
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018 1

The peopleremover – removing dynamic objects
from 3D point cloud data by traversing a voxel

occupancy grid
Johannes Schauer1, and Andreas Nüchter1

Abstract—Even though it would be desirable for most post-
processing purposes to obtain a point cloud without moving
objects in it, it is often impractical or downright impossible to
free a scene from all non-static clutter. Outdoor environments
contain pedestrians, bicycles, and motor vehicles which cannot
easily be stopped from entering the sensor range and indoor
environments like factory production lines cannot be evacuated
due to production losses during the time of the scan. In this
paper we present a solution to this problem that we call the
“peopleremover”. Given a registered set of 3D point clouds we
build a regular voxel occupancy grid and then traverse it along
the lines of sight between the sensor and the measured points to
find differences in volumetric occupancy between the scans. Our
approach works for scan slices from mobile mapping as well as
for the more general scenario of terrestrial scan data. The result
is a clean point cloud free of dynamic objects.

Index Terms—Range Sensing, Mapping

I. INTRODUCTION

RECORDING 3D point cloud data is often carried out in
environments that are not fully static and where moving

objects like humans, cars or bicycles will inadvertently enter
the field of view of the sensor. Possible scenarios are: (1)
indoor office scans for intrusion detection and workspace
planning, (2) 3D maps of factories to enable industry 4.0
applications, (3) scans of mining sites to monitor progress and
watch for hazards, (4) scans of an urban environment for city
planning and documentation purposes, (5) maps of historical
sites for archaeology and preservation purposes, (6) and scans
for gaming and virtual reality applications.

Nevertheless, these applications are usually interested in a
3D point cloud that only consists of the static environment.
But obtaining such a “clean” point cloud by clearing public
places of all dynamic objects like pedestrians, bicycles, and
parked as well as moving cars might be impossible. And due
to production losses, stopping work in a factory or at an
excavation site is also undesirable. A cheap way to remove
dynamic objects from scans would be to take multiple scans
at different times from the same vantage point (the position of
the scanner) but it would be desirable to avoid this overhead.
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In this paper we present a solution to this problem. We call
our algorithm the “peopleremover” and it is able produce a
“cleaned” point cloud without points belonging to dynamic
objects in it.

The input to our algorithm is registered 3D range data,
typically acquired by a 3D laser range finder. While we only
test our approach with LIDAR scans, it is in principle also
compatible with scans obtained from RADAR or RGB-D
systems or point clouds from stereo vision. Given such a set
of registered point clouds, our algorithm is able to partition
the points into those belonging to static as well as dynamic
objects. Essentially, if a volume is seen as free where another
scan measured points, then these points must be non-static and
get marked for removal. We approximate occupied volume by
a voxel grid and determine free voxels by traversing the lines
of sight from the sensor to the measured points through the
voxel grid. Our approach is able to detect change where two
or more scans overlap in the volumes they explicitly observe
as free or occupied. Apparent change created by occlusion is
suppressed.

Our algorithm makes very few requirements on the under-
lying geometry of the scanned data, vantage points and the
temporal separation between individual scans. The vantage
points together with the geometry of the scene must be chosen
such that the volumes of interest are not occluded from the
sensor. Instead, the volumes that one wants to remove moving
objects from must have been observed at least by two different
scans. Furthermore, the temporal difference between these two
scans must be large enough such that any object that one
considers “dynamic” in the observed volume was moved to a
different location. But if a given voxel volume was observed
more than twice, then it is sufficient that the voxel was seen
as “free” by only a single scan.

Our method performs best in environments with clear sur-
face normals but in their absence, false positives are easily
removed by a fast clustering algorithm. To avoid artifacts due
to the voxel discretization we also show an algorithm that
reliably removes them without reducing the quality of the
remaining point cloud. An example of our algorithm is shown
in Figure 1 where pedestrians in the foreground and cars in
the background are classified as non-static and are removed.

II. RELATED WORK

Our solution falls into the realm of change detection [1]
but only few publications deal with classifying points as
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either dynamic or static. Even fewer compute the free volume
between a measured point and the sensor itself. Most solutions
for change detection (like the one by Vieira et al which uses
spatial density patterns [2]) compare incoming geometries or
point clouds in a way that results in “change” merely due to
occlusion or incomplete sensor coverage. But for our purpose
of “cleaning” scans, it is undesirable to remove these parts
from the dataset. Doing so would mean to remove potentially
useful data from the input. Instead, we designed our algorithm
to be conservative. It only removes volumes which it is able
to confidently determine to be dynamic. Volumes which it
cannot make a decision upon, for example because they were
only measured by a single scan, are left untouched. Meeting
this requirement is only possible by computing unoccupied
volumes and detecting change explicitly. The changes we are
interested in can only be detected if a given point falls into
the volume that another measurement observed as free.

The work most similar to ours is by Underwood et al. [3].
It is able to detect changes between two scans by “ray
tracing” points in a spherical coordinate system. But since their
algorithm is limited to comparing no more than two scans at
a time it is not directly applicable to our use case without
either additional heuristics or quadratic runtime with respect
to the number of scans. Given N input scans and without
additional processing to find scan pairs with a “meaningful”
overlap in their observed volume, the only way to find all
changed points is to compare all possible pairs of scans.
With N scans this results in a worst-case scenario of N(N−1)

2
comparisons and thus quadratic runtime. Our approach is
of linear complexity relative to the input size because all
comparisons are made against a global occupancy grid and not
directly against point data from other scans. The algorithm by
Underwood et al. requires two parameters: the angle and the
range threshold. In contrast to that, our algorithm only requires
a single parameter: the voxel size. Thus, obtaining the optimal
parameter for a given training dataset is simpler for our method
as our parameter-space is only one-dimensional and not two-
dimensional. Nevertheless, the authors publicly provide their
code and their datasets which we thus use to benchmark our
own method against theirs.

Another approach close to ours is the method by Xiao
et al. [4], [5]. Similar to our method and the method by
Underwood et al. their algorithm also considers the volume by
laser rays and fuses multiple rays into a larger volume using
the Dempster-Shafer theory for intra-data evidence fusion and
inter-data consistency assessment. Similar to our method, they
rely on surface normals but unlike ours, the method detects

Fig. 1. After identifying non-static points (in magenta on the left) they are
removed without artifacts (right).
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Fig. 2. The gray raster marks the 2D voxel boundaries. Blue lines mark the
scanner lines of sight. Gray areas mark solid space while white areas mark
free space. Round green and red dots represent the measured scan points of
the first scan (left) in green and of the second scan (right) in red. The circular
object in areas C1 and C2 is dynamic and only measured by the first scan
(green points in C1 on the left). Dotted lines represent the former location of
the circular object.

changes at the point-level without voxelization. The authors
do not provide any runtimes of their solution.

The authors of [6] and [7] also use a voxel data structure
to distinguish between static and dynamic sections of the
recorded point cloud but instead of recording free voxels,
they count how often a voxel is occupied. Due to varying
occlusion they have to make a number of assumptions about
their environment and employ several heuristics that are not
necessary with our algorithm. Furthermore, their approach
requires a ground surface estimation — in contrast to our
approach which does not require any such planar features to
be present.

The creators of OctoMap [8] also use the same algorithm
as we do by Amanatides and Woo [9] to cast rays. But
instead of voxels they use an oct-tree data structure to find
free volumes. They also employ a similar approach to avoid
marking volumes as free in situations where rays meet a
surface at a shallow angle by grouping multiple scan slices
together. We improve on their work by generalizing their
approach for scan slices to terrestrial scans.

III. GENERAL DESIGN

The central component of our method is a global occupancy
grid which we store as a voxel data structure. Each voxel
holds a set of scan identifiers. A scan identifier is added to a
given voxel if any point of that scan falls into the voxel. Thus,
precise point coordinates are not stored in the grid. Instead,
the data structure represents the union of all voxels that the
input scans measured points in. For example in Figure 2 on the
right, voxel B2 stores the information that it contains points
from the green as well as from the red scan but neither their
number nor the coordinates of these points is stored in the
voxel grid. Thus, the global occupancy grid typically requires
orders of magnitude less memory than the sum of the input
data.

By traversing the occupancy grid from each sensor origin
to the coordinates of each measured point, we find voxels that
intersect with the line of sight of the sensor but contain a non-
empty set of scan identifiers. These voxels are then classified
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as “see-through” or “dynamic”. At the end of the algorithm,
this information serves as a binary classifier determining
whether a given input point should be removed or not. A point
is removed if it falls into a voxel that was marked as “see-
through”.

Consider Figure 2. It displays the general idea of our
algorithm in a two-dimensional scenario. The circular object
in voxels C1 and C2 on the left is dynamic and not present
anymore at the time of the second (red) scan on the right.
Thus, only the first (green) scan measures parts of its surface.
Since the second scan measures the red points in A2 and B2
with a line of sight that intersects C1, voxel C1 is classified as
“see-through”. This in turn lets us deduce that the three green
points measured in C1 belong to a non-stationary object.

The reason why we store a set of scan identifiers in each
voxel instead of just storing a binary occupied/unoccupied
property is to be able to abort voxel traversal early and avoid
self-intersections. The point measured in voxel A4 in Figure
2 on the left has a line of sight intersecting with at least three
voxels that must not be marked as free: A3, B3, and B2. To
avoid wrongly marking these voxels as free, voxel traversal is
aborted once a voxel is encountered containing the same scan
identifier as the scan the current target point belongs to. This
means that the ray toward voxel A4 aborts before marking
voxel B2 as free. Another application for storing sets of scan
identifiers in each voxel is our solution to achieve sub-voxel
accuracy as explained in section VIII.

Figure 2 also shows how the algorithm does not remove
points from voxels that were only visible in a single scan. For
example the green points in voxels A3 and A4 belong to a
part of the structure that is only seen by the left scan. Still,
they are not removed because these voxels are never marked
as “see-through” by another scan. The same holds for the red
points in voxel C2. Their voxel is only seen by the second scan
because the circular moving object in C1 and C2 temporarily
occludes the this area during the first scan. Still, the points
remain classified as static because their containing voxel is
never marked as “see-through”.

IV. FAST VOXEL TRAVERSAL

To enumerate all “see-through” voxels from the laser origin
up to the measured point, we used the algorithm proposed
by Amanatides and Woo [9]. We improve the algorithm by
making it adhere to a stricter definition of what it means for a
ray to intersect with a voxel, by eliminating accumulation of
floating point errors and by adding support for rays starting
exactly at a voxel boundary. None of the existing open-
source implementations (Octomap [8], MRPT [10], PCL [11],
yt [12]) supports any of these properties and will result in false
positives as well as false negatives in certain situations.

Even though our additions increase the number of instruc-
tions per loop cycle we were unable to measure a difference
in runtime of the algorithm compared to the unaltered original
implementation.
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Fig. 3. Two examples for false positive when applying a naive approach to
find dynamic voxels. See Figure 2 for a legend. Left: Due to the surface being
scanned at a shallow angle, the scan measuring the red points will wrongly
mark voxel B2 as free when traversing the line of sight up to the red point in
A2. Right: Due to the tip of the structure in D3 only measured by the green
scan, it will be wrongly marked as free when traversing the line of sight up
to the red point in A3.

V. PANORAMA SCANS FROM TERRESTRIAL
MAPPING

In [13] we applied our approach to the mobile mapping
scenario to clean scans of a factory production line. The
algorithm relied on the knowledge that subsequent scan slices
are also spatially close to each other. In this paper we present
a more general solution which drops this requirement. It
is thus able to process terrestrial scan data which typically
comes without any particular temporal or spatial ordering
relationship.

Since our method identifies dynamic voxels, we call true
positives all voxel that have correctly been classified as dy-
namic. Thus, false positives are voxels classified as dynamic
even though they contain static points. Attempting to directly
apply our method for mobile mapping to terrestrial scans will
result in false positives due to the alignment of the voxel grid
relative to the point cloud as well as due to heterogeneous
sampling of surfaces by a scanner (depending on distance and
incident angle). Two examples for these situations are shown
in Figure 3. The problem is caused by the laser beam traversing
voxels that were not sampled by the same scan and thus they
are wrongly marks as “see through”.

The problem would be solved if we knew up to which
range it is safe to traverse the voxel grid toward a specific
point without generating these false positives. To compute
these safe maximum search distances, we create the concept
of points “shadowing” other points. As with real shadows, the
size of the shadows we compute is depending on the distance
of the shadowing point from the sensor origin. The volume
that we choose to cast the shadow has the radius of one voxel
diagonal. This is to account for all possible orientations of
the voxel grid relative to the shadowing point. We do not clip
the search distances exactly at the shadowing point but instead
compute the surface normal at the shadowing point. The search
distances toward the shadowed points are then clipped by
the plane one voxel diagonal away from the surface that the
shadowing point is part of. This is to cater for situations as
shown in the left graphic of Figure 3.

Even with appropriate datastructures it would be computa-
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tionally expensive to compute angular neighbors and surface
normals for all points in a scan. Using the following approach,
a full scene can be processed by only carrying out these
computations for a small fraction of points. We start with
sorting all points by distance from the scanner in ascending
order. Then, starting with the closest point to the scanner, we
find the points falling into its shadow and clip their distances.
The algorithm then continues with the next closest not-yet-
processed point. By not processing points which already fell
into the shadow of another (closer) point, only few com-
putations are required even for large scans because usually
few points in the “foreground” shadow many points in the
“background”. Real world numbers are listed in Table I. The
column “normals” displays the percentage of points for which
shadowed points and the normal vector had to be computed.

Figure 4 illustrates our method. The closest point to the
scanner is p and thus it is processed first. The algorithm
computes all points shadowed by a sphere with the radius
of one voxel diagonal and one voxel diagonal in front of p.
These points shadowed by p are marked as magenta in the
figure. Then, the shadowed points are used to compute the
normal vector at p. The normal is in turn used to create a plane
situated one voxel diagonal above p. That plane is then used
to clip all the search distances to the points that p shadows
(distances marked in orange). Since all the magenta points
have been processed already, the algorithm continues with the
next closest point which is one of the blue points.

VI. SPHERE QUADTREE

To efficiently compute points shadowed by another point
under a given angle we make use of triangle quadtrees
on a sphere surface, also known as hierarchical triangular
meshes [14] or sphere quadtrees [15]. That data structure has
so far mostly been used for Geographic Information Systems
to model features on top of the earth surface [16] or in
astronomy to map objects in the sky [17]. For our purposes
we use it as a search tree to find all points in a certain angular
neighborhood in a terrestrial panorama scan with an average
lookup complexity of O(log n). We create one sphere quadtree
per scan with its center at the origin of the scanner-local
coordinate system.

Figure 5 on the left shows a visualization of a finished
sphere quadtree for a terrestrial scan. Each triangle represents
one node of the search tree.

VII. CLUSTERING FOR NOISE REMOVAL

If no good normal vector can be computed, our algorithm
generates false positives. These are usually limited to single
voxels at corners of static objects. On the other hand, most
true positives belong to much larger structures and thus span
many more connected voxels. To reduce the number of false
positives we cluster all voxels marked as free. Each cluster
consists of a group of connected voxels. We identify all
clusters containing less than a certain threshold number of
voxels. Voxels belonging to these small clusters are then
marked as static as they are likely false positives.

VIII. SUB-VOXEL ACCURACY

In this section we present an algorithm that addresses a
specific kind of false negatives our algorithm produces. In the
common case where a dynamic object is seen directly adjacent
to a static object, false negatives are introduced because the
voxel grid is only traversed up to the maximum traversal range
computed from the point shadows. For example, for a person
standing on the ground, the person might be removed but their
feet remain.

To avoid these false negatives we present an algorithm that
is able to achieve sub-voxel accuracy: instead of marking a full
voxel as dynamic and removing all points from it, we remove
all points from the voxel that belong to the scan identifier
producing the false negatives. All static points in the voxel
will be kept and thus avoid the creation of any holes in the
remaining point cloud.

We use Figure 6 to illustrate our approach. The leftmost
graphic shows the original point cloud containing both the
green and the red scan. The green scan only measures the static
horizontal surface while the red scan also measures parts of
the static surface as well as a dynamic vertical structure. After
traversing the voxel grid to find voxels seen as free, voxels B2,
and C2 got classified as “see-through” and points in them were
removed (center graphic). What remains are false negatives
in voxel B1 and C1. Classifying these voxels as dynamic is
wrong because that would remove all points from them and
create holes in the scan. We solve the problem by iterating
over all voxels marked as free (voxels B2 and C2), identify
the scans that got removed from them (the red scan) and then
remove only points belonging to these scans from adjacent
voxels. This will result in a situation as is shown in the right-
most graphic: All red points are removed from voxels B1 and
C1 while the green points remain.

While our approach removes all false negatives, it does so
at the cost of introducing some false positives. In the right-
most graphic of Figure 6, some of the red points in voxels
B1 and C1 should’ve remained because they are part of the
horizontal surface. Thus, our approach to achieve sub-voxel
accuracy implements a trade-off. We remove remaining false
negatives at the cost of more false positives. We accept this
trade-off because qualitatively speaking, for the purpose of
“cleaning” a scan, the result shown in the right-most graphic
is superior to the result in the center graphic. Even though we
now classified too many points as dynamic, after removing
them from the scene, there are still enough static (green) points
left in the respective voxels to not create any “holes”.

Figure 1 from the introduction shows this algorithm applied
to real data. Some points on the ground are marked as dynamic
(magenta points in the left graphic) but removing them doesn’t
negatively impact the remaining point cloud as is shown in the
right graphic.

IX. RESULTS

We publish the source code for the “peopleremover” as
part of 3DTK – The 3D Toolkit1. For future verification and

1http://threedtk.de

http://threedtk.de
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Fig. 4. A scanner on the right measured the points in blue and magenta on the left. The closest point to the scanner is p and points in the shadow of p
are marked in magenta. Remaining points are marked in blue. Search distances are marked orange. Distances equal to one voxel diagonal are highlighted in
green.

Fig. 5. Left: Visualization the nodes of a sphere octree from a terrestrial scan.
Right: reflectance values of that scan as a texture on a sphere in the same
orientation.

comparison, we also publish the scripts and datasets used to
generate the measurements found in this section2.

To quantitatively assess our method, we compare it to the
approach by Underwood et al. [3]. Table I is an overview of
the datasets we used. All points in the first four datasets were
manually labeled with information whether they are dynamic,
static or invalid. The points in the latter two datasets come
without labelling and thus we cannot compute F1-scores for
them. The first three datasets were recorded by Underwood et
al.3. while the remaining three were recorded by us using a
Riegl VZ-400 laser scanner4.

Since the method by Underwood et al. only works for scan
pairs, we executed their method on all possible combination
of pairs in each dataset and computed the final F1-score from
the sum of all the false positives and negatives from each
comparison. To achieve best scores, we tested their method
on multiple discrete Ta and Tr values and kept the best. We
did the same for our method and tried different voxel sizes
and display the best result. We ran both methods without
clustering at the end to be able to compare the raw quality
of both approaches. We didn’t make use of our approach to
achieve sub-voxel accuracy for these quantitative tests because,
the number of newly introduced false positives results in worse
F1-scores.

We achieve similar F1-scores on the synthetic “sim” dataset.
False negatives are introduced in our method due to the

2https://robotik.informatik.uni-wuerzburg.de/telematics/download/RA-L
2018/

3http://www.acfr.usyd.edu.au/papers/icra13-underwood-changedetection.
shtml

4http://kos.informatik.uni-osnabrueck.de/3Dscans/

alignment of the floor with the voxel grid, preventing a perfect
score. Our method is outperformed in the “lab” dataset. The
dataset is challenging because of its very noisy nature (see
Figure 8 on the left) and because the dynamic objects are very
small. Our algorithm correctly identifies the moving boxes in
the “lab” dataset and does not introduce false negatives. But
it generates comparatively large number of false positives on
corners and edges of the environment. Since only 0.19% of all
points in the dataset are labeled as dynamic, it only requires
few voxels marked as false positives to produce a bad F1-score.
Our method slightly outperforms the approach by Underwood
et al. in the “carpark” dataset. The best F1-score we achieved
for the carpark dataset with the Underwood method differs
from the value they present in their paper because we used
their full dataset including the last scan as well as all scan
lines. Both methods result in equal scores on the “lecturehall”
dataset.

Our algorithm produces false positives in situations where
scans are either not correctly registered or due to sensor noise.
An example is a flat surface where not all points lie on
the surface. The points “in front” of the surface in scanner
direction will then be marked as “see through” even though
they belong to a static object. Another source of false positives
arises when surface normals are wrongly computed and thus
point shadows are not determined correctly. This in turn will
lead to false positives as they were shown in Figure 3. Due
to the very noisy nature of the “lab” dataset there were many
sources of both of these issues, leading to a high number of
false positives. Another source of false positives are mirrors
and transparent objects. Lastly – if enabled – some false
positives are introduced by our approach to subvoxel accuracy.

False negatives are created either in situations where a
volume was only seen by a single laser scan or in volumes
that were “shadowed” by closer points. We observed the latter
problem in a dataset where we placed the scanner directly
on the ground instead of on a tripod to take a scan. This
resulted in points from the ground directly adjacent to the
scanner to shadow most of the lower part of the scan and thus
make it impossible for our algorithm to classify any points
close to the ground as dynamic. Additionally, false negatives
are introduced if the chosen voxel size is so small, that rays
are able to penetrate objects without intersecting a voxel with
points in it. Since the point density typically decreases with
their distance from the sensor, this effect also occurs at very
far distances. Applying a clustering filter can also introduce
false negatives if the dynamic object is smaller than the chosen

https://robotik.informatik.uni-wuerzburg.de/telematics/download/RA-L_2018/
https://robotik.informatik.uni-wuerzburg.de/telematics/download/RA-L_2018/
http://www.acfr.usyd.edu.au/papers/icra13-underwood-changedetection.shtml
http://www.acfr.usyd.edu.au/papers/icra13-underwood-changedetection.shtml
http://kos.informatik.uni-osnabrueck.de/3Dscans/
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Fig. 6. Left: original two scans. Center: Voxels B2 and C2 found to be see through and cleared, artifacts remain in B1 and C1. Right: Red points from voxels
adjacent to freed voxels B2 and C2 also get removed, leaving a smooth surface

Fig. 7. Datasets from left to right: “sim” (yellow static points, magenta dynamic points), “lab” and “carpark” (both colored by height) by Underwood et
al [3], and “lecturehall” (laser reflectivity as grayscale values).

TABLE I
COMPARISON OF F1-SCORES AND RUNTIMES ACHIEVED BY OUR METHOD COMPARED WITH THE METHOD BY UNDERWOOD ET AL.

dataset underwood 3dtk
name #points #scans #cmp Ta Tr(m) runtime (s) F1-score voxel size (m) normals (%) runtime (s) F1-score
sim 387838 8 28 1.4 0.1 25 0.98 0.6 8.03 6 0.98
lab 5815910 12 66 1.2 0.2 405 0.71 0.175 0.02 29 0.42
carpark 1965017 4 6 1.0 0.35 34 0.78 0.125 0.23 23 0.83
lecturehall 44574647 2 1 0.8 0.3 837 0.96 0.1 0.003 687 0.96
campus 2227455077 146 3456 0.8 0.3 12.8 days n.a. 0.1 0.16 13.1 hours n.a.
würzburg 86585411 6 15 0.8 0.3 7961 n.a. 0.1 0.21 4967 n.a.

Fig. 8. Left: The “lab” dataset by Underwood et al. Right: The campus dataset
from the top

minimum cluster size.
We also observe how the optimal input parameters to the

algorithms Ta, Tr and the voxel size are different for each
dataset despite the lab and the carpark dataset being recorded
with the same sensor. More research is needed to determine
if the input parameters may be predicted upfront without
requiring manual labelling of a training dataset.

The column “normals” displays the percentage of points
for which surface normal computation as part of finding the
shadowed points was required. As detailed in section V, the
computations have to be carried out for only a very small
fraction of all input points.

The runtime measurements shown in Table I were obtained
by timing the full execution pipeline. To speed up the approach
by Underwood et al. we converted the original ASCII point
cloud data files into their binary format. As the method by

Underwood et al. is only able to compare pairs of scans, the
runtime results for the “sim”, “lab” and “carpark” datasets are
not very meaningful. Our method easily outperforms theirs in
terms of runtime because we apply their method on all possible
combination of scan pairs, leading to N(N−1)

2 comparisons for
N scans. The number of comparisons that were carried out
is noted in the “#cmp” column. For a fairer comparison we
recorded the “lecturehall” dataset. It only consists of two scans
and thus allows to directly compare one run of the Underwood
et al. method with one run of our approach. As listed in Table
I, both approaches require a similar amount of time.

To also give evidence for our claim that the method by
Underwood et al. performs slower for the purpose of “scan
cleaning” on datasets with many scans, we used the “campus”
dataset. Figure 8 on the right shows the dataset from above.
That dataset consists of 146 scans with 15 Million points
per scan on average for a total of 2.2 Billion points for the
whole dataset. Comparing all possible scan pairs of this dataset
would lead to 10585 comparisons. But since it doesn’t make
sense to compare scans that do not overlap in their observed
volume we used a heuristic to discard all scan pairs that do
not share a sufficiently large observed volume. Our heuristic
uses the voxel datastructure that was already generated by
the “peopleremover” to find those scans pairs. This heuristic
under-approximates because ideally we are not only interested
in the scans that measure points in a shared volume but also
in the scan pairs where the free volume observed by one scan
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Fig. 9. The x-axis shows the number of scan slices passed to the algorithm.
The y-axis shows the number of slices that the algorithm is able to process
per second.

intersects with the measured points by the other. But even
with this conservative heuristic, there exist 8372 scan pairs
(79% of all possible scan pairs) in this dataset that share at
least one 10 cm voxel with each other. This is explained by
the large open spaces in the dataset. To further reduce the
number of scan pairs that we choose for comparison with
the algorithm by Underwood et al. we also discard all pairs
that share less than 1000 voxel with each other. This leaves
3456 scan pairs to compare. Since the “campus” dataset does
not contain any labels of dynamic objects, we re-used the
parameters that worked best for the “lecturehall” dataset. The
results shown for the “campus” dataset in Table I indicate,
that the algorithm by Underwood et al. performs an order of
magnitude slower in this task compared to our solution. The
number of compared scan pairs could be further reduced but
for the purpose of “scan cleaning”, the fewer comparisons are
made, the more false negatives will be introduced in situations
where a volume is seen as occupied by most scans and only
seen as free by a few.

Our approach allows trading solution quality for runtime.
For example, if the “lecturehall” dataset were processed with
a voxel size of 17.5 cm instead of 10 cm as shown in Table
I, then the F1-score would only slightly decrease from 0.96 to
0.95 but computation time would be cut by 18% down to 567
seconds.

The voxel traversal algorithm is inherently well suited for
multithreading. Even though the performance of our approach
scales linearly with the number of threads we executed all
benchmarks in single-threaded operation for better compara-
bility.

We also investigated the runtime dependency of our algo-
rithm on the number of input scans and the number of input
points. For the former we used a dataset which we obtained
via mobile mapping from an automotive production line [13].
We recorded the run time of our algorithm for 100 different
input sizes from just 1000 scan slices up to 100000 scan
slices. The scan slices contain 877 points on average. Since
the performance of the algorithm depends on the geometry of
the point cloud, we took 130 samples from random locations
in our test data for each of the 100 different input sizes and
then used the median run time.

The results of our measurements are shown in Figure 9. Due
to the asymptotic behaviour toward larger inputs we deduct
that our algorithm scales linearly with the number of input
scan slices.

We conducted a similar experiment to find the dependency

56000
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62000

64000

0 1× 107 2× 107

Fig. 10. The x-axis shows the number of points passed to the algorithm. The
y-axis shows the number of points that the algorithm is able to process per
second.

of the algorithm runtime from the number of input points. We
randomly sampled the first scan of the “lecturehall” dataset
to obtain input point clouds ranging from 1 million up to 22
million points and then executed our method on each of the
resulting point clouds. The results are shown in Figure 10 and
again indicate a linear relationship.

For qualitative results, we recorded the “würzburg” dataset.
We registered the dataset using slam6D from 3DTK. It con-
tains six scans of the Würzburg marketplace with 86 million
points in total. Table I displays runtime results for both
algorithms on that dataset. A fly-through video displaying the
result of our method is available together with this publication
or online5. Some stills are shown in Figure 11.

X. FUTURE WORK
So far we use C++ standard library data structures to store

the voxel grid in memory. But while this enabled us to quickly
assess the viability of our approach, replacing our current
voxel data structure with a more efficient one will not only
boost our runtime but also significantly reduce memory con-
sumption. Specifically we want to evaluate using OctoMap [8],
our own Octree implementation [18] as well as sparse voxel
DAGs [19]. Our current approach holds the complete point
cloud data in memory but the only data structure that has
to stay in memory at all times is the voxel occupancy grid.
Especially by using memory saving data structures like sparse
voxel DAGs we could load point cloud data only on demand
and thus be able to process much larger data sets than we are
able to process right now.

XI. CONCLUSIONS
We presented the “peopleremover”, an approach specifically

tailored to removing dynamic portions of 3D point cloud data.
Our solution is suitable for scan slices from mobile mapping
as well as for terrestrial scan data. We show experimental
evidence that our approach compares favourably in quality to
an existing solution for scan pairs and is only outperformed
on a very noisy dataset. In terms of runtime our method is
superior as it compares arbitrarily many scans with linear
complexity.
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5https://robotik.informatik.uni-wuerzburg.de/telematics/download/RA-L
2018/flythrough.mp4

https://robotik.informatik.uni-wuerzburg.de/telematics/download/RA-L_2018/flythrough.mp4
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Fig. 11. Each row shows the same camera position. Left column: Static points in yellow and dynamic points in magenta. Right column: scene with only
static points.
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