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Abstract. Digital 3D models of the environment are needed in facility
management, architecture, rescue and inspection robotics. To create 3D
volumetric models of scenes, rooms or buildings, it is necessary to gage
several 3D scans and to merge them into one consistent 3D model. This
paper presents a system, composed of a fast and robust, autonomous
mobile robot, a precise, cost effective, high quality 3D laser scanner,
and reliable scan matching algorithms for measuring and reconstructing
environments, capable of matching two 3D scans within a fraction of a
second.
The proposed new software modules for scan matching are fast variants
of the iterative closest point algorithm (ICP) for consistent alignment.
Two applications are presented: First, the reconstruction of an office
environment, second, the fitting of sewer pipes into 3D data to detect
deviations from the spatial geometry.

1 Introduction

3D digitalization of environments without occlusions requires multiple 3D scans.
Autonomous mobile robots equipped with a 3D laser range finder are well suited
for gaging the 3D data. Due to odometry errors, the self localization of the robot
is an unprecise measurement and therefore cannot be relied on for registration
of the 3D scans in a common coordinate system. The geometric structure of
overlapping 3D scans has to be considered. Our approach uses a newly developed,
fast version of the well known Iterative Closest Point (ICP) algorithm, a method
for aligning three dimensional models purely based on the geometry.

To build complete volumetric models, multiple 3D scans have to be regis-
tered. Most published registration methods concentrate on pairwise alignment
of two 3D scans. Pulli concludes that extending these pairwise methods for a
multiview case has proven not to be straightforward, since simply chaining pair-
wise registration over all scans seldom works [13]. The goal of the work presented
here is to develop a method that does work. To acquire the multiple 3D scans a
robot equipped with the AIS 3D laser range finder explores the world and creates
reliably a precise and consistent 3D volumetric representation, in real-time.

Instead of using 3D scanners, which yield consistent 3D scans in the first
place, some groups have attempted to build 3D volumetric representations of
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environments with 2D laser range finders. Thrun et al. [10, 21], Früh et al. [8]
and Zhao et al. [23] use two 2D laser range finder for acquiring 3D data. One
laser scanner is mounted horizontally, the other vertically. The latter one grabs
a vertical scan line which is transformed into 3D points using the current robot
pose. Since the vertical scanner is not able to scan sides of objects, Zhao et al. use
two additional vertical mounted 2D scanner shifted by 45◦ to reduce occlusion
[23]. The horizontal scanner is used to compute the robot pose. The precision of
3D data points depends on that pose and on the precision of the scanner.

A few other groups use 3D laser scanners [16, 1]. The RESOLV project aimed
at modeling interiors for virtual reality and tele-presence [16]. They used a
RIEGL laser range finder on robots and the ICP algorithm for scan matching [4,
6, 22]. The AVENUE project develops a robot for modeling urban environments
[1], using a CYRAX laser scanner and a feature-based scan matching approach
for registration of the 3D scans in a common coordinate system [18]. The research
group of M. Hebert has reconstructed environments using the Zoller+Fröhlich
laser scanner and aims to build 3D models without initial position estimates,
i.e., without odometry information [11].

The paper is organized as follows. Sections 2 and 3 describe the used 3D
laser range finder and the mobile robots. Section 4 presents the scan match-
ing, followed by the application of matching sewer pipes in section 5. Section 6
concludes.

2 The AIS 3D Laser Range Finder

The AIS 3D laser range finder (Fig. 1) [19] is built on the basis of a 2D range
finder by extension with a mount and a small servomotor. The 2D laser range
finder is attached in the center of rotation to the mount for achieving a controlled
pitch motion. A standard servo is connected on the left side (Fig. 1) and is
controlled by the computer running RT-Linux, a real-time operating system
which runs LINUX as a task with lowest priority [19, 20]. The 3D laser scanner
operates up to 5h (Scanner: 17 W, 20 NiMH cells with a capacity of 4500 mAh,
Servo: 0.85 W, 4.5 V with batteries of 4500 mAh) per battery pack.

The area of 180◦(h)× 120◦(v) is scanned with different horizontal (181, 361,
721) and vertical (128, 256) resolutions. A plane with 181 data points is scanned
in 13 ms by the 2D laser range finder (rotating mirror device). Planes with
more data points, e.g., 361, 721, duplicate or quadruplicate this time. Thus a
scan with 181 × 256 data points needs 3.4 seconds. In addition to the distance
measurement the 3D laser range finder is capable of quantifying the amount of
light returning to the scanner. Fig. 2 (top row) shows an example of a reflectance
image of the GMD-Robobench, a standard office environment for the evaluation
of autonomous robots. The left image gives an distorted view of the scene: One
scan line of the figure corresponds to a slice of the 2D scanner, the rotation of the
scanner is not considered. The right image shows the scene with the distortions
corrected.
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Fig. 1. The AIS 3D laser range finder. Its technical basis is a SICK 2D laser range
finder (LMS-200).

The basis of the scan matching are algorithms for reducing points and de-
tecting lines. Next we give a brief description of these algorithms. Details can
be found in [19, 20].

The scanner emits the laser beams in a spherical way, such that the data
points close to the source are more dense. The first step is to reduce the data.
Therefore, data points located close together are joined into one point. The
number of these reduced points is one order of magnitude smaller than before
(Fig. 6 (right)). Furthermore noise within the data is reduced [20].

Second a simple length comparison is used as a line detection algorithm.
Given that the anticlockwise ordered data of the laser range finder (points
a0, a1, . . . , an) are located on a line, then for aj+1 the algorithm has to check if
‖ai, aj+1‖ /

∑j
t=i ‖at, at+1‖ < ε(j) to determine if aj+1 is on line with aj .

3 The Autonomous Mobile Robots

The Ariadne Robot (Fig. 3, left) is based on a commercial DTV and is about
80 cm × 60 cm large and 90 cm high. The mobile platform can carry a payload
of 200 kg at speeds of up to 0.8 m/s (about half the speed of a pedestrian). The
right and left driving wheels are mounted on a suspension on the center line of
the mobile platform. Passive castors on each corner of the chassis ensure stability.
The core of the robot is a Pentium-III-800 MHz with 384 MB RAM and real-
time Linux. One embedded PC-104 system is used to control the motor, internal
display and numerical keyboard and radio link of the robot. The platform is
rigged with two 2D safety laser scanners as bumper substitutes, one on the front
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Fig. 2. Two persons standing in a corridor of an office building (GMD Robobench).
Top left: Reflectance image (distorted). Top right: Corrected reflectance image with
distant points clipped. Bottom left: All points. Bottom right: Result of line detection
with orientation.

and the other on the rear of the robot. Each laser scans a horizontal plane of
180◦ of the environment. The robot has a weight of 250 kg and operates for
about 8 hours with one battery charge.

KURT2 (Fig. 3, left) is a mobile robot platform with a size of 45 cm (length)
× 33 cm (width) × 26 cm (hight) and a weight of 15.6 kg. Equipped with the
3D laser range finder the height increases to 47 cm and weight increases to 22.6
kg. KURT2’s maximum velocity is 5.2 m/s (autonomously controlled 4.0 m/s).
Two 90W motors are used to power the 6 wheels, whereas the front and rear
wheels have no tread pattern to enhance rotating. KURT2 operates for about
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Fig. 3. Left: The Ariadne robot platform. Right: KURT2. Both systems can be
equipped with the the AIS 3D laser range finder.

4 hours with one battery (28 NiMH cells, capacity: 4500 mAh) charge. The core
of the robot is a Pentium-III-600 MHz with 384 MB RAM and real-time Linux.
An embedded 16-Bit CMOS microcontroller is used to control the motor.

4 Range Image Registration

Multiple 3D scans are necessary to digitalize environments without occlusions.
To create a correct and consistent model, the scans have to be merged into
one coordinate system. This process is called registration. If the localization
of the robot with the 3D scanner were precise, the registration could be done
directly by the robot pose. However, due to the unprecise robot sensors, the self
localization is erroneous, so the geometric structure of overlapping 3D scans has
to be considered for registration.

Scan matching approaches can be classified into two categories:

Matching as an optimization problem uses a cost function for the quality
of the alignment of the scans. The range images are registered by determining
the rigid transformation (rotation and translation) which minimizes the cost
function.

Feature based matching extracts distinguishing features of the range images
and uses corresponding features for calculating the alignment of the scans.

The matching of 3D scans can either operate on the whole three-dimensional
scan point set or can be reduced to the problem of scan matching in 2D by
extracting, e.g., a horizontal plane of fixed height from both scans, merging
these 2D scans and applying the resulting translation and rotation matrix to all
points of the corresponding 3D scan.
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Matching of complete 3D scans has the advantage of having a larger set of
attributes (either pure data points or extracted features) to compare the scans.
This results in higher precision and lowers the possibility of running into a local
minimum of the cost function. Furthermore, using three dimensions enables the
robot control software to recognize and take into account changes of height and
roll, yaw and pitch angles of the robot. This is essential for robots driving cross
country and in pipes.

4.1 Matching as an Optimization Problem

The following method for registration of point sets is part of many publications,
so only a short summary is given here. The complete algorithm was invented in
1991 and can be found, e.g., in [4, 6, 22]. The method is called Iterative Closest
Points (ICP) algorithm.

Given two independently acquired sets of 3D points, M (model set, |M | =
Nm) and D (data set, |D| = Nd) which correspond to a single shape, we want
to find the transformation consisting of a rotation R and a translation t which
minimizes the following cost function:

E(R, t) =
Nm∑

i=1

Nd∑

j=1

wi,j ||mi − (Rdj + t)||2 . (1)

wi,j is assigned 1 if the i-th point of M describes the same point in space as the
j-th point of D. Otherwise wi,j is 0. Two things have to be calculated: First,
the corresponding points, and second, the transformation (R, t) that minimize
E(R, t) on the base of the corresponding points.

The ICP algorithm calculates iteratively the point correspondences. In each
iteration step, the algorithm selects the closest points as correspondences and cal-
culates the transformation (R, t) for minimizing equation (1). Besl et al. proves
that the method terminates in a minimum [4]. The assumption is that in the
last iteration step the point correspondences are correct.

In each iteration, the transformation is calculated by the quaternion-based
method of Horn [12]. A unit quaternion is a 4 vector q̇ = (q0, qx, qy, qz)T , where
q0 ≥ 0, q2

0 + q2
x + q2

y + q2
z = 1. It describes a rotation axis and an angle to

rotate around that axis. A 3 × 3 rotation matrix R is calculated from the unit
quaternion according the the following scheme:

R =




(q2
0 + q2

x − q2
y − q2

z) 2(qxqy + qzq0) 2(qxqz + qyq0)
2(qxqy + qzq0) (q2

0 − q2
x + q2

y − q2
z) 2(qyqz − qxq0)

2(qzqx − qyq0) 2(qzqy + qxq0) (q2
0 − q2

x − q2
y + q2

z)


 .

To determine the transformation, the mean values (centroid vectors) cm and
cd are subtracted from all points in M and D, respectively, resulting in the sets
M ′ and D′. The rotation expressed as quaternion that minimizes equation (1)
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is the largest eigenvalue of the cross-covariance matrix

N =

(
(Sxx + Syy + Szz) (Syz + Szy) (Szx + Sxz) (Sxy + Syx)

(Syz + Szy) (Sxx − Syy − Szz) (Sxy + Syx) (Szx + Sxz)
(Szx + Sxz) (Sxy + Syx) (−Sxx + Syy − Szz) (Syz + Szy)
(Sxy + Syx) (Syz + Szy) (Szx + Sxz) (−Sxx − Syy + Szz)

)
,

with Sαβ :=
∑Nm

i=1

∑Nd

j=1 wi,jm
′
iαd′jβ . After the calculation of the rotation R, the

translation is t = cm −Rcd [12]. Fig. 4 shows three steps of the ICP algorithm
in registering two 3D scans in our GMD Robobench environment1.

The time complexity of the algorithm mainly depends on determination of
the closest points (brute force search O(n2) for 3D scans of n points). Several
enhancements have been proposed [4, 17]. We have implemented kd-trees as pro-
posed by Simon et al., combined with the above-described reduced points. Table
1 summarizes the results of different experiments on a Pentium-III-800. The
starting point for optimization is given by the robot odometry.

Table 1. Computing time of the different 3D scan matching implementations for two
scans of the GMD Robobench (Fig. 4). The number of all points is 46336 (181 × 256)
and the number of the reduced points is 4910.

points used time # iter.

all points & brute force 3 hours 47 min 27
reduced points & brute force 3 min 6 sec 25
all points & kD–tree 6 sec 27
reduced points & kD–tree <1.4 sec 25

4.2 Matching Multiple 3D Scans

To digitalize environments without occlusions, multiple 3D scans have to be
registered. After registration, the scene has to be globally consistent. A straight-
forward method for aligning several 3D scans is pairwise matching, i.e., the new
scan is registered against the scan with the largest overlapping areas. The lat-
ter one is determined in a preprocessing step. Alternatively, Chen and Medioni
[6] introduced an incremental matching method, i.e., the new scan is registered
against a so-called metascan, which is the union of the previously acquired and
registered scans. Each scan matching has a limited precision. Both methods ac-
cumulate the registration errors such that the registration of many scans leads
to inconsistent scenes (Fig. 5) and to problems with the robot localization.

Pulli presents a registration method that minimizes the global error and
avoids inconsistent scenes [13]. This method distributes the global error while
the registration of one scan is followed by registration of all neighboring scans.
1 For an animation of this result please refer to the following website:
http://www.ais.fhg.de/ARC/3D/videos.
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Fig. 4. Registration of two 3D-scans of an office environment with the ICP algorithm.
Top left: Initial alignment based on odometry. Top right: Alignment after 2 iterations.
Bottom left: after 5 iterations. Bottom right: Final alignment after 25 iterations. The
scans correspond to Fig. 2. The number of sampled 3D points is 46336 per 3D scan
and the number of reduced points is 4910.

Other matching approaches with global error minimization have been published,
e.g., by Benjemaa et. al. [2] and Eggert et. al. [7].

Based on the idea of Pulli we have designed a method called simultaneous
matching. Here, the first scan is the masterscan and determines the coordinate
system. This scan is fixed. The following steps register all scans and minimize
the global error:

1. Based on the robot odometry, pairwise matching is used to find a start
registration for each new scan. This step speeds up computation.
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(a)

(b)

(c)

(d)

Fig. 5. Results of the scan matching of 20 scans (top view). All 3D scans were
taken in an office environment, the GMD Robobench, the first one corresponds
to Fig. 2. (a) Pairwise matching, (b) incremental matching, (c) 3D scan matching
with edge points and (d) simultaneous matching. 3D animations can be found at
http://www.ais.fhg.de/ARC/3D/videos.
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2. A queue is initialized with the new scan.
3. Three steps are repeated until the queue is empty:

(a) The current scan is the first scan of the queue. This scan is removed
from the queue.

(b) If the current scan is not the master scan, then a set of neighbors (set
of all scans that overlap with the current scan) is calculated. This set of
neighbors form one point set M . The current scan forms the data point
set D and is aligned with the ICP algorithm.

(c) If the current scan changes its location by applying the transformation,
then each single scan of the set of neighbors that is not in the queue, is
added to the end of the queue.

Note: One scan overlaps with another, iff more than 250 corresponding point
pairs exist. To speed up the matching, kD trees and reduced points are used (see
Table 1).

In contrast to Pulli’s approach, the proposed method is totally automatic and
no interactive pairwise alignment needs to be done. Furthermore the point pairs
are not fixed [13]. Fig. 5 shows results of the scan matching using 20 scans taken
in the GMD Robobench. Pairwise matching (a) works sufficient, incremental
matching shows most outliers (b), and simultaneous matching (d) reconstructs
the corridor perfectly.

4.3 Feature Based Matching

Sappa et al. suggest to extract edge points and use them for the creating point
pairs [15]. Based on our line representation of the scene (Fig. 2, bottom right)
the end points of every line are used to create an edge base representation.
Fig. 6 (left) shows an edge-based representation in comparison with the reduced
points (right). Fig. 5 (c) shows the result of the registration process with the
edge points (pairwise matching). The registration speed is good due to the lower
number of points. Unfortunately, the matching results are insufficient for office
environments, because of the simple structure of the scanned scene. The office
environment (corridors) mainly consists of floor, ceiling and walls.

4.4 Scanning in dynamic environments

Dynamic objects lead to errors in the resulting 3D volumetric model with arte-
facts or misalignments. Misalignments result in an incorrect self localization of
the mobile robot. To eliminate these errors, the robot monitors the environment
with its other sensors, e.g., the horizonal mounted 2D laser range finders or cam-
eras. If the sensors detect dynamic objects with the method of the differential
frames, the robot simply repeats the 3D scan. Data points belonging to dynamic
objects are not yet isolated and removed.
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Fig. 6. Left: The scanned scene of the GMD Robobench (see Fig. 2) in an edge based
representation using the simple line detection routine. Right: 4910 reduced points (en-
larged).

5 Mapping Shapes with Scan Matching

Another application of the ICP algorithm is the mapping of arbitrary shapes into
a scanned scene. For a given shape, the model set M is computed by calculating
the closest points from an abstract description of the shape, e.g., a plane for
mapping a wall, or a cuboid for mapping an office cubicle. Similar to minimizing
the total error between two sets of points, the selected shape is being transformed
(rotated & translated) in order to match it into the given scene.

5.1 Matching Sewerage Pipes

Inspecting communal sewer systems is a potential application for mobile robots
[3, 14]. Two basic problems of such inspection robots are self localization and the
reconstruction of the sewerage pipe system. These problems are addressed in this
section. Similar to matching sewerage pipes is the problem of mapping cylinders
in 3D data, which is well known in the reconstruction of industrial environments
with pipes and tubes [5]. State of the art is semi-automatic reconstruction [9].

For matching tubes into scanned pipes, the closest point on the pipe surface
is calculated as follows: Given a scan point x ∈ R3 and a pipe, described by two
points a and b (a,b ∈ R3) and the radius r (Fig. 7), the closest point c to x on
the pipe surface is

n =
a− b
‖a− b‖ , s =

< x− a,n >

< n,n >
(2)

c = s · n + r · x− s · n
‖x− s · n‖ (3)
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r

b

a

Fig. 7. A sewerage pipe is modeled by two points a and b and the radius r.

with n the norm vector between a and b and s the projection of x to n.
The following steps match pipes with the pipe model:

1. A default tube is inserted into the 3D scan to initialize the matching (Fig.
8 top left).

2. An optimal rotation and translation matrix is calculated with the ICP algo-
rithm (Fig. 8 top right).

3. The radius of the tube is gradually enlarged or reduced until the tube
matches the 3D points, i.e., until the error function of the ICP algorithm
is minimal (Fig. 8 bottom).

At the beginning, the last two steps are iterated with a reduced number of points
to rapidly calculate the transformations. Finally the matching is refined with all
points. The result is given in Fig. 8 and 9.2

With the proposed matching, a pipe is reconstructed. Due to the exact match-
ing of the tube and the high precision of the scanner, deviations and abnormali-
ties like pipe deformations are also detected. Furthermore obstacles, e.g., a brick
as given in the middle picture of Fig. 9 are found. The self localization of the
robot is improved, because the transformations calculated by the matching pro-
cess is applied inversely to the robot pose.

6 Conclusions

3D digitalization of environments without occlusions requires multiple 3D scans.
This paper has presented a system, composed of an autonomous mobile robot, a
3D laser scanner, and scan matching algorithms for measuring and reconstruct-
ing of environments. Basic scan matching algorithms based on the ICP algorithm
have been accelerated and extended to consistent multiview scan registration.
A sophisticated reduction of scan points enables to maintain soft real time con-
straints in 3D scan matching. Multiview registration (simultaneous matching)
based on the mutually alignment of a 3D scan with its neighbors generate overall
consistent scenes.
2 For an animation of the matching process please visit:
http://www.ais.fhg.de/ARC/3D/tube.gif.
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Fig. 8. Matching of a tube into a scanned sewerage pipe (first the tube is being rotated
& translated into the correct position, then the size is being adapted)

Several applications, namely, the 3D reconstruction and modeling, deviation
and deformation detection and 3D obstacle detection, have been presented. The
algorithms have been tested in two different environments, i.e., in indoor, office
environments and sewerage pipes. Further applications, e.g., deformation detec-
tion in sewer pipes have to be tested. An additional advantage of the proposed
systems is that the AIS 3D laser range finder measures actively distances and
reflections. Vision-based approaches for sewerage pipes need additional power
consuming light sources.

Future work will concentrate on more experiments in sewerage pipes, on scene
interpretation, view point planning and on sensor fusion with camera images for
office environments.
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Fig. 9. Distances between scanned points and ideal tube. Left: A tube with point-
to-tube vectors and without adjusted radius. Middle: Fully processed tube with an
obstacle (a brick). Right: KURT2 inside of a test sewer network.
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