by mechanical design, while the rela-
tive rotation was calculated by aligning the scans between
the two sensors. For the lidar and the stereo camera, dis-
tinct tie points were manually selected from multiple sets
of scans and images to calculate their relative transforma-
tion through least squares optimization. The intrinsic and
extrinsic calibration parameters for the stereo camera were
obtained by the standard checkerboard calibration process
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Table 1. Data description.

Data sequence Location (see Figure 6) Notes

00S Location A This is the start of the dataset, with the robot facing towards point B. Radar
information is not available.

01M, 01S From A to B Radar information is not available for 01M.

02M, 02S, . . . , 08S From B to C

09M, 09S, . . . , 11S From C to D The tunnel between 09S and 10S is dark, but light can be seen from the
tunnel ahead.

12M, 12S, . . . , 14S From D to E The tunnel between 11S and 14S is dark and turns gradually. Light seen in
the stereo camera images are from the safety headlamps of the operators.
A large amount of standing and dripping water is present.

15M, 15S Location E Ahead of the robot at 15S is a shaft for depositing material that will fall
into lower levels of the mine. Radar data is not available.

16M, 16S, . . . , 19S From E to D The tunnel is dark. Light seen in the stereo camera images are from
the safety headlamps of the operators. A large amount of standing and
dripping water is present. Radar data is not available for 16S and 17S.

20M, 20S, 21M, 21S From D to C The section traversed in 21M is initially dark. This is the same dark section
between 09S and 10S but traversed in the reverse direction.

22M, 22S, . . ., 25S From C to F This section is an uphill ascent. The tunnel section between 22S and 24S
is dark.

26M, 26S, . . ., 30S From F to G Radar data is not available from 28M to 30M.

31M, 31S, . . ., 33S From G to B This section is a downhill descent. At the end of 33M, the robot makes a
u-turn and climbs slightly uphill towards point G before stopping.

34M, 34S, . . ., 35M From B to G This section is an up-hill ascent. Traverse 35M passes through point G
without stopping.

35M, 35S, . . ., 37S From G to F

38M, 38S, . . ., 40S From F to C This section is a downhill descent. Traverse 38M is mostly a dark section
of the tunnel that corresponds to the dark section experienced between
22S and 24S. At the end of traverse 40M, the robot turns at junction C to
face the direction of junction B.

41M, 41S, . . ., 43S From C to B The dataset ends with the robot at point B

(Zhang, 2000). Specifically, the calibration pipeline imple-
mentation in OpenCV (Bradski et al., 2000) was used to
obtain the camera parameters in Table 3, which assumes the
Brown–Conrady distortion model (Brown, 1966).

3.2. Data recording

Two computers were installed on-board the Husky A200 for
dataset collection. The first computer, dedicated to data log-
ging, was connected to the Husky’s communication port for
controlling the motion of the vehicle and receiving wheel

encoder measurements. This computer was also connected
to the stereo camera and the lidar. The second computer was
a dedicated radar server, and all radar measurements were
relayed to the first computer for logging.

Throughout the four-hour traverse, the Husky stopped at
44 locations (including the starting position) to record high
resolution 3D lidar point clouds, each of about 25 million
points, while the robot remained stationary. In straight tun-
nel sections, the distances between the stopped locations
was between approximately 30 m and 40 m to obtain suf-
ficient overlap between the consecutively obtained point
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Table 3. Stereo camera calibration parameters, assuming the Brown–Conrady distortion model (Brown, 1966).

Parameter Left camera Right camera

Tangential
distortion p p1 = 0.000571 p2 = 0.000539 p1 = 0.000959 p2 = 0.000514

Radial

distortion k
k1 = −0.177067 k2 = −0.165155 k3 = −0.142561
k4 = 0.192250 k5 = −0.316417 k6 = −0.196546

k1 = 0.746517 k2 = −0.321874 k3 = −0.788330
k4 = 1.099655 k5 = −0.043691 k6 = −1.203787

Rectification

matrix R

⎡
⎣

0.999997 −0.002331 −0.001186
0.002327 0.999992 −0.003369
0.001194 0.003366 0.999994

⎤
⎦

⎡
⎣

0.999993 −0.003561 0.001203
0.003557 0.999988 0.003370

−0.001215 −0.003365 0.999994

⎤
⎦

Projection

matrix P

⎡
⎣

997.177459 0.000000 667.571815 0.000000
0.000000 997.177459 496.314240 0.000000
0.000000 0.000000 1.000000 0.000000

⎤
⎦

⎡
⎣

997.177459 0.000000 667.571815 −239.608595
0.000000 997.177459 496.314240 0.000000
0.000000 0.000000 1.000000 0.000000

⎤
⎦

Table 2. The relative transformations between sensor reference
frames. The rotation brings a point in frame (b) into frame (a), and
the translation is defined from frame (b) to frame (a) with respect
to the coordinates defined in frame (a).

Frames Rotation (quaternion) qa,b = [
qx qy qz qw

]
(a) (b) Translation (m) pb,a

a = [
px py pz

]

base lidar qa,b = [
0 0 1 0

]
pb,a

a = [
0.120 −0.003 0.840

]

lidar radar qa,b = [
0 0 0.707 0.707

]
pb,a

a = [
0.292 −0.003 0.401

]

lidar stereo left qa,b = [
0.584 0.573 −0.407 −0.407

]
pb,a

a = [−0.164 −0.106 −0.152
]

stereo stereo
left right qa,b = [

0 0 0 1
]

pb,a
a = [

0.240 0 0
]

clouds. These distances were increased when the robot was
in a section that it has previously traversed. Radar measure-
ments were also logged when the robot was stationary, but
the stereo camera images and the wheel encoder readings
were not.

Between the stationary scan poses, 43 traverses were
conducted by manually controlling the robot. During each
traverse, measurements from the wheel encoders, lidar,
radar, and stereo camera were logged. The lidar was config-
ured to scan at a lower resolution to increase the scanning
frequency while the robot was moving.

3.3. Time synchronization

A Network Time Protocol (NTP) daemon was used to syn-
chronize the clocks between the two on-board computers.
The first computer, dedicated to data logging, was setup as
the NTP server, while the radar server computer was the
NTP client. Sufficient time was allowed after booting up
both of the computers so that the client clock could adjust.
The average time difference is on the order of 10−3 s. Mea-
surements from the wheel encoders, lidar, and stereo cam-
era were time-stamped using the data logging computer’s
clock, while radar measurements were time-stamped using
the radar server’s clock.

3.4. Scan pose estimates by supervised
pointcloud alignment

The tunnel environment made obtaining the ground-truth
robot poses a challenging task due to both occlusions and
the aspect ratio of the long and narrow tunnels. Reflective
markers were placed at tunnel junctions, but it was infea-
sible to cover all the traversed tunnels with markers. Since
the Riegl is a survey-grade lidar, and the most accurate sen-
sor available on the robot, the pose estimates of the robot
at the 44 static scan positions were determined by using
the high-resolution 3D point clouds from the lidar. Man-
ual alignment was performed on the consecutive 3D point
clouds from the 44 static scanning positions. The batch
optimization method in Borrmann et al. (2008) for pose-
graph relaxation is then used to refine the alignment2, and
was used to generate Figure 6. The positional errors of the
reflective markers, of 50 mm diameter which were observed
from various poses, were used to evaluate the quality of
the solution, which is a common practice in surveying.
The average marker position error between scan pairs is
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Fig. 5. Sensor reference frames used in the dataset. The base
frame in which odometric data is expressed is centered between
the four wheels of the Husky. The x, y, and z axes are colored
in red, green, and blue, respectively. The precise transformations
between the sensor frames are listed in Table 2.

10.41 mm, with the standard deviation being 8.25 mm, and
the maximum error being 32.34 mm. The top-view map
shown in Figure 6 was constructed based upon all the point
clouds being plotted with the 44 pose estimates. Figure 7
shows the alignment between two overlapping point clouds.

3.5. The traverse

With reference to Figure 6, the approximately two-
kilometer traverse started at point A, and then proceeded
to the tunnel junction at point B. Next, the Husky traversed
to the tunnel junction at point C, and continued on to point
E through point D. In the vicinity of point D, there was no
lighting in the tunnel, and there was a significant amount
of standing water, as well as water dripping from the ceil-
ing. Point E is a material drop point, from here the robot
turned around and returned to the junction at point C. A
right turn was then made to point F, where again there was
a lack of lighting. The robot continued to the junction at

Fig. 6. A view of the map generated from the 3D point clouds
at each of the estimated scan poses. Various points of interests
are labeled. The data collection traverse initiated at point A and
continued to points B, C, D, E, D, C, F, G, B, G, F, C, and finally
returned to point B at the end of the dataset. Stationary scan points
are marked as crosses.

Fig. 7. Two overlapping point clouds shown in different colors,
showing the quality of the scan pose estimation method.

point B through point G, and then turned around to retrace
its path to point C through points G and F. At the junction
at point C, the robot turned right, and then returned to the
junction at point B.

4. Data format and usage

The dataset is divided into 87 parts. The data is provided in
human-readable text files and png images. The same data
is also available as ROS bag files for convenience. For the
human-readable files, the following is a description of their
file naming convention and their content. Note that each
data file also contains a one-line header that describes the
columns of the data.

4.1. File naming convention

All of the files with logged sensor data have names that start
with a double digit scan index. The letter following the scan
index is either an “S” or “M”, and denotes whether the data
was gathered when the robot was stationary, or while the
robot was moving between stationary scan points, respec-
tively. The data gathered while the robot was stationary are
indexed separately from the data gathered while the robot
was moving. The data files from the first stationary logging
position are indexed with “00”, while the data from the first
traverse are indexed with “01”. Hence, the dataset was col-
lected in the sequence 00S, 01M, 01S, 02M, ... , 43M, 43S.
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The approximate topological position of the robot in rela-
tion to Figure 6, along with notes of interest, are provided
in Table 1 for each sub-part. Following this alpha-numeric
index is a string identifying the type of data that the file
contains. This string can be “_encoder”, “_stereo”,
“_lidar”, “_radar” or “_timing”. The names of all
text files end with “.dat”, while for stereo image files, the
data type string “_stereo” is followed by “_”, a six digit
integer for the image sequence, “L” or “R” for the left or
right camera, and a “.png” file extension. The contents of
the text files will be described next.

4.2. Wheel encoder file

Each line of an encoder file contains

[time] [encleft] [encright]

where the time-stamp is in seconds, and encleft and encright

are the left and right encoder data, respectively, expressed
as distance traveled in meters.

Dead-reckoning estimates from the encoders can be inac-
curate due to the skid-steer mechanics of the Husky, as well
as the wet, slippery ground surface within the mine tunnels.

4.3. Stereo images

Text files ##X_stereo.dat contain the time-stamp
information for each indexed image pair. Each line in these
files is in the following format

[time] [index]

where the time-stamp is in seconds and the index is a six-
digit integer that corresponds to the index used in the file
names of the stereo image .png files.

4.4. Lidar point cloud file

Each line in a lidar data file represents one point and is
recorded in the format

[time] [x] [y] [z] [i]

where the time-stamp is in seconds, followed by the x, y, z
3D coordinate of a point in the lidar reference frame, and
its intensity, i, in dB. The center of the lidar is positioned at
( 0, 0, 0).

4.5. Radar file

A line in a radar data file corresponds to a scan sector (a
particular angle of the radar swashplate, and range bin), and
has the following format

[time] [x] [y] [p]

where the time-stamp is in seconds, followed by x, y, the 2D
coordinate representing the center of a received-signal bin
(from the discretized measurement space). The last field, p,
is the received power in dB.

4.6. Timing file

The timing information from all sensor messages are sum-
marized in the ##X_timing.dat files. This is to facil-
itate the reading of sensor messages from their respective
data files in the proper order. Each line in a timing file is in
the following format

[time] [S]

where the time-stamp is in seconds, and S is a letter rep-
resenting the sensor message. This can be W for the wheel
encoder, C for stereo camera, L for lidar, or R for radar.

4.7. Sensor pose file

The relative transformation between the sensor frames of
Table 2 are written in the frames.dat file. A transfor-
mation that brings a point to frame a from frame b using
a rotation quaternion qa,b = [

qx qy qz qw

]
and translation

vector pb,a
a = [

px py pz

]
in units of m is written in two lines

in the following format

[frame a] [frame b]
[qx] [qy] [qz] [qw] [px] [py] [pz]

4.8. Camera calibration file

The file camera.dat contains eight lines, with the first
four lines containing rectification information for the left
stereo camera, and the last four for the right stereo camera.
Each set of four lines lists, in order, the tangential distortion
parameters, radial distortion parameters, the rectification
matrix, and the projection matrix (both in row-major order).
The following are the lines corresponding to the left camera

p_l [p1] [p2]
k_l [r1] [r2] . . . [r6]
R_l [R1,1] [R1,2] . . . [R3,3]
P_l [P1,1] [P1,2] . . . [P4,4]

4.9. Estimated pose file

Estimates for the 44 stationary scan poses are recorded in
the file scanPoseEstimates.dat. Each line begins
with the data sequence identification (e.g. 00S for the first
stationary data collection pose), followed by its position and
orientation (expressed as a rotation quaternion) relative to
the first stationary data collection pose

[sequence] [qx] [qy] [qz] [qw] [px] [py] [pz]

4.10. Access

Instructions for downloading the dataset are available at the
website http://dataset.amtc.cl.
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Notes

1. See 2009 Riegl Laser Measurement Systems “Riegl vz-400”
data sheet

2. The source code for this method is part of the 3D
Toolkit, and is available for download at http://slam6d.
sourceforge.net.
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