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Abstract— Dexterous mobile manipulators that are capable of
performing a wide array of tasks are essential for unstructured
human-centered environments. Especially in rescue scenarios
where time and resources are limited, a gripping system
should be as versatile but at the same time as efficient as
possible. In addition, situational awareness in accidents and
impaired visibility is essential for safely performing missions or
automating behaviors, and thus supporting operators. The main
contribution of this work is a multi-functional gripping system
with technologies and methods for manipulation in rescue and
recovery operations as well as for handling hazardous materials.
The gripping system is supplemented by an RGB and thermal
camera and object detection algorithms, which run in real-time
on an embedded device for robust recognition in harsh and
dynamic environments. The proposed multi-functional gripping
system has been thoroughly evaluated and tested in laboratory
experiments and real field facilities.

I. INTRODUCTION

Rescue and recovery operations as well as reconnaissance

and transport tasks are often challenging and stressful situa-

tions for emergency forces and usually also involve a certain

potential for danger. Factors such as confined spaces, dense

smoke, toxic fumes, enormous heat and explosion hazards,

see Fig. 1, make efficient planning and safe implementation

of optimized mission strategies difficult. The support of

robotic systems with automated functions offers the potential

to reduce these stresses and dangers for humans. The pre-

requisite for this is that such systems have the necessary ca-

pabilities for sensing and analyzing the environment and can

also use these for the independent implementation of tasks.

While many commercially available grippers are intended

and designed for industrial applications, the development of

gripping tools for mobile manipulation tasks poses additional

challenges. Often, the range of possible tasks to be solved by

a single gripping system is much larger, with larger variations

in object size, material and surface, unpredictable distance

– and therefore gripping angles – between object and robot,

and varying light and environmental conditions. The gripping

system has to be compact and lightweight in order to allow

maximum robot mobility and dexterous manipulation [1].

More generic solutions like anthropomorphic and bio-

inspired hands [2] offer great flexibility and may be more

quickly installed, but they often require more training for

human controllers to make use of their full potential. Also,
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Fig. 1. Dexterous manipulation tasks for securing hazardous substances.

they may not be the fastest tools for a specific task if time

is an issue. On the other hand, designing a gripping system

for a specific task alone may severely reduce the robot’s

application potential, as changing tools during an operation

is often not an option. Therefore, in mobile applications, a

good balance between design specificity and flexibility has to

be found, emphasizing the high importance of requirements

analysis in the development of gripping systems for such

applications.

Manufacturers distinguish robot arms and grippers by

their intended applications or the applied gripping concept.

Intended applications may be the maneuvering of items of

certain sizes and weights, or the manipulation of equipment

like door handles, valves or levers. Grippers may also be used

for inspection purposes if cameras and lights are installed.

The latter could be the specific use, for example when

reading meters, or a feature to assist actual gripping or

manipulation. Whereas the state of the art of autonomous

grasping technology focuses on agricultural [3], [4] and

industrial application [5], [6], [7], this work focuses on the

support of rescue operations.

In order to enable a robot or gripping system to decide

what gripper modality should be used, it must be able to

2022 IEEE International Symposium on

Safety, Security, and Rescue Robotics (SSRR)

November 8-10, 2022. Seville, Spain

978-1-6654-5680-7/22/___________________ 145

✄
�
✄
✄
✁✂
✂
✂
✁☎
✆✝
✞☎
✟
✆✠
✡
☎
✟
☛
☞
✌
✍
✎
✡
✏
✠✑
✍

✡
☎
☞
✟
✒✝
✆✌
✓
☞
✝
✔
✑
✞✠
✆✌
✓
✟
☎
✕
✖
✝
✏
✔
✑
✝
✖
✡
✗
✡
✆✠
✔
✏
✘☞
☞
✖
✖
✙
✚
✛
✜
✢
✣✤
✣✥
✥
✦
✧
✣✦
✥
✢
�
✣✜
★
✄
✄
★
✩
✪
✤
✫�
�
✬
✄
�
✄
✄
✁✂
✂
✂
✚
✭
✮
✁✯
✤
�
✫✤
✤
�
✛
★☞
☞
✖
✖
✦
✥
✦
✪
✜
✫✄
�
✄
✄
✫✤
�
�
✤
✢
✜
✦
✛

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 



process input data from sensors. In recent years many novel

deep learning based computer vision algorithms for object

detection such as proposed in [8] have been published.

Another factor, which enables mobile robot platforms to

utilise deep learning based algorithms, is the rapid improve-

ment made in computation. Embedded platforms such as

the NVIDIA Jetsons provide a high performance GPU at

low power consumption. When automating tasks in rescue

scenarios, different object classes must be recognized by

the robot from object recognition algorithms. The first class

to note here are hazmat signs which highlight dangerous

locations. The works in [9] and [10] proposed deep learning

based algorithms for hazmat sign detection. Another class

of relevance are manometers which are integral to monitor

the state of a system. The authors of [11] investigated

object detection of manometers. Further relevant classes for

rescue robotics for which object detection algorithms were

developed are doors and door handles. It is obvious that an

autonomous robot must be able to detect doors and door

handles in order to be able to traverse through them. In

[12] a system for door handle detection only was proposed

while [13] proposes a system for both door and door-handle

detection.

RGB camera based computer vision applications work

however only in daylight conditions. To solve this problem,

infrared imaging sensors can be used to obtain useful vision

data when RGB does not work. Works such as [14] show that

the aforementioned RGB focused deep learning algorithms

can also be used for object detection on infrared images.

The general objective of the proposed paper is to automate

recovery processes in which the emergency services are

exposed to a wide variety of hazards. The results demonstrate

a multi-functional gripper system with an AI based object

detection. The rescue robot platform is evaluated in real ex-

periments and selected test scenarios. The main contributions

of this work are summarized as follows:

• multi-functional gripper for effective mobile manipula-

tion

• AI based object detection for manipulator selection

• demonstration of our approach by using a mobile rescue

robot with a 6-DOF manipulation system (Fig. 2)

II. MULTI-FUNCTIONAL GRIPPER DESIGN

Robotic gripper technology enables robotic arms to inter-

act with objects and the environment. Depending on the type

of gripper chosen, each gripper system has its advantages

and disadvantages for extreme precision and repeatability in

execution and sensitive handling of complex and/or fragile

objects. The gripping system must be transported by the

robot, communicate with the robot and be adapted to the

robot’s body size so that it is able to maneuver freely. If

rescue tasks are to be incorporated into the robot’s repertoire,

the gripping system’s holding strength and stability have to

be aligned with the robot’s lifting/carrying/pulling strength as

well as the target object’s shape and weight. The same is true

for opening doors, which requires a complex combination of

recognizing and turning a door handle, pushing or pulling

Fig. 2. Rescue robot with 6-DOF manipulator and multi-functional gripper.

and holding the door open, and moving - or at least looking

- through the door.

A. Application Oriented Gripping System

The automation of different tasks performed by a mo-

bile robot supports the operator to fulfill this requirement.

Additionally, it allows the robot operator to focus on other

tasks because it is only necessary to evaluate the automated

execution instead of executing the task manually. Dexterous

manipulations tasks in search and rescue scenarios are:

• manipulate valves (opening and closing)

• open and close different types of doors

• finding POIs (fire extinguisher, emergency exit, hazmat

labels) and inspection tasks (manometer reading)

• grasp objects and precise manipulation

Especially the handling with a door requires an easily

manoeuvrable robot system with a multi-axis robot arm.

Mobile robot systems cope with pushing doors in less time

than doors pulling. On the one hand, a large action radius of

the robot arm is already an advantage, but on the other hand,

the execution of the task also depends on the mobility of the

entire system. Legged robots [15], [16], [17], omniwheels or

other types of holonomic robots can move in any position

during manipulation, whereas tracked robot systems are

much more limited. The Centauro project aimed to increase

the applicability of mobile manipulation robots in real-life

operations by developing a highly flexible disaster relief

system [18].

B. Sensor Integration and Perception

Since accurate manipulation is dependent on high qual-

ity sensor information, the gripping system must provide

suitable sensors, such as well-placed cameras or pressure

sensors. While in industrial environments appropriate light-

ing can be set up separately from the robot, in mobile

applications the robot must have an integrated lighting source

that can be adjusted via a PWM signal. A particular challenge

is the interference-free mounting of cameras and lighting

in addition to the actual gripping mechanisms. Since the

gripping system is often the most flexible moveable part and

can extend outside the robot’s core body, it also plays an

important role in exploration tasks. This is specifically true
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Fig. 3. Sensor integration and perception concept.

where objects have to be inspected from several perspectives

and angles or within other objects or holes. In order to find

and locate points and objects of interest – like fire extinguish-

ers, emergency exits, or hazmat labels – appropriate sensors,

like cameras of sufficient resolution and distance measuring

devices, have to be placed and their respective information

processed and matched to other available information like 2D

or 3D maps. Hence, the following sensors have been selected

and integrated into the multi-functional gripper (Fig. 3):

1) RGB analog camera

2) TOF (time of flight) distance sensor - VL53L0X

3) IDS-UV-1551-LE RGB USB camera

4) Seek CompactPRO XR IR camera

5) Matek LED Stripe

6) CO2-sensor Senseair S81

7) Nuclear beta and gamma radiation sensor BG512

8) RGB analog camera pivoted

9) Self developed tactile pressure sensor [19]

C. Gripper Concept

1) Grasping general objects with integrated tactile sensor:

Gripper systems with sensitive sensor technology, as well

as robot hands, are also becoming increasingly important

in mobile robotics. The new gripper concept benefits from

symmetrically operating jaws and hence, enables grasping

objects with a maximum dimension up to about 11 cm. With

the developed tactile sensor system [19] inside the gripper

jaws, the object can be gripped securely and the gripping

force can be controlled with the feedback from the sensors.

Essentially, the pressure sensor consists of two copper

strips separated by a pressure-sensitive Velostat® foil3 (see

Fig. 4 left/center). Furthermore, a voltage divider circuit as

shown in Fig. 4 right, where the foil basically acts as a

potentiometer is used. The electrical resistance of the foil,

which decreases under pressure, affects a voltage change at

the circuit output. The output voltage is measured, digitized

1https://senseair.com/products/size-counts/s8-residential/
2https://www.gvzcomp.it/products-technologies-separator/teviso/beta-

and-gamma-ray-sensor/radiation-sensor-bg51
3https://www.adafruit.com/product/1361

Fig. 4. Pressure sensor of the gripper jaw.

by means of an analog-to-digital converter (ADC) and visu-

alized on the operators screen.

The tactile pressure sensor is supplied with U = 3.3 V .

Unstressed, the resistance of the Velostat® foil is about 1 kΩ

whereas a self-set realistic upper limit of about 1 kg results

in approximately 75 Ω. With the equation

R

UR

=
Rps +R

U
=⇒ R = Rps ·

UR

U −UR

(1)

and the desired voltage range of the sensor from 0.3−3.0 V,

the possible value range of the circuit divider resistor is de-

termined with 100−750 Ω. Equation (1) gives the following

sensor output:

UR =U ·
R

Rps +R
(2)

Table I lists the parameters for the tactile sensor, valve

and gripper tool:

TABLE I

PRESSURE SENSOR AND GRIPPER PARAMETER.

Parameter Description

U supply voltage of the voltage divider circuit [V]
UR circuit divider output voltage [V]
R circuit divider resistor [Ω]

Rps pressure sensor resistance [Ω]
FG gripping force [N]
m work-piece weight [kg]
g gravitation [m/s²] = 9.81
a acceleration [m/s²] = 0
S safety factor [-] = 2
µ coefficient of friction [-] (plastic against steel) = 0.5

M6 axis 6 torque [Nm] (Dynamixel PH42-020-S300-R)
rvalve tool pins engagement radius [m]

rgripper gripper length [m]

The gripping force calculation for parallel grippers is

based on a friction-locked connection. The torque and the

lever length result in the following total gripping force:

FG =
M6

rgripper

=
5.1 Nm

0.1425 m
= 35.79 N (3)

The calculation of the handling weight is:

FG =
m · (g+a)

µ
·S (4)

m =
FG ·µ

(g+a) ·S
=

35.79 N ·0.5

9.81 m/s2 ·2
= 0.912 kg (5)
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2) Valve turning: The problem of robot-controlled turning

of valves has been investigated in some studies [20], [21] and

approaches to the 2015 DARPA Robotics Challenge Finals

[22], [23], [24]. By turning the valve, the distance between

the object and the gripper tool varies over time. Therefore,

one challenge is the continuous tracking and adjusting of the

gripper to this change. Our solution including an additional

tool screwed to the gripper front allows to capture smaller

valves relatively easily and compensates deviations in valve

size and longitudinal offset to a certain extent. For execution,

it is important that the 6-DOF manipulator can rotate the

whole gripper module, i.e. the valve tool, endlessly (axis 6

in Fig. 5) to complete the task in the shortest possible

time. Fig. 5 shows the CAD model and the use of the

valve tool, which enables operator-friendly manipulation.

The figure demonstrates that the tool does not have to be

exactly congruent with the rotation axis of the valve and

theoretically can tolerate a threading of ±30° without any

loss of manipulation performance. The rotation unit itself

consists of five rigid tool pins elongated by flexible shrink

tubes each, which act as a kind of over-wind protection of

the robot arm. Obviously, the valve turning torque is limited

by the motor torque of axis 6 (M6 = 5.1 Nm). By means of

the tool pins engagement radius rvalve the maximum possible

force applied to one single tool pin (worst case assumption)

is calculated by

F =
M6

rvalve

=
5.1 Nm

0.0225 m
= 227 N (6)

and used for dimensioning.

Fig. 5. Valve turning tool in various positions.

3) Door opening: In recent years, the identification of

different handles and doors has been widely studied [25],

[26], [27]. A major difficulty is that you can not distinguish

between push and pull doors, whereas pushing doors are

easier to automate than pulling doors. The legged robot from

Boston Dynamics (SpotMini)4 impressively demonstrates

how to open security doors. But you can also see in the

video5 that, in addition to the robot arm, a foot is required

to open the door. This technique for door opening is also used

4https://www.bostondynamics.com/products/spot/arm
5https://www.youtube.com/watch?v=wXxrmussq4E

Fig. 6. Principle procedure when opening the door with the newly
developed door module.

for mobile tracked robots with a flipper system. However, if

the robot arm does not have the necessary working space, it

becomes very difficult to open doors. To solve this problem, a

tool was developed which hangs on a rope and thus increases

the working space of the arm, see Fig. 6.

III. AI BASED MANIPULATION CHOICE

In order to manipulate or inspect objects in the robots

environment, it needs to be able to interpret it. This involves

first collecting environmental data from sensors, which is

then fed into an algorithm that provides an interpretation as

output. In this work, the interpretation of the environment

is used to subsequently decide which gripping tool is best

suited for the particular application. The overall architecture

for interpreting the environment and making decision based

on it is shown in Fig. 7. First sensor data is fed into an

AI algorithm which is a deep neural network for object

detection. The following sections describe in more detail

the sensors, the object detection algorithm including its

training.An RGB camera located in the top right of the

gripper and an infrared camera located at the top left of the

gripper are used (Fig. 3).

The motivation for the different types of cameras is that

rescue robots often operate in dark or smoky environments.

The object recognition algorithm is based on the YOLO fam-

ily [8] published by researcher Glenn and his team with the

newer version YOLOv56. It was chosen for it’s state-of-the-

art performance and it is running in real time on an embedded

platform such as the NVIDIA Jetson Nano. For each sensor

modality a dedicated dataset was created and a model was

trained. A dataset was created for the RGB camera with

images of hazardous material signs, manometers and their

needles, doors and door handles, and valves. However, to

increase the dataset’s size, publicly available datasets were

included as well. More specifically, the hazmat sign dataset

provided by [10] and the manometer dataset provided by [11]

were used. In total, the RGB dataset contains 5418 images

6https://github.com/ultralytics/yolov5
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Fig. 7. New gripper concept for dexterous manipulation tasks with a tracked rescue robot: (A) valves, (B) door or door handles, (C) hazmat labels or
manometers.

with a size of 640x480. Table II shows the included classes

and the respective object count for each class.

The images of the infrared dataset were all taken in the lab.

It only contains instances of valves and has in total a size

of 349 images with a resolution of 320x240. The detailed

training data splits, results and inference examples are given

in the experimental results in section IV.

TABLE II

RGB DATASET OBJECT COUNT.

Class ID Class name Instance count

0 hazmat poison 479
1 hazmat oxygen 815
2 hazmat flammable 1427
3 hazmat flammable solid 682
4 hazmat corrosive 626
5 hazmat dangerous 869
6 hazmat non flammable gas 974
7 hazmat organic peroxide 816
8 hazmat explosive 1042
9 hazmat radioactive 1367
10 hazmat inhalation hazard 676
11 hazmat spontaneously combustible 125
12 hazmat infectious substance 673
13 hazmat other hazmat 400
14 manometer 455
15 manometer needle 323
16 door 593
17 door handle 698
18 valve 159

Once the AI system has processed the sensor inputs,

the tool decision can be made. Currently, the RGB model

supports four different decisions which are (A) manipulate

valves, (B) open/close doors, (C) inspection and (D) general

manipulation while the infrared model only supports two

which are manipulate valves and general manipulation. The

tool decision is made based on the current bounding boxes

detected in the image. If multiple bounding boxes are located

in the image, no tool decision is made. This is based on the

assumption that the gripper must still be far away from a

specific object. As soon as only a single bounding box is

detected in the image, the tool decision is made.

IV. EXPERIMENTS AND RESULTS

For robots in search and rescue applications, sample

scenarios have been developed for the DARPA Robotics

Challenge (DRC) [28], RoboCup Rescue League [29], [30]

and EnRicH competition [31], ranging from exploration

and manipulation tasks to search and rescue missions in

simulated and real scenarios. Due to regular rule changes

and new tasks, the robotics competitions are designed in

such a way that the teams have to further develop their

robot systems every year. These advances also mean that

new concepts are needed to meet the demanding mobility

and manipulation tasks in the rescue sector.

For evaluation and testing, the setup as in the CAD

overview (Fig. 7) is reproduced in order to verify func-

tionality, determine working range and practice different

scenarios. Industrial equipment which rescue robots are typ-

ically confronted with in disaster-response missions (valves,
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objects in order to achieve certain flexibility and increase the

gripping force here as well.

Future work will aim to address the autonomy and to solve

complex manipulation tasks. It is a priority to add more

operator assistance functions and a more user-friendly way of

operation. To improve its performance, a more robust dataset

could be created and a model trained for AI-based-decision-

making.
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