
EFFICIENT POINT CLOUD COLLISION DETECTION AND ANALYSIS IN A TUNNEL
ENVIRONMENT USING KINEMATIC LASER SCANNING AND K-D TREE SEARCH

Johannes Schauera, Andreas Nüchterb

a School of Engineering and Science,
Automation Group, Jacobs University of Bremen gGmbH,

Campus Ring 1, Bremen 28759, Germany
j.schauer@jacobs-university.de

b Informatics VII : Robotics and Telematics, Julius-Maximilians-University Würzburg,
Am Hubland, Würzburg 97074, Germany

andreas@nuechti.de, http://www.nuechti.de

ABSTRACT:

Measuring the structure gauge of tunnels and other narrow passages has so far been the only way to evaluate whether large vehicles
can pass through them. But especially for very long vehicles like train wagons and their cargo, the structure gauge is an insufficient
measure because the center part of the vehicle between two bogies will inevitably leave the swept volume of its cross section when
moving along any other trajectory than a straight line perpendicular to its cross section. In addition, the vehicle as well as the cargo
must keep a minimum safety margin from the environment at all points of its trajectory. This paper explores an automated method to
check for possible collisions of a model represented by a 3D point cloud moving through the 3D point cloud of an environment. We
were given environment data of a train track through a narrow tunnel where simply relying on the structure gauge would indicate that a
given wagon would pass through without any collision even though in reality, the train wagon would collide with the inner tunnel wall
inside a sharp turn of the tracks. The k-d tree based collision detection method presented in this paper is able to correctly highlight
these collisions and indicate the penetration depth of each colliding point of the environment into the model of the train wagon. It can
be generalized for any setup where two static point clouds have to be tested for intersection along a trajectory.

1. INTRODUCTION AND PROBLEM FORMULATION

The minimum clearance outline or structure gauge has an im-
portant place in the planning of railroad tracks. It is the swept
volume of the minimum cross section that must be kept free of
any obstacles. A similar measure is the loading gauge which is
the swept volume of the cross section of a train wagon moved
along a track. The difference between the two is the engineer-
ing tolerance or clearance. The structure gauges along a track
together with the maximum loading gauge determine whether or
not a train with certain cargo can go along a given route or how
much space around new tracks has to be kept clear and is subject
to a number of decades old standards and regulations (Siegmann,
2011).

Unfortunately the structure gauge is an unsatisfying measure within
turns of the tracks. Figure 1 visualizes the problem. The curva-
ture represents the loading gauge of the train wagon in gray. The
dark gray areas represent the volume of the train wagon which is
outside of its loading gauge during the turn.

The algorithm that will be presented in the following requires
three objects as input: the pointcloud of the environment which
was collected by driving a Optech Lynx Mobile Mapper along the
train tracks but can also be acquired using the methods presented
in (Elseberg et al., 2014). The second input is a point cloud of the
model which was acquired by taking seven scans of a real train
wagon with a Riegl VZ-400 laser scanner and then registering
them using 3DTK (Nüchter et al., 2010). The third input is the
trajectory of the train tracks.

The goal is to determine which points of the environment collide
with the model on its path, given a certain safety margin (the
minimal allowed clearance) and how deep any colliding points
penetrate the model. To this end a k-d tree of the environment was
created, the model was moved through it along its trajectory and
a k-d tree search was performed around the points of the model

Figure 1: Top view of the train wagon (in dark and light gray)
and its curved loading gauge as it passes through a turn. The
dark gray areas mark the volumes of the train wagon outside of
its loading gauge. The striped volume indicates the volume of the
train wagon between its two bogies. The dotted line indicates the
wagon’s trajectory.

to find colliding points and their penetration distance.

The contributions of this paper can be summarized as:

• a method to perform easily parallelizable collision detec-
tion of a single arbitrary (and deformable) point cloud (the
model) with a static environment in two variants

• two easily parallelizable methods to calculate penetration
depth of the model with the environment

• a highly optimized k-d tree implementation and query func-
tions to perform collision detection

A right handed coordinate system will be assumed. With refer-
ence to the train wagon, the z-axis will be the up-vector and the
train wagon will be moved along the y-axis. The coordinate sys-
tem of the train wagon has its origin in its center of mass. This is
important for calculating rotations and penetration depths.

The rest of the paper is organized as follows: The next section
covers related work to the one presented in this paper. Section
three presents the k-d tree data structures and algorithms. Section

four and five present our methods for collision detection and pen-
etration depth calculation using the k-d tree, respectively. Section
six show benchmark results while section seven concludes this
paper.

2. RELATED WORK

Collision detection, which is also called interference detection or
intersection searching, is a well studied topic in computer graph-
ics (Jiménez et al., 2001, Lin and Gottschalk, 1998) because of
its importance for dynamic computer animation and virtual re-
ality applications (Tzafestas and Coiffet, 1996). On the other
hand, their work is limited to collision detection between geo-
metric shapes and polygonal meshes whereas most sensor data is
acquired as point clouds. While collision detection is also rele-
vant for motion planning in the field of robotics, it is a less stud-
ied problem there. Collision detection between point clouds was
for example researched by Klein and Zachmann (Klein and Zach-
mann, 2004) who use the implicit surface created by a point cloud
to calculate intersections. Another example is the recent work by
Hermann et al. (Hermann et al., 2014) who use voxels to check
for spatial occupancy for robot motion planning.

Existing techniques make use of very similar approaches. One
method is to apply a spatial hierarchical partitioning of the input
geometry using octrees (Jung and Gupta, 1996), BSP-trees (Ar et
al., 2000) or k-d trees (Held et al., 1995) . Other solutions ap-
ply regular partitioning using voxels (Garcia-Alonso et al., 1994,
Hermann et al., 2014). The goal of any partitioning is to be able
to quickly search and check only the relevant geometries in the
same or neighboring cells. The method presented in this paper
will make use of a hierarchical k-d tree for the environment in
combination with a regular partitioning of the model into a grid
of bounding spheres.

Another method is to use hierarchies of bounding volumes like
spheres (Hubbard, 1996), axis aligned bounding boxes, oriented
bounding boxes (Gottschalk et al., 1996) or discrete oriented poly-
topes (Klosowski et al., 1998). Optimizing the regular grid that
was generated for the model into a hierarchical structure will be
left for future work.

Collision detection methods can be divided in those for static and
deformable objects (Teschner et al., 2003, Bergen, 1997). While
the method presented in this paper does not easily allow changes
in the environment because it would require a recalculation of its
k-d tree, arbitrary changes in the point cloud of the model are
possible without any performance impacts.

Another classification is whether the algorithm easily allows mul-
tiple moving objects. Using a brute-force approach such algo-
rithms would have a runtime of O(n2) for n objects because ev-
ery possible pair of objects is checked for collisions. Modern
approaches like the I-COLLIDE system (Cohen et al., 1995) use
a “sweep and prune” approach to minimize the amount of nec-
essary checks. Another approach is to dynamically adjust the
search tree to account for object movements (Luque et al., 2005).
The method in this paper does not handle multiple moving mod-
els.

Calculating the penetration depth of one object into another is
important to calculate the force of collisions and respond ac-
cordingly in virtual reality applications (Tzafestas and Coiffet,
1996). It is also important for visualization purposes, to differ-
ently highlight objects reaching into a safety margin with an indi-
cation of how much they violate the constraint. This application
was shown in prior work on this topic by the authors of this pa-
per (Elseberg et al., 2014).

Figure 2: Boxes are in UML, relationships (arrows) are not.
KDTreeImpl is templated by KDtreeIndexed with the param-
eters listed in the comment. The node and leaf structure are a
C++ union. The paramsmember of KDTreeImpl is static. UML
packages are used to indicate file membership and to group for
readability. Only the fixedRangeSearch search function and its
recursive counterpart FixedRangeSearch are listed for brevity.

3. DATA STRUCTURES FOR EFFICIENT COLLISION
DETECTION AND DEPTH OF PENETRATION

CALCULATION

In this section our highly-optimized k-d tree implementation is
presented. It is implemented in 3DTK in C++. It currently im-
plements multiple search functions, can be parameterized to be
used with 3D point data of different precision and container type,
allows to present search results as pointers, array indices or as 3D
coordinate data and allows parallel execution through OpenMP.

Tree data structure Consider the object relationship sketched
in figure 2. Each node in the k-d tree stores an integer npts

indicating the number of points this node contains. If this value
is non-zero, the node is a leaf node. Otherwise, the node is an
inner node. A union structure stores data depending on the node
type. Inner nodes store their center coordinate, the node size, the
coordinate axis by which the node is split and pointers to the two
children the node is split into. Leaf nodes store a pointer p to
an array representing the contained points. The static member
params of type KDParams stores information associated with the
current k-d tree search. As a static member, this container is only
stored in memory once.

Creation of a k-d tree A k-d tree is created by calling a node’s
create function with the points to fill the tree with. If This func-
tion gets passed less than 10 points, then a leaf node is created.
Otherwise the axis aligned bounding box of the passed data is cal-
culated and stored, an axis aligned plane to split the data is found
by finding the longest axis of the bounding box and the data is
partitioned into the new two child nodes. The function create is

then called recursively with the points falling into each subtree,
respectively.

Searching the k-d tree Spacial search in point clouds can be
parameterized by two properties: the location (where to search
for results) and the subject (what to return). The following five
search areas are implemented by 3DTK:

(a) radius r around a point P1

(b) radius r around an infinite line defined by a point P1 and a
direction vector v

(c) radius r around an infinite ray defined by P1 and v

(d) radius r along a finite line segment defined by points P1 and
P2 and

(e) inside an axis aligned bounding box defined by P1 and P2 as
the corners with minimum and maximum coordinate values,
respectively

Additional search volumes that could be added in the future would
be oriented bounding boxes, cylinders or general polytopes. In
most volumes, searches for the following result types can be per-
formed:

(1) the point closest to P1

(2) the k points closest to P1

(3) all points within the search volume

(4) the point closest to the given line, ray or line segment

(5) the k closest points to the given line, ray or line segment

After eliminating the inapplicable combinations, one ends up with
19 meaningful search functions. A full list is omitted for brevity.
For example, the common nearest-neighbor search (NNS) would
be searching for the closest point to P1 (1) in a radius r around a
point P1 (a). For the collision detection method presented in this
paper, the following four functions are needed:

• FindClosest: closest point to a coordinate: (a) and (1)

• fixedRangeSearch all points around a coordinate: (a) and
(3)

• segmentSearch 1NearestPoint closest point to a line seg-
ment: (d) and (1)

• segmentSearch all all points around a line segment: (d)
and (3)

fixedRangeSearch The general operation of the search func-
tions will be presented by using the function fixedRangeSearch
as an example. The functions is implemented in the class
KDTreeIndexed. It sets up the KDParams structure with
the search parameters and then calls the recursive function
FixedRangeSearch (notice the leading underscore) imple-

mented in KDTreeImpl.

All recursive search functions can be divided into three functional
parts. Firstly, if the node is a leaf node, then all points the node
contains are checked for satisfiability of the search criteria. Sec-
ondly, if the node is an inner node, then a check is done whether
the node can possibly contain parts of the result. If not, the func-
tion returns. Otherwise, thirdly, the search recurses into one or
both child nodes.

The recursive function FixedRangeSearch returns all points
within a radius r around a point P . The satisfiability check
for leaf nodes involves checking the distance criteria of radius

r around P and pushing the point to the result vector if its dis-
tance from P is less than r. The parameterized functions of type
IndexAccessor and ParamAccessor are used to return coordi-
nate data or data of the return type for each point in the leaf node,
respectively. They do not pose a performance overhead as they
are usually inlined by the compiler.

To check whether to abort, the following fast heuristic is used.
Suppose an intermediate node inside the k-d tree with center co-
ordinate C and a bounding box size of dx, dy and dz . Suppose
the six sides of the node’s axis aligned bounding box form six
axis aligned planes: each plane being the infinite extension of
the six sides of the node’s bounding box. Opposing sides of the
node’s bounding form pairs of parallel planes. Three of these
plane pairs are created, one pair along each dimension. Then the
distance of P to the closest plane of each pair of planes is found.
If P is between a pair of planes, then its distance is represented
as a negative value. Then the maximum distance of the result-
ing three distance values is taken (one for each dimension). If
the maximum value dP is negative, then all three coordinate val-
ues of P must lie inside the current node’s bounding box and the
search has to recurse into one or both child nodes. If the maxi-
mum value is positive and larger than the search distance, then the
current node cannot contain any results and the function returns
without recursing deeper into the tree. While the geometry be-
hind this check seems complex, the calculations can be done with
very few and inexpensive operations thanks to the axis alignment
of the bounding box (see equation 1).

dP = max (max (|Px − Cx| − dx, |Py − Cy| − dy) ,

|Pz − Cz| − dz)
(1)

The last part of each search function recurses into the child nodes.
First, a check for the point’s position relative to the split axis of
the current node decides which child node to recurse fist. Whether
or not the second child node is recursed into as well depends on
whether the bounding cube of the search radius around P extends
into the second child of the current node as well or not.

4. COLLISION DETECTION

Two variants of collision detection were implemented using the
k-d tree. One variant is based on a range search around each point
of the model using FixedRangeSearch and the other is based on
a segment search between two subsequent points of the model on
its trajectory using segmentSearch all. In both variants, the
model is moved along its trajectory and a range or segment k-d
tree search with radius r is performed at each position. When
points are found to be colliding, then this information is saved
in a separate boolean vector which stores for each point in the
environment whether it ever collided with the model on its trajec-
tory or not. The search radius r determines the precision of both
algorithms. The smaller the search radius, the more precise the
collision detection is. For smaller search radii, the model has to
be sampled dense enough to not leave any unoccupied volume.
The search radius r is the required “safety distance” between the
model and the environment within which no point of the environ-
ment should lie. At the end, the collision information from the
boolean vector is used to partition the environment into colliding
and non-colliding points.

Both variants are embarrassingly parallel operations. All k-d tree
searches can be run in parallel and even updating of the boolean
collision vector can be done in parallel as its values are only ever
written but not read during collision detection.

Range search In this variant, on each position of the model on
its trajectory, a fixed range search using FixedRangeSearch is
done around each point of the model. All points of the environ-
ment that are found to be within range r of any point of the model
at any position on its trajectory are updated to be colliding.

Segment search This variant executes a segment search using
segmentSearch all between the same points of the model at
two subsequent positions of the model in the environment. This
means that in this variant, trajectory positions can be further apart
than the search radius because the space between two positions is
searched by linearly connecting the two. In effect, this variant can
thus require less search operations while maintaining a similar
result quality compared to the range search.

5. DEPTH OF PENETRATION CALCULATION

Two variants to calculate depth of penetration will be presented.
They perform differently depending on the kind of input data
and yield different results depending on the sampling rate of the
model trajectory. The first variant is generally faster but produces
only good results for objects protruding the path of the model
through the environment. The first variant does not produce cor-
rect results when the model moves alongside a will and collides
with it.

The first variant is an embarrassingly parallel operation just as
the collision detection methods. The second variant easy to par-
allelize as well and the only part of the second variant that has to
be synchronized between workers is the updating of the penetra-
tion depth because it requires reading and checking the already
stored depth of penetration per colliding point.

Heuristic for protruding objects This variant iterates through
all points of the environment that were found to be colliding and
finds the closest non-colliding point using FindClosest. The
distance between the two points is then recorded as the depth of
penetration. This variant works well for objects that “stick” into
the path of the model because the penetration depth of the tip
of that object will be about as deep as its distance to the clos-
est non-colliding point. This method was shown to work well
for automotive assembly lines as shown in prior work of the au-
thors (Elseberg et al., 2014).

General depth of penetration calculation Consider figure 3a
which illustrates this method. Figure 3a shows a top view of the
train wagon model at one point of its trajectory inside the tunnel.
It is shown colliding with the right hand side tunnel wall. The
algorithm iterates over every point of the model Pn and finds its
projection to the wagon center An. Since the central axis is the
y-axis in the coordinate system of the train wagon, this projec-
tion is simply done by setting the x and z coordinates to zero.
Then a segment search using segmentSearch 1NearestPoint

on the line segment from Pn to An is performed for every point
of the model: for each point Pn the closest point Cn of the col-
liding environment within the search radius is found. A fixed
range search using FixedRangeSearch of radius r around Cn

is performed and all points within that search radius including
Cn are collected. This collection of points has to be performed
because otherwise, many points of the environment would be
missed by segmentSearch 1NearestPoint. The distance be-
tween Cn and Pn is calculated and that distance is assigned to
all points that were found by FixedRangeSearch if the new dis-
tance value is greater than the old one. This set of calculations is
done for each point of the model on each position of its trajectory.
In the end, every colliding point of the environment has attached
to it the greatest distance found by this method over the whole
trajectory.

This method requires that the individual points of the trajectory

ce
n
tr

al
 a

x
is

tr
ai

n
 w

ag
o
n

tu
n
n
el

 w
al

l

An

Pn

Cn

(a) Left: a top view of the train wagon at a position through
the tunnel. Right: a magnified and rotated part of the left fig-
ure with point names. The gray area represents the segment
search volume. The dotted line is the distance between Pn

and Cn which is the point that was found to be closest to Pn

within the search area. The dotted circle shows the search
radius around Cn. All points within this radius are updated
with the same distance that Cn has to Pn if that distance is
greater than the previously stored one.

(b) A comparison of the penetration depth as calculated by
the two variants. Both figures show a narrow piece of tunnel
from the outside with the calculated penetration depth indi-
cated by the point color. Non-colliding points are shown in
dark red. The top figure shows the simple and fast variant
while the bottom figure shows the more correct slower vari-
ant.

Figure 3: Depth of penetration calculation

are not further apart than the search radius. While this is also
one of the reasons why this method is more computationally ex-
pensive than the first heuristic, it also yields better results when
applied to a collision with the tunnel wall. Figure 3b illustrates
the difference.

6. EXPERIMENTS AND RESULTS

A 3D point cloud of train tunnel was provided to us by TopScan
GmbH. The point cloud contains 18.92 million points of outdoor
data. The point cloud was collected by a Optech Lynx Mobile
Mapper mounted on a van which was placed on a train wagon (see
figure 4a). TopScan also provided the trajectory data to us which
was comprised of 23274 positions over a distance of 1144 m.
The trajectory contains positional as well as orientation data.

To retrieve a point cloud of a suitable model to move through
the environment, a train wagon was manually scanned using a
RIEGL VZ-400 laser scanner. Seven scans were taken from all
sides of the wagon and registered using 3DTK’s SLAM imple-
mentation. The train wagon was manually extracted from the re-
sulting registered point cloud by using 3DTK’s show application.
It was then aligened inside the axis aligned bounding box of the
wagon. The alignment process can be seen in figure 4c. As cal-
ibration data of the precise location of the scanner relative to the
environment was missing, our results can only serve a demonstra-
tion purpose of our methods. The final point cloud of the wagon
contained 2.5 million points.

The trajectory that was provided to the authors included orien-
tation information in three degrees of freedom as well. Since a
train wagon is mounted on two bogies and since the origin of the
coordinate system of the train is located in its center , using this
trajectory directly would’ve meant that the wagon would rotate
around its own center along the trajectory. This would produce
wrong results since instead, the bogies of the train have to remain
on the tracks while the center follows accordingly. A new tra-
jectory was calculated from the original trajectory by assuming a
bogie distance of 20m and moving the train wagon such that the
center of both bogies would always be on the original trajectory.
Since this operation requires the original trajectory to be a con-
tinuous function and not a sampled trajectory, a spline was fitted
across all points of the trajectory with a sum of squared residuals
over all the control points of 10 m. This amounts to the spline
only a few millimeter away on average from the original trajec-
tory. The FITPACK library (Dierckx, 1993) was used to calculate
the spline. The result of this computation also adjusted the yaw
and pitch of the trajectory.

To benchmark the developed algorithms, the train wagon model
as well as the trajectory were sampled with several different point
distances. For the train wagon, the original amount of 2.5 mil-
lion points was reduced using 3DTK’s scan red program which
allows an octree based reduction of a point cloud with a given
voxel size. As the search volume for collision detection must not
contain any holes,p a model of equidistant points was created by
saving the center of each occupied octree voxel as point of the
reduced model. This creates a 3D square lattice of points. Five
different reductions of the train wagon point cloud were created
to run benchmarks on them. Due to the structure of the under-
lying octree, the voxel size dm was repeatedly halved starting
from a maximum voxel size of 0.924 m and down to a voxel
size of 5.8 cm. For each of the five reductions, the search ra-
dius was chosen to create a bounding sphere of an octree voxel of
the respective size. That way, all space occupied by the model is
searched for collisions without leaving any holes. This means that
the voxel size dm computes from the bounding sphere and search
radius r as dm = 2

3

√
3r. Similarly, the trajectory was sampled

such that the individual positions would be between 5.8 cm and

(a) The Optech Lynx Mobile Mapper on the back of a train
wagon.

(b) The extracted model of the train wagon.

(c) Frontal view of the train wagon and the rectangular
base of its bounding box

(d) Aligned train wagon (yellow) inside the tunnel en-
vironment (gray) and trajectory (red).

Figure 4: The scanning equipment and the scanned wagon.

Table 1: The first column shows the choice of collision detection
search radius r. The second column shows the resulting distance
between the points of the wagon dm and the points on the trajec-
tory dt. The third column shows the resulting number of points
in the model. The fourth column shows the resulting number
of points on the trajectory. The second and fourth column are ex-
tended as the results in figure 5b are calculated for higher distance
values as well.

r in m dm = dt =
2
3

√
3r #model #trajectory

0.05 0.058 28622 19392
0.1 0.115 7546 9780
0.2 0.231 2041 4869
0.4 0.462 461 2434
0.8 0.924 93 1217

1.848 609
3.695 304
7.390 152

14.780 76

14.78m apart. Table 1 gives an overview of the chosen search
radii, the according voxel size and trajectory position distances
and the resulting number of points in the model and on the trajec-
tory.

The benchmarks omit runtime results that only modify either the
amount of points in the model or the amounts of positions in the
trajectory. Both collision detections algorithms scale completely
linearly with both variants and can be completely parallelized by
splitting the workload over different sets of points in the model
or positions in the environment. The benchmarks were done on
a Intel Core i5-4200U @ 1.6GHz system with 16GB of system
memory and only executed using a single thread.

Figure 5a shows the influence of the search radius on the run-
time of both collision detection variants. While all other variables
are kept constant, the algorithm was benchmarked with different
search radii. The figure shows the runtime of both collision detec-
tion variants as well as the number of points that were found to be
colliding in each variant. One can observe that the segment based
variant finds more colliding points but that it is also slower than
the fixed range search based method. Both variants increase ex-
ponentially in runtime with higher search radii. With small radii
in the centimeter scale, which is desirable for precise results, the
runtime of both variants stays below 10 seconds.

In figure 5b the search radius is kept constant and the sampling
rate of the trajectory is modified to investigate the dependency
of the segment based collision detection method on the segment
size. One can observe that as the segment size grows larger, the
computation time quickly converges to a constant value of under
10 seconds. The amount of found colliding points slightly in-
creases with larger segment sizes as more colliding points will be
found inside the curvature of the tunnel wall.

Figure 5c shows a more realistic setup in the sense that not only
the search radius is modified but also the sampling rate of the
trajectory and train wagon model. If the search radius grows,
the sampling rates can be lower because more volume is cov-
ered. For each value of search radius the sampling rates have
been chosen such that no points of the environment would be
skipped as the model moves along its trajectory. The graph in
figure 5c shows that the algorithm quickly approaches runtimes
below five seconds as the amount of required k-d tree searches
decreases with higher search radii and thus lower sampling rates.
On the other hand it can be seen that with the lowest and thus most
precise search radius of 5 cm which searches on a trajectory of
19, 392 positions a model of 28, 622 points, our k-d tree is able

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

c
o
m

p
u
ta

ti
o
n
 t
im

e
 i
n
 s

n
u
m

b
e
r

o
f
c
o
lli

d
in

g
 p

o
in

ts

search radius in m

#colliding points variant 1
computation time variant 1
#colliding points variant 2
computation time variant 2

(a) Computation time of both collision detection variants with
different search radii r. The distance between individual points
on the trajectory dt and the distance between points in the model
dm is chosen to be dt = dm = 0.231m.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

c
o
m

p
u
ta

ti
o
n
 t
im

e
 i
n
 s

n
u
m

b
e
r

o
f
c
o
lli

d
in

g
 p

o
in

ts

trajectory position distance in m

#colliding points
computation time

(b) Computation time of the segment based collision detection
variant with different distances between individual points on the
trajectory with a model sampled with dm = 0.231m and a search
radius of 0.2m.

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

c
o
m

p
u
ta

ti
o
n
 t
im

e
 i
n
 s

n
u
m

b
e
r

o
f
c
o
lli

d
in

g
 p

o
in

ts

search radius in m

#colliding points variant 1
computation time variant 1
#colliding points variant 2

computation time variant 2

(c) Computation time of both collision detection variants with
different search radii r. The distance between individual points
on the trajectory dt and the distance between points in the model
dm is chosen such that dt = dm = 2

3

√
3r.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

c
o
m

p
u
ta

ti
o
n
 t
im

e
 i
n
 s

n
u
m

b
e
r

o
f
c
o
lli

d
in

g
 p

o
in

ts

search radius in m

#colliding points variant 1
computation time variant 1
computation time variant 2

(d) Computation time of both penetration depth variants with dif-
ferent search radii r. The distance between individual points on
the trajectory dt and the distance between points in the model
dm is chosen such that dt = dm = 2

3

√
3r. Colliding points

were computed using the segmentation based collision detection
variant.

Figure 5: Benchmark results

to make all required 19, 392× 28, 622 = 555, 037, 824 k-d tree
searches in only 77 seconds. This means that the average k-d tree
search in a dataset of 18.92 Mill points takes 139ns. This in turn
means that collision detections of even complex models with up
to 287000 points could be done in real time speed of 25.0 frames
per second with the presented k-d search tree implementation.

In the last figure 5d the two depth of penetration methods are
compared. One can see that the first variant stays below 20 sec-
onds of computation time in all variants. This is expected as
the performance of the algorithm only depends on the amount
of colliding points found. We can observe that the first variant in-
creases in runtime slightly as the mount of colliding points rises
with increased search radius. The second, more precise depth
of penetration variant performs badly for small search radii for
which a large number of k-d tree searches have to be performed
but quickly approaches runtime values below one minute as the
search radius grows larger than 10 cm.

7. CONCLUSIONS AND OUTLOOK

This paper presented a highly efficient k-d tree implementation
which was used to perform collision detection of a sampled arbi-
trary point cloud against an environment of several million points.
It was shown that even though this is a partly brute-force method
as it checks all sampled points of the model, it performs well
enough such that real queries of densely sampled trajectories can
be completed in a matter of seconds. Two heuristics for calcu-
lating penetration depth have been presented which work for dif-
ferent scenarios and have different precision and runtime proper-
ties. All of these algorithms are embarrassingly parallel and thus
speed-ups can easily be gained.

For future work, several routes to improve these methods exist.
More work has to be done to research which checks to abort the k-
d tree traversal for different search geometries and input data per-
form best. Another easy way to increase the performance could
be to change the sampling of the model from bounding spheres to
different geometries like axis aligned bounding boxes which are
similarly quick to check for collisions. Lastly, instead of check-
ing every point of the model, a hierarchy of bounding spheres or
other geometries could be used (Tzafestas and Coiffet, 1996) but
that would destroy the property of the current algorithm that the
input model is allowed to arbitrarily deform.

REFERENCES

Ar, S., Chazelle, B. and Tal, A., 2000. Self-customized bsp trees
for collision detection. Computational Geometry 15(1), pp. 91–
102.

Bergen, G. v. d., 1997. Efficient collision detection of complex
deformable models using aabb trees. Journal of Graphics Tools
2(4), pp. 1–13.

Cohen, J. D., Lin, M. C., Manocha, D. and Ponamgi, M., 1995.
I-collide: An interactive and exact collision detection system for
large-scale environments. In: Proceedings of the 1995 sympo-
sium on Interactive 3D graphics, ACM, pp. 189–ff.

Dierckx, P., 1993. Curve and surface fitting with splines. Oxford
University Press, Inc.

Elseberg, J., Borrmann, D., Schauer, J., Nüchter, A., Koriath, D.
and Rautenberg, U., 2014. A sensor skid for precise 3d modeling
of production lines. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences II-5, pp. 117–122.

Garcia-Alonso, A., Serrano, N. and Flaquer, J., 1994. Solving
the collision detection problem. Computer Graphics and Appli-
cations, IEEE 14(3), pp. 36–43.

Gottschalk, S., Lin, M. C. and Manocha, D., 1996. Obbtree: A
hierarchical structure for rapid interference detection. In: Pro-
ceedings of the 23rd annual conference on Computer graphics
and interactive techniques, ACM, pp. 171–180.

Held, M., Klosowski, J. T. and Mitchell, J. S., 1995. Evalua-
tion of collision detection methods for virtual reality fly-throughs.
In: Canadian Conference on Computational Geometry, Citeseer,
pp. 205–210.

Hermann, A., Drews, F., Bauer, J., Klemm, S., Roennau, A. and
Dillmann, R., 2014. Unified gpu voxel collision detection for mo-
bile manipulation planning. In: Intelligent Robots and Systems
(IROS), 2014.

Hubbard, P. M., 1996. Approximating polyhedra with spheres for
time-critical collision detection. ACM Transactions on Graphics
(TOG) 15(3), pp. 179–210.

Jiménez, P., Thomas, F. and Torras, C., 2001. 3d collision detec-
tion: a survey. Computers & Graphics 25(2), pp. 269–285.

Jung, D. and Gupta, K. K., 1996. Octree-based hierarchical dis-
tance maps for collision detection. In: Robotics and Automa-
tion, 1996. Proceedings., 1996 IEEE International Conference
on, Vol. 1, IEEE, pp. 454–459.

Klein, J. and Zachmann, G., 2004. Point cloud collision detec-
tion. In: Computer Graphics Forum, Vol. 23, Wiley Online Li-
brary, pp. 567–576.

Klosowski, J. T., Held, M., Mitchell, J. S., Sowizral, H. and
Zikan, K., 1998. Efficient collision detection using bounding vol-
ume hierarchies of k-dops. Visualization and Computer Graphics,
IEEE Transactions on 4(1), pp. 21–36.

Lin, M. and Gottschalk, S., 1998. Collision detection between
geometric models: A survey. In: Proc. of IMA conference on
mathematics of surfaces, Vol. 1, pp. 602–608.

Luque, R. G., Comba, J. L. and Freitas, C. M., 2005. Broad-
phase collision detection using semi-adjusting bsp-trees. In: Pro-
ceedings of the 2005 symposium on Interactive 3D graphics and
games, ACM, pp. 179–186.

Nüchter, A., Elseberg, J., Schneider, P. and Paulus, D., 2010.
Study of parameterizations for the rigid body transformations of
the scan registration problem. Computer Vision and Image Un-
derstanding 114(8), pp. 963 – 980.

Siegmann, J., 2011. Lichtraumprofil und fahrzeug-
begrenzung im europäischen schienenverkehr. http:

//www.forschungsinformationssystem.de/servlet/

is/325031/. [Online; accessed 2014-07-14].

Teschner, M., Heidelberger, B., Müller, M., Pomeranets, D. and
Gross, M., 2003. Optimized spatial hashing for collision detec-
tion of deformable objects. Technical report, Technical report,
Computer Graphics Laboratory, ETH Zurich, Switzerland.

Tzafestas, C. and Coiffet, P., 1996. Real-time collision detection
using spherical octrees: virtual reality application. In: Robot and
Human Communication, 1996., 5th IEEE International Work-
shop on, pp. 500–506.

http://www.forschungsinformationssystem.de/servlet/is/325031/
http://www.forschungsinformationssystem.de/servlet/is/325031/
http://www.forschungsinformationssystem.de/servlet/is/325031/

	Introduction and problem formulation
	Related Work
	Data Structures for efficient collision detection and depth of penetration calculation
	Collision detection
	Depth of penetration calculation
	Experiments and results
	Conclusions and outlook

