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Abstract: This manuscript presents an efficient algorithm for solving the inverse kinematics problem
of a 6R robot manipulator to be deployed on embedded control hardware. The proposed method
utilizes the geometric relationship between the end-effector and the base of the manipulator, resulting
in a computationally efficient solution. The approach aims to minimize computational complexity
and memory consumption while maintaining the accuracy and real-time performance demonstrated
by simulations and verified by experimental results on an embedded system. Furthermore, the
manipulator is analyzed in terms of singularities, limits, the workspace, and general solvability. Due
to the simplicity of the algorithm, a platform-independent implementation is possible. As a result,
the average calculation time is reduced by a factor of five to eight and the average error is decreased
by a factor of fifty compared to a powerful analytical solver.

Keywords: mobile manipulation; 6R; 6-DOF; anthropomorphic; robot arm; inverse kinematics;
spherical wrist; embedded system; rescue robotics

1. Introduction

The capability to perform fine and intricate movements with its end-effector is essen-
tial for mobile manipulators, as it enables the robot to interact with its environment in a
more effective and precise manner. A modular adaptable search and rescue robot [1] with
dexterous manipulation capabilities can perform a variety of tasks, such as picking up
objects, opening doors, and manipulating objects in tight spaces, see Figure 1. The develop-
ment of such complex systems requires the integration of several different technologies,
including robot kinematics, control, sensing, and actuation. The robot’s end-effector is
designed to have a high degree of dexterity, with the ability to move in many different
directions and orientations. An intuitive Human–Robot Interaction (HRI) approach that
allows operators to precisely and accurately control end-effector movements is essential [2].

One approach to achieve dexterous manipulation is to use robotic arms or hands
with multiple degrees of freedom (DOF). These types of manipulators can perform a wide
range of movements, allowing the robot to interact with its environment in a more flexible
manner. The kinematics of the manipulator must be carefully designed to ensure that it
has the necessary range of motion and precision for the task at hand. For this purpose,
manipulators with six DOF are typically used, e.g., a manipulator consisting of serial
links and an end-effector connected with six revolute joints (6R). This is due, among other
reasons, to the fact that a minimum of six DOF are required to reach any pose of the tool
center point (TCP) within the workspace, which provides a high degree of usability and
flexibility. Due to the high nonlinearity of the system, resource-intensive computational
algorithms are typically executed on powerful computers to control six DOF manipulators.
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For mobile robot platforms, the challenge is that either the data have to be transmitted
to the robot or the control unit has to be moved to the platform. For smooth and accurate
motions, a large amount of data is generated. Consequently, real-time capable transmission
systems with high data transfer rates and a stable transmission link are needed. Since this
condition generally cannot be guaranteed in rescue robotics, it is reasonable to perform
the calculation directly on the mobile platform. In the case of lightweight rescue robots
with a compact design (cf. Figure 1), it is impractical or impossible to move large and
heavy computers to the platform, therefore small and lightweight embedded systems are
used. However, due to the limited computing power, developing an efficient algorithm
that consumes as few computing resources as possible is necessary. Further difficulties
arise from the fact that the communication with the robot may be interrupted at any time.
In this case, the stable behavior of the manipulator needs to be ensured. As a consequence,
differential kinematic approaches to end-effector control are generally excluded, since a
stop of the manipulator cannot be ensured.

Figure 1. A chain-driven rescue robot equipped with a 6-DOF manipulator for dexterous manipula-
tion tasks, e.g., turning valves or reading pressure gauges.

For the reasons stated, an efficient inverse kinematics (IK) solver to control a custom-
built manipulator attached to a mobile robot platform is presented. Based on the require-
ments for the solver and the geometry of the manipulator, a geometric approach for solving
the IK problem is chosen. The developed algorithm is supported by experimental re-
sults, which were investigated for the accuracy and real-time capability of the solver on
embedded hardware and compared to a powerful analytical kinematics solver. The modu-
larization of the control unit in combination with the manipulator allows the manipulator
to be addressed via a predefined interface. As a result, the manipulator can be controlled
independently of higher-level control systems.

The presented manuscript contains the following key contributions:

• The fundamental derivation of the forward and inverse kinematics of a 6R robot
manipulator, as well as the development of the IK solver in order to resolve the joint
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angles based on arbitrary TCP poses. The geometric approach is an extension of the
inverse kinematic solutions based on industrial robots with respect to the deployment
of embedded hardware.

• The analysis of important characteristics, which are essential for the practical applica-
tion of the solver.

• Simulation results that validate the presented solution to the IK problem and the solver
accuracy with high computational power.

• Experimental results that examine the solver accuracy and real-time capability on an
embedded open-source 32-bit ARM Cortex®-M7 board with an FPU and a clock
frequency of 260 MHz (https://emanual.robotis.com/docs/en/parts/controller/
opencr10/ accessed on 6 July 2023).

When implementing IK on an embedded platform, there are several innovations and
considerations that can improve its performance and efficiency. Compared to related work,
there are some notable innovations here:

• Efficient IK Solvers: Developing lightweight and efficient IK solvers is crucial for
embedded platforms with limited computational resources.

• Real-Time Optimization: Embedded platforms often require real-time performance for
controlling robots in dynamic environments. The developed algorithm can efficiently
handle constraints and optimize IK solutions within the given time constraints.

• Memory Optimization: Embedded platforms often have limited memory resources.
Optimizing data structures, algorithms, and parameter representations can help reduce
memory usage.

• Energy Efficiency: Embedded systems typically operate on limited power sources.
Designing energy-efficient IK algorithms by minimizing unnecessary computations,
optimizing data flow, or leveraging low-power modes when idle can help prolong the
system’s battery life for mobile manipulators.

• Platform-Independent: The platform-independent IK solver presented in this paper
offers a versatile and adaptable solution for solving the inverse kinematics problem of
robotic manipulators. Decoupling the solver from platform-specific considerations
provides a unified framework that can be easily integrated into diverse robotic systems,
regardless of the underlying computing platform.

It is important to note that the specific innovations for an IK implementation on an
embedded platform may vary depending on the system’s requirements, constraints, and
available hardware resources.

2. Related Work

Due to the fact that IK of robots is of central importance in robotics, it has been
extensively covered. Fundamental studies of robot manipulators are described by Pieper [3].
Furthermore, it is shown that the IK problem for manipulators with six DOF and spherical
wrists can be separated and thus solved geometrically. Lee and Ziegler [4] describe a
geometric approach to obtain a closed-form solution for the IK of a robot with a geometric
configuration equivalent to that of the PUMA robot. The IK problem is solved in two
stages. First, the solution of the first three joints is derived geometrically. Second, the
solution of the last three joints is calculated based on the solution of the first three joints
to result in the desired orientation of the TCP. The selection of the most suitable solution
among several possible solutions is realized via indicators. Lloyd and Hayward [5] provide
forward kinematics, analytical IK, and Jacobian solutions of common serial manipulators.

Raghavan and Roth [6] present a solution of the IK problem for robots with general
geometry. Through extensive mathematical transformations and simplifications, a univari-
ate 16th order polynomial can be formulated, whose roots can be solved. Subsequently, all
remaining unknowns can be solved. The description of the robot kinematics is compatible
with the notation according to Denavit and Hartenberg [7], which is commonly used to re-
late coordinate systems in robotics. Manocha and Canny [8] develop an efficient algorithm

https://emanual.robotis.com/docs/en/parts/controller/opencr10/
https://emanual.robotis.com/docs/en/parts/controller/opencr10/
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to solve the system of equations stated in [6] using eigendecomposition. As a consequence,
the calculation time can be significantly reduced.

IK solutions for sixteen different types of manipulators with spherical wrists are
provided by Kucuk and Bingul [9]. Thus, closed-form solutions exist for all common
manipulators where the last three axes intersect at one common point.

Husty et al. [10] describe an algorithm with a new approach to solving the IK problem
compared to previous publications. The geometric structure of the manipulator is consid-
ered in the analysis using the study model of Euclidean displacements. Further, techniques
of multidimensional geometry are applied to solve the problem. As a result, all sixteen
solutions to the IK problem of serial 6R robots with general geometry can be calculated
analytically and more efficiently than in [6].

An alternative and more generic description of robot geometry compared to the
Denavit–Hartenberg notation [7] is described by Brandstötter et al. [11]. A corresponding
forward and closed-form IK solution is stated. As a result, serial 6R robots with ortho-
parallel basis and spherical wrists can be defined by seven characteristic parameters, which
improves the practicability and applicability of common robots.

Khatamian [12] provides a forward and geometric IK solution to robots with an
ortho-parallel basis and a spherical wrist, based on the industrial robot KUKA KR60. An
alternative solution to [12], based on the industrial robot COMAU NM45, is proposed by
Asif and Webb [13]. Solutions to similar approaches are presented in [14–16]. Krishnan and
Ashok [17] describe a forward and closed-form analytical IK solution to robots with an ortho-
parallel basis and a spherical wrist, based on the industrial robot ABB IRB 1200. Recent
publications concentrate on solving the IK problem based on screw theory, e.g., [18–20]. In
summary, a variety of solutions exist for calculating the IK of 6-DOF robotic manipulators,
among other reasons due to their importance in the industry.

The open source framework MoveIt [21], which is integrated into ROS [22], is a widely
used software for manipulation. MoveIt provides core functionalities such as motion
planning, 3D perception, navigation, and control. Despite the advantages mentioned,
MoveIt cannot be executed on embedded systems. The kinematics solver IKFast (http:
//openrave.org/docs/latest_stable/openravepy/ikfast/ accessed on 6 July 2023) [23] can
be used as a plugin for MoveIt, and the source code of the closed-form analytical solution
can be exported for independent use. This enables the development of the IK solver in
MoveIt and a platform-independent application of the algorithm. Since the source code
generated by IKFast has to be extensively adapted to be used on embedded systems and
the geometry of the manipulator is not considered in the analytical solution (and thus is
more extensive), a geometric IK solver with an approach similar to that proposed in the
publications [12,13,15,16] is presented.

3. Fundamental Geometry

Robot kinematics is based on the geometry of the manipulator and specifies the
procedure of the solver development. For this reason, the geometry is analyzed in advance.
The kinematic relationships are described by homogeneous transformation matrices (cf.
Equation (1)). The homogeneous transformation matrix iTj consists of the translational

vector i~pij and the rotational matrix iRj (cf. Equations (2) and (3), respectively).

iTj =

 iRj
i~pij

~0T 1

 (1)

i~pij =

i pij,x
i pij,y
i pij,z

 (2)

http://openrave.org/docs/latest_stable/openravepy/ikfast/
http://openrave.org/docs/latest_stable/openravepy/ikfast/
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iRj =
[

i~mj
i~nj

i~oj

]
=

imj,x
inj,x

ioj,x
imj,y

inj,y
ioj,y

imj,z
inj,z

ioj,z

 (3)

The following notation commonly used in robotics is introduced:

Ci = cos ϕi Cij = cos (ϕi − ϕj)

Si = sin ϕi Sij = sin (ϕi − ϕj)
(4)

A common method to describe the manipulator geometry is the parameterization
according to Denavit and Hartenberg [7]. The kinematics of the manipulator can be
completely described by the Denavit–Hartenberg parameters ai, αi, di, and θi of each link
i and the corresponding coordinate systems, illustrated in Table 1 and in the schematic
sketch in Figure 2. The corresponding CAD drawing of the initial pose of the manipulator
is depicted in Figure 3. The joint angles ϕ1 . . . ϕ5 are limited by the mechanical structure
of the manipulator, and the joint {6} is designed as a continuous joint, thus allowing
infinite rotation. The transformation matrix i−1 Ai is used to represent the coordinate
system {i} in the coordinate system {i − 1} based on Denavit–Hartenberg parameters
and allows the complete description of the kinematic chain of a rigid body system. The
Denavit–Hartenberg transformation matrix is given in Equation (5).

i−1 Ai = Rot(zi−1, θi) · Trans(zi−1, di) · Trans(xi, ai) · Rot(xi, αi) =
cos θi − sin θi · cos αi sin θi · sin αi ai · cos θi
sin θi cos θi · cos αi − cos θi · sin αi ai · sin θi

0 sin αi cos αi di
0 0 0 1

 (5)

Figure 2. Schematic sketch of the robot arm with coordinate systems assigned according to the
Denavit–Hartenberg convention, ϕ1 . . . ϕ6 = 0 rad.



Robotics 2023, 12, 101 6 of 29

Figure 3. CAD drawing of the initial pose of the robot arm, ϕ1 . . . ϕ6 = 0 rad.

Table 1. Denavit–Hartenberg parameters of the first six DOF from the base to the TCP of the gripper.

Link Joint
Variable θi [rad] di [m] ai [m] αi [rad] Range

1 ϕ1 ϕ1 0.081 0.077 −π
2 ±90°

2 ϕ2 ϕ2 − π 0 0.520 π 0°–180°

3 ϕ3 ϕ3 − π
2 0 0.066 π

2 0°–180°

4 ϕ4 ϕ4 0.409 0 −π
2 ±180°

5 ϕ5 ϕ5 0 0 π
2 ±90°

6 ϕ6 ϕ6 0.180 0 0 ±∞

In the context of the 6R manipulator, each revolute joint of the robotic arm is actuated
by a Dynamixel Pro (https://emanual.robotis.com/docs/en/dxl/pro/ accessed on 6 July
2023) motor. These motors provide precise control over the joints, enabling accurate
positioning and movement of the arm. For communication, the RS485 interface is used,
which allows seamless integration of the arm with the embedded board. Table 2 shows
the motor configuration. Each joint is connected by rigid links made of lightweight and
durable materials such as aluminum or carbon fiber, ensuring strength and flexibility.

Table 2. Motor configurations of the 6-DOF manipulator.

Joint Motor Motor Resolution [pulse/rev]

1 H54-100-S500-R 501,923

2 H54-200-S500-R 501,923

3 H54-200-S500-R 501,923

4 H54-100-S500-R 501,923

5 H42-20-S300-R 303,751

6 H42-20-S300-R 303,751

Figure 4 illustrates the workspace of a 6R manipulator, which refers to the region in
3D space where the end-effector (the tool or gripper attached to the robot) can reach and
operate. The left view orientation shows the vertical and horizontal range of the workspace,
which depends on the height of the arm and the orientation of the joints. The arm can
reach 3D poses within a sphere with a radius of 1090 mm from the center of joint {1} of
the manipulator. The working area from the top view of the manipulator is shown as a
two-dimensional projection of the plane. The shape of the working area is influenced by
the lengths of the arm segments, the range of the joints, and all physical constraints that
limit the movement of the arm with a radius of 1090 mm.

https://emanual.robotis.com/docs/en/dxl/pro/
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Figure 4. The workspace of the 6R manipulator from left and top view orientation (all dimensions
are in millimeters).

4. Forward Kinematics

Forward kinematics is the determination of the position and orientation of the TCP in
relation to the base depending on the joint variables. The forward transformation of serial
robots, also referred to as direct transformation, results from a chain transformation of the
individual transformation matrices stated in Equation (6) and provides a unique solution
for serial robots. The pose of the TCP can thus be expressed by the transformation matrix
0T6.

0T6 = 0T1 · 1T2 · 2T3 · 3T4 · 4T5 · 5T6 (6)

Hence, the calculation of the individual transformation matrices of each link based on
the joint variables and manipulator geometry is required. The transformation matrices
can be obtained according to the Denavit–Hartenberg convention (cf. Equation (5)). It
should be noted that the assignment of the coordinate systems according to the Denavit–
Hartenberg convention does not necessarily correspond to the desired assignment of the
joint coordinate systems due to the fact that they have to be assigned according to certain
criteria in order to comply with the Denavit–Hartenberg convention. Due to this reason,
additional transformations may be necessary to achieve the desired representation.

For manipulators with simple geometries, the transformation matrices can alterna-
tively be obtained by translations and elementary rotations in relation to arbitrarily assigned
joint coordinate systems. For this robot arm, the forward and inverse kinematics are devel-
oped according to the sketch illustrated in Figure 5. The procedure is generally the same,
however, the description of the transformation matrices is simplified because they consist
of only one translation and rotation instead of two.

Figure 5. Schematic sketch of the robot arm with assigned coordinate systems used for forward and
inverse kinematics, ϕ1 . . . ϕ6 = 0 rad.
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5. Inverse Kinematics

Inverse kinematics or backward transformation describes the inverse operation of
forward kinematics, i.e., the determination of the joint variables at a given pose of the TCP.
In contrast to forward kinematics, inverse kinematics generally does not provide a unique
solution. Thus, the robot arm is analyzed to develop an inverse solver in order to resolve
the joint angles (ϕ1 . . . ϕ6) based on the pose of the TCP.

5.1. Geometric Derivation

Given that the axes of joints {4}, {5}, and {6} intersect at a single point, the IK can
be solved geometrically (described by Pieper [3], cf. e.g., [24] (p. 29)). The position of the
intersection point of the axes is independent of the joint angles ϕ4 . . . ϕ6 and results directly
from the given goal pose of the TCP. Consequently, the joint angles ϕ1 . . . ϕ3 of joints {1},
{2}, and {3} can be calculated by geometric considerations based on the known position of
the wrist point (WP, intersection point of the axes) illustrated in Figure 6. Due to the given
goal orientation 0R6 of the TCP and the calculated angles ϕ1 . . . ϕ3, the angles ϕ4 . . . ϕ6 can
then be resolved analytically. Mathematically, this means a separation of the problem in
two sub-problems. The basic procedure is described by the following Equations (7) and (8):

0~p05 = 0~p04 = 0~p02(ϕ1) +
0~p25(ϕ2, ϕ3) (7)

3R6(ϕ1, ϕ2, ϕ3) =
3R6(ϕ4, ϕ5, ϕ6)

(0R1(ϕ1) · 1R2(ϕ2) · 2R3(ϕ3))
−1 · 0R6 = 3R4(ϕ4) · 4R5(ϕ5) · 5R6(ϕ6)

(8)

Hence, the calculated solutions for the joint angles ϕ1 . . . ϕ6 result in the exact position
0~p06 and orientation 0R6 of the TCP (specified by the goal pose 0T6).

Figure 6. Schematic sketch of the robot arm (coordinate systems {0}. . . {5}) representing the inverse
solver functionality, ϕ1 . . . ϕ3 arbitrary.
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Due to the kinematics of the manipulator, there are eight different solutions of combi-
nations of joint angles to obtain the desired pose of the end-effector. This results because

1. the link between the coordinate systems {1} and {2} can be oriented towards or
opposite from the WP,

2. the elbow defined by the coordinate system {3} can be oriented upwards or down-
wards, and

3. the orientation of the wrist is identical every half turn of the joints assigned to the
coordinate systems {4} and {6} and the corresponding angle of the joint assigned to
the coordinate system {5},

hence 23 = 8 solutions. Based on the combinations of joint angles, the joints of the
manipulator can be divided into the following three subgroups consisting of

1. joint {1} (shoulder);
2. joints {2} and {3} (elbow);
3. joints {4}, {5}, and {6} (wrist).

As a result, the IK problem can be further divided into three problems corresponding to
each joint subgroup, whose solutions are described in Section 5.2.

5.2. Solution
5.2.1. Joint 1

The given goal pose of the TCP represented by the transformation matrix 0T6 is defined
in Equation (9):

0T6 =

[
~m ~n ~o ~p
0 0 0 1

]
=


mx nx ox px
my ny oy py
mz nz oz pz
0 0 0 1

 (9)

In this specific case, superscripts and subscripts of the coordinate systems are omitted due
to better readability and because of the significance of the matrix 0T6 and its entries in
the further course. Using the goal pose of the TCP 0T6, the link length d6 and the joint
angle ϕ6, the transformation between base {0}, WP {5}, and TCP {6} can be described (cf.
Equation (10)).

0T6 = 0T5 · 5T6 = 0T5 · Trans(d6, 0, 0) · Rot(x, ϕ6) =
0T5 ·


1 0 d6
0 C6 −S6 0
0 S6 C6 0
0 0 0 1

 (10)

Using Equation (10) and the inverse transformation matrix 5T6
−1 (cf. Equation (11)),

6T5 = 5T6
−1 =


1 0 −d6
0 C6 S6 0
0 −S6 C6 0
0 0 0 1

 (11)

the position 0~p05 of the WP with reference to the base coordinate system {0} can be
calculated (cf. Equations (12) and (13)).

0T5 = 0T6 · 5T6
−1 = 0T6 · 6T5 =


px − d6 ·mx

0R5 py − d6 ·my
pz − d6 ·mz

0 0 0 1

 (12)
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0~p05 = 0~p06 − d6 · ~m =

px − d6 ·mx
py − d6 ·my
pz − d6 ·mz

 (13)

Solution for Joint 1: The plane spanned by the rotation of joint angle ϕ1 is orthogonal
to the plane spanned by the rotation of joint angles ϕ2 and ϕ3, because the axis {1} is
perpendicular to the axes {2} and {3}. Consequently, the joint angle ϕ1 can be calculated
using the x and y components of the vector 0~p05 from the base to the WP (cf. Equation (14)).

ϕ1 =

{
atan2(0 p05,y, 0 p05,x) towards WP
atan2(− 0 p05,y,− 0 p05,x) away from WP

(14)

5.2.2. Joints 2 and 3

Using the calculated joint angle ϕ1, the transformation matrix 0T2 from the base {0} to
coordinate system {2} can be calculated via forward transformation (cf. Equations (15)–(17)).

0T1 = Trans(0, 0, d1) · Rot(z, ϕ1) =


C1 −S1 0 0
S1 C1 0 0
0 0 1 d1
0 0 0 1

 (15)

1T2 = Trans(a1, 0, 0) · Rot(y, ϕ2) =


C2 0 S2 a1
0 1 0 0
−S2 0 C2 0

0 0 0 1

 (16)

0T2 = 0T1 · 1T2 =


a1 · C1

0R2 a1 · S1
d1

0 0 0 1

 (17)

The translation vector 0~p02 (cf. Equation (18)) results directly from the transformation
matrix 0T2.

0~p02 =

a1 · C1
a1 · S1

d1

 (18)

From the vectors 0~p02 and 0~p05 (cf. Equations (18) and (13), respectively), the vector 0~p25 can
be calculated (cf. Equation (19)), which represents the translation between the coordinate
system {2} and the coordinate system {5} of the WP.

0~p25 = 0~p05 − 0~p02 =

px − d6 ·mx − a1 · C1
py − d6 ·my − a1 · S1

pz − d6 ·mz − d1

 (19)

The vectors 2~p23 and 3~p35 can be set up by geometrical considerations (cf. Equations (20)
and (21), respectively).

2~p23 =

−a2
0
0

 (20)

3~p35 =

d4
0
a3

 (21)
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The vectors ~p25, ~p23, and ~p35 form a triangle whose vertices are located at the origins of
the coordinate systems {2}, {3}, and {5} (WP). The square of the vector length is obtained
via the vector norm (cf. Equations (22)–(24)). Subsequently, the angles ϕ2 and ϕ3 can be
calculated using the law of cosines.

∥∥~p25
∥∥2

=
∥∥0~p25

∥∥2
= 0 p25,x

2 + 0 p25,y
2 + 0 p25,z

2 =

(px − d6 ·mx − a1 · C1)
2 + (py − d6 ·my − a1 · S1)

2 + (pz − d6 ·mz − d1)
2 (22)

∥∥~p23
∥∥2

=
∥∥2~p23

∥∥2
= a2

2 (23)

∥∥~p35
∥∥2

=
∥∥3~p35

∥∥2
= d4

2 + a3
2 (24)

To calculate the elevation angle β2, the vector 0~p25 is transformed into the coordinate system
{1} using the inverse of the rotation matrix 0R1 (cf. Equation (25)).

1~p25 = 0R1
−1 · 0~p25 = 1R0 · 0~p25 (25)

The calculation of the elevation angle β2 can thus be done via the x and z components of
the vector 1~p25, with the z component remaining unchanged by the transformation from
the base coordinate system {0} to coordinate system {1} (cf. Equations (26) and (27)).

1 p25,x = px · C1 + py · S1 − a1 − d6 · (mx · C1 + my · S1) (26)

1 p25,z =
0 p25,z = pz − d6 ·mz − d1 (27)

Solution for Joint 2: The solution for ϕ2 can be calculated based on the elevation angle
β2 and the triangular angle α2 (cf. Equations (28) and (29), respectively).

β2 = atan2 (1 p25,z, 1 p25,x) (28)

α2 = arccos

(∥∥~p23
∥∥2

+
∥∥~p25

∥∥2 −
∥∥~p35

∥∥2

2 ·
∥∥~p23

∥∥ · ∥∥~p25
∥∥

)
(29)

Due to geometrical considerations, the following two solutions for the joint angle ϕ2 result
(cf. Equation (30)):

ϕ2 =

{
π − α2 − β2 elbow up
π + α2 − β2 elbow down

(30)

Solution for Joint 3: Likewise, the offset angle β3 and the triangular angle α3 can be
calculated (cf. Equations (31) and (32), respectively).

β3 = arctan

(
3 p35,z
3 p35,x

)
= arctan

( a3

d4

)
(31)

α3 = arccos

(∥∥~p23
∥∥2

+
∥∥~p35

∥∥2 −
∥∥~p25

∥∥2

2 ·
∥∥~p23

∥∥ · ∥∥~p35
∥∥

)
(32)

The angles α3 and β3 result in the joint angle ϕ3 (cf. Equation (33)):

ϕ3 =

{
α3 − β3 elbow up
2π − α3 − β3 elbow down

(33)
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5.2.3. Joints 4, 5, and 6

Based on the joint angles ϕ1 . . . ϕ3, the rotation matrix 0R3 can be calculated by forward
transformation (cf. Equation (34)).

0R3 = 0R1 · 1R2 · 2R3 = Rot(z, ϕ1) · Rot(y, ϕ2) · Rot(y,−ϕ3) (34)

Subsequently, the rotation matrix 3R6 can be determined using the given orientation
matrix of the TCP 0R6 (cf. Equation (35))

3R6 = 0R3
−1 · 0R6 = 0R3

T · 0R6 = 3R0 · 0R6 (35)

to obtain the corresponding matrix entries (cf. Equation (36)).

3m6,x = (mx · C1 + my · S1) · C23 −mz · S23
3m6,y = my · C1 −mx · S1
3m6,z = (mx · C1 + my · S1) · S23 + mz · C23
3n6,x = (nx · C1 + ny · S1) · C23 − nz · S23
3o6,x = (ox · C1 + oy · S1) · C23 − oz · S23

(36)

In addition, the rotation matrix 3R6 can also be derived via forward transformation using
the joint angles ϕ4 . . . ϕ6 (cf. Equation (37)).

3R6 = Rot(x, ϕ4) · Rot(y,−ϕ5) · Rot(x, ϕ6) = C5 −S5 · S6 −S5 · C6
−S4 · S5 C4 · C6 − S4 · C5 · S6 −C4 · S6 − S4 · C5 · C6
C4 · S5 S4 · C6 + C4 · C5 · S6 −S4 · S6 + C4 · C5 · C6

 (37)

Equations (38)–(41) can be set up by transforming the entries of the rotation matrix 3R6
stated in Equation (37).

3m6,y
3m6,z

=
−S4 · S5

C4 · S5
= − tan ϕ4 (38)

√
3m6,y2 + 3m6,z2 =

√
3n6,x2 + 3o6,x2 = sin ϕ5 (39)

3m6,x = cos ϕ5 (40)

3n6,x
3o6,x

=
−S5 · S6

−S5 · C6
= tan ϕ6 (41)

Solution for Joints 4, 5, and 6: As a result, the joint angles ϕ4 . . . ϕ6 can be calculated
by substituting the matrix entries (cf. Equation (36)) into Equations (38)–(41) to obtain the
solutions stated in Equations (42)–(44). The solution is derived from the calculation of Euler
angles from rotation matrices (cf. e.g., [24] (p. 13)).

ϕ5 =

atan2
(√

3m6,y2 + 3m6,z2, 3m6,x

)
wrist orientation 1

atan2
(
−
√

3m6,y2 + 3m6,z2, 3m6,x

)
wrist orientation 2

(42)

ϕ4 = atan2
(
−

3m6,y

sin ϕ5
,

3m6,z

sin ϕ5

)
(43)

ϕ6 = atan2
(
−

3n6,x

sin ϕ5
,−

3o6,x

sin ϕ5

)
(44)
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As a consequence of the Euclidean norm in the function atan2() in Equation (42), the
joint angle ϕ5 is always positive within the range [0, π] for wrist orientation 1 and always
negative within the range [−π, 0] for wrist orientation 2. Hence, the calculation of both
joint angle combinations can be separated, resulting in alternative Equations (45)–(47).
Due to the independence of the equations, the joint angles ϕ4 . . . ϕ6 can be calculated
independently.

ϕ4 =

{
atan2(− 3m6,y, 3m6,z) wrist orientation 1
atan2(3m6,y,− 3m6,z) wrist orientation 2

(45)

ϕ5 =

atan2
(√

3m6,y2 + 3m6,z2, 3m6,x

)
wrist orientation 1

atan2
(
−
√

3m6,y2 + 3m6,z2, 3m6,x

)
wrist orientation 2

(46)

ϕ6 =

{
atan2(− 3n6,x,− 3o6,x) wrist orientation 1
atan2(3n6,x, 3o6,x) wrist orientation 2

(47)

An equivalent solution for the joint angle ϕ5, stated in Equation (48), can alternatively be
derived from Equation (40), however, the result is generally slightly less accurate than the
solution in Equation (46) (verified in Section 6.6).

ϕ5 =

{
arccos(3m6,x) wrist orientation 1
− arccos(3m6,x) wrist orientation 2

(48)

6. Experiments and Results

In this section, the procedure to validate the IK solution, presented in Section 5, is
described and further improvements are stated.

6.1. Evaluation and Test Procedure

To verify the solution of the inverse solver, a test procedure is defined and implemented
in MATLAB®. The test procedure (depicted in Figure 7) is as follows:

1. Import the manipulator geometry and set the parameters described in Table 1.
2. Random generation of a combination of joint angles ϕ1 . . . ϕ6 (~ϕcurr) within the limits .
3. Forward transformation of the generated joint angle combination to obtain the pose

of the TCP represented by the transformation matrix 0T6 .
4. Inverse transformation of the transformation matrix 0T6 to resolve for eight different

combinations of joint angles ϕ1 . . . ϕ6 (~ϕinv) .
5. Selection of the combination of joint angles which causes the smallest angular devia-

tion as the solution (~ϕinv) .
6. Analysis of the IK solution in comparison with the generated joint angles and the

remaining joint angle combinations.

Figure 7. Overview of the evaluation and its main components for the IK solver.

6.2. Selection of the Solution

As described in Section 5.1, a maximum of eight different solutions to the IK problem
exist, each leading to the desired pose of the TCP. However, when using the solver in
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practice, only one of the eight solutions is important. It is reasonable to select the solution
which results in the smallest angular difference with respect to the current joint angles. As
a consequence, the joints of the manipulator move at a minimum to reach the goal pose.

The minimum joint motion can be determined by several approaches. The most
straightforward approach is the one shown in Figure 7, where all eight possible combina-
tions of joint angles are calculated and then the most suited solution is selected. Alterna-
tively, the minimum joint motion can be obtained by considering the three subgroups of
joints (described in Section 5.1). It is assumed that a minimum motion of each subgroup
leads to a minimum total motion of the manipulator, which means that all subgroups can
be considered separately. Since the smallest angle difference can be determined after each
solved subgroup of joint angles, the desired combination of joint angles can be narrowed
down after each subgroup. This approach corresponds to a fusion of the components Inverse
Kinematics and Joint Angle Selection (cf. Figure 7). As a result, the desired combination of
joint angles remains and moreover, the calculation effort can be considerably reduced.

The angular difference ∆ϕj for each possible joint angle combination j of a subgroup
can be calculated using Equation (49), where ϕinv,i represents the IK solutions of joint {i}
and ϕcurr,i represents the current angle of joint {i}. The joint indices k and l define the
subgroup of joints, which is a subset of {1, . . . , 6}.

∆ϕj =
l

∑
i=k

∣∣ϕinv,i,j − ϕcurr,i
∣∣ (49)

Subsequently, the joint angle combination j with the smallest angular difference ∆ϕj is
selected as the solution.

In some cases, joint angle combinations can be excluded in advance, because, e.g.,
the joint limits are exceeded. For instance, in the case of the manipulator analyzed here,
the elbow-down configurations are excluded due to the limits of joint {3}, i.e., only the
elbow-up configurations of joint angles are relevant. Moreover, for combinations where
the joint angles can be calculated independently, such as in Equations (45)–(47), a single
joint angle may be sufficient to select the solution, which eliminates the need to calculate
all joint angles of the subgroup. Hence, the calculation time may be further reduced.

6.3. Conversion between Singleturn and Multiturn Range

For the calculation with joint angles, it is essential that angles can be transformed
between multiturn range [−∞, ∞] and singleturn range (e.g., [−π, π]) while maintaining
the position of the joint. These transformations are particularly necessary when using
continuous rotational joints with angles exceeding the singleturn range. Moreover, the
conversion to a specific range may be required after the addition or subtraction of joint
angles, e.g., when calculating the joint angles of the elbow due to the angular offset β3 or
when calculating the difference of two joint angles in order to select a solution. Hence, the
functions wrap() and unwrap() are defined. The function wrap() is used to convert the
multiturn angle ϕ to the singleturn angle ϕwrapped (cf. Equation (50))

ϕwrapped = wrap(ϕ, ϕin, ϕex) := ϕ− floor
( ϕ− ϕin

ϕex − ϕin

)
· (ϕex − ϕin) (50)

and the function unwrap() is used to transform the singleturn angle ϕwrapped to the multi-
turn angle ϕ using a reference angle ϕre f (cf. Equation (51)).

ϕ = unwrap(ϕwrapped, ϕre f , ϕin, ϕex) := ϕre f + wrap (ϕwrapped − ϕre f , ϕin, ϕex) (51)

In order to convert the angles, the range is set by means of the included angle ϕin and
the excluded angle ϕex. For example, by setting ϕin to π and ϕex to −π, the angles are
converted to the range [−π, π]. The reference angle ϕre f limits the possible multiturn
range with the result that there remains only one valid solution. Hence, the maximum
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angular difference between the multiturn angle ϕ and the reference angle ϕre f is π. As a
reference angle, e.g., the current joint angle ϕcurr can be used. The functional principle of
the conversion is depicted in Figure 8.

Figure 8. Conversion between wrapped and unwrapped joint angles, ϕin = π, ϕex = −π.

6.4. Singularities and Limits

Joint angles exist where the manipulator loses DOF due to its geometry, and these
are commonly referred to as singularities of the manipulator. For singular configurations,
there are often an infinite number of joint positions that lead to the same TCP pose. Fur-
thermore, jump discontinuities of joint positions may occur for adjacent TCP poses near
singularities. Due to the stated reasons, motions in the vicinity of singular configura-
tions can cause unintended behavior, such as sudden joint rotations, and thus have to be
considered separately.

In order to prevent critical behavior, the singularities of the manipulator have to be
identified. Despite the fact that solutions for IK solvers based on geometric methods can
be identified analytically, the calculation is performed numerically using computer-based
systems. This causes the numerical errors to increase as the singular configurations are
approached and can further lead to inaccurate results or, at worst, invalid floating point
numbers (NaN) in the immediate vicinity of the singularities. If the required accuracy of the
solver is known in advance, the numerical range for the identification of the singularities
can be set more generously and thus the calculation of invalid solutions can be prevented.

The singularities and limits of the manipulator are considered separately for each of
the three subgroups described in Section 5.1.

6.4.1. Joint 1

The singularity of joint {1}, also referred to as shoulder singularity, occurs when the
WP lies on the rotation axis of joint {1}. A special case arises if, in addition, the rotation
axes of joints {1} and {6} coincide. In the case of a shoulder singularity, the x and y
components of the vector 0~p05, stated in Equation (13), are zero and hence the joint angle
ϕ1 is undefined and cannot be resolved (cf. Equation (14)). In order to avoid an undefined
angle, a numerically small threshold is defined which is used to specify a small area on the
xy-plane around the rotation axis of joint {1}. If this critical area is reached, i.e., the length
of the vector ~p05 falls below the threshold, e.g., the current joint angle ϕcurr can be selected
as the solution or, alternatively, the angle ϕ1 can be calculated based on the goal orientation
of the TCP and the current joint angles ϕcurr of the wrist. Subsequently, the remaining joint
angles can be calculated.
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6.4.2. Joints 2 and 3

The elbow singularity occurs when the WP lies on the straight line through joints {2}
and {3}, i.e., the vectors ~p23 and ~p35 are collinear. Thereby, the elbow-up and elbow-down
configurations degenerate to one singular configuration. This case can only occur when the
manipulator is either fully unfolded or fully folded, although it is typically not physically
possible to fully fold the manipulator due to collisions. The elbow singularity represents
the exact limits of the domain of the functions stated in Equations (29) and (32). In the
case of a singularity, the argument of the arc cosine function is either 1 or −1, which
corresponds to an angle of 0 or π, respectively. Hence, the angles ϕ2 and ϕ3 can be resolved
using Equations (30) and (33), with the numerical accuracy decreasing as the singularity is
approached. Further research in this context is discussed in Section 6.5.

6.4.3. Joints 4, 5, and 6

The coincidence of the rotation axes of joints {4} and {6} is referred to as wrist
singularity and occurs if the joint angle ϕ5 is equal to k · π (k ∈ Z). As a consequence, the
angles ϕ4 and ϕ6 can no longer be resolved via the matrix entries stated in Equation (36) at
singular configurations of the rotation matrix 3R6 (cf. Equations (52) and (53)).

3R6 = Rot(x, ϕ4) · Rot(y, 0) · Rot(x, ϕ6) = Rot(x, ϕ4) · I · Rot(x, ϕ6) =

Rot(x, ϕ4 + ϕ6) =

1 0 0
0 cos (ϕ4 + ϕ6) − sin (ϕ4 + ϕ6)
0 sin (ϕ4 + ϕ6) cos (ϕ4 + ϕ6)

 (52)

3R6 = Rot(x, ϕ4) · Rot(y, π) · Rot(x, ϕ6) = Rot(x, ϕ4) · Rot(y,−π) · Rot(x, ϕ6) =−1 0 0
0 cos (ϕ4 − ϕ6) sin (ϕ4 − ϕ6)
0 sin (ϕ4 − ϕ6) − cos (ϕ4 − ϕ6)

 (53)

Singularities of the wrist can be detected via the matrix entry 3m6,x, and subsequently,
the corresponding joint angle ϕ5 can be set. For this purpose, a numerical threshold is
defined, since it is very unlikely that the matrix entry 3m6,x is exactly 1 or −1. For the
matrix entry 3m6,x reaching approximately 1, Equation (54) applies. For the matrix entry
3m6,x reaching approximately −1, an analogous procedure can be followed but shall not be
further elaborated here since the findings are equivalent.

cos (ϕ5) = 1− threshold (54)

Rearranging Equation (54) yields Equation (55) for calculating the numerical threshold in
order to achieve a certain maximum angular deviation ϕthreshold of the joint angle ϕ5.

threshold = 1− cos (ϕthreshold) (55)

The relationship of the threshold and the maximum angular deviation ϕthreshold is shown in
the double logarithmic graph depicted in Figure 9.
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Figure 9. Relationship of the threshold angle ϕthreshold in ° and the numerical threshold.

For example, if a wrist singularity is to be detected at an angular deviation ϕthreshold of
joint angle ϕ5 smaller than one-tenth of a degree, the numerical threshold is to be set to

threshold = 1− cos (0.1°) ≈ 1.5× 10−6. (56)

In the case of a singularity, the joint angles ϕ4 and ϕ6 are calculated via the matrix entries
3n6,y and 3o6,y (cf. Equations (57)) due to the fact that the calculation is more efficient than
using the matrix entries 3n6,z and 3o6,z.

3n6,y = ny · C1 − nx · S1
3o6,y = oy · C1 − ox · S1

(57)

Subsequently, Equation (58) is used to calculate the combination of the joint angles ϕ4 and ϕ6
based on the rotation matrix 3R6 at singular configurations (cf. Equations (52) and (53)).

ϕ4 + ϕ6 = atan2(− 3o6,y, 3n6,y)

ϕ4 − ϕ6 = atan2(3o6,y, 3n6,y) = − atan2(− 3o6,y, 3n6,y)
(58)

By rearranging Equation (58), the joint angle ϕ6 can be expressed as a function of the
rotation matrix 3R6 and the angle ϕ4 (cf. Equation (59)).

ϕ6 =

{
atan2(− 3o6,y, 3n6,y)− ϕ4 if 3m6,x > (1− threshold)
atan2(− 3o6,y, 3n6,y) + ϕ4 if 3m6,x < (−1 + threshold)

(59)

Hence, the joint angle ϕ6 can be calculated if the joint angle ϕ4 is set to an arbitrary angle,
e.g., the current joint angle ϕ4,curr. The joint angle ϕ5 can be set according to the matrix
entry 3m6,x.

6.5. Workspace and Solvability

Due to the fact that the solver is based on an analytical algorithm, a (non-imaginary)
solution exists only if the pose of the end-effector is within the workspace of the manipulator.
This condition can be checked for any TCP pose. The WP, the angle ϕ1, and consequently
the vector ~p25 can be calculated by using the goal pose of the TCP and the geometry of
the manipulator (cf. Equation (19)). Furthermore, the vectors ~p23 and ~p35 are known (cf.
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Equations (20) and (21), respectively). Since these three vectors span a triangle, with only
the length of the vector ~p25 being variable, the solvability constraints∥∥~p25

∥∥ ≤ ∥∥~p23
∥∥+ ∥∥~p35

∥∥∥∥~p25
∥∥ ≤ a2 +

√
a32 + d4

2
(60)

and ∥∥~p25
∥∥ ≥ ∣∣∣∣∥∥~p23

∥∥− ∥∥~p35
∥∥∣∣∣∣∥∥~p25

∥∥ ≥ ∣∣∣∣a2 −
√

a32 + d4
2
∣∣∣∣ (61)

apply (cf. triangle inequality). Geometrically, this means that the distance between the
coordinate systems {2} and {5} (WP) cannot be greater than the distance resulting from
a maximum deflection of the manipulator and cannot be smaller than the difference of
the links. In addition, it must be considered that although the manipulator can reach the
maximum deflection, the folded position cannot be reached due to the collision of the links
and the limitations of the joints. For this reason, the solvability constraint is adapted to

∥∥~p25
∥∥ ≥ √(a2 − d4)

2 + a32. (62)

Consequently, if the stated constraints are not fulfilled, there is no solution to the problem.
Although no solution can be found when the vector length is not within the limits

and thus the position of the WP cannot be reached, the joint angles ϕ2 and ϕ3 can be
calculated so that the vector ~p25 is oriented towards the WP. Subsequently, the remaining
joint angles ϕ4 . . . ϕ6 can be calculated and the resulting pose approximates the desired
pose. At maximum deflection, the joint angles result in

ϕ2 = π − β2 = π − atan2 (1 p25,z, 1 p25,x)

ϕ3 = π − β3 = π − arctan
( a3

d4

) (63)

and the folded position exhibits the joint angles

ϕ2 = π − β2 − arctan
( a3∣∣a2 − d4

∣∣ ) = π − atan2 (1 p25,z, 1 p25,x)− arctan
( a3∣∣a2 − d4

∣∣ )
ϕ3 = 0

(64)

(see Figure 6). This allows the calculation of the joint angles for TCP poses outside the
workspace of the manipulator.

6.6. Solver Accuracy and Execution Time

The inverse solver consisting of the equations presented in Section 5 is simulated
according to the test procedure described in Section 6.1. The TCP poses 0T6 are generated by
forward transformation of randomly generated joint angles ~ϕcurr within the range [−π, π].
Physical constraints of the manipulator such as collisions and joint limits are ignored, as
only the mathematical capabilities of the solver are examined, thus all TCP poses within
the workspace of the manipulator are evaluated. In addition, all eight combinations of
joint angles ~ϕinv are calculated (cf. Figures A1 and A2 in Appendix A). However, only
the solution ~ϕinv with the smallest angle difference is considered in the evaluation, which
is determined on the basis of the joint angles ~ϕcurr (cf. Equation (49)). In order to obtain
representative results, a data set of m = 10,000 randomly generated joint angle combinations
is created. Consequently, valid solutions exist for each combination. The generated data set
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consisting of the joint angles ϕ1 . . . ϕ6 is approximately uniformly distributed (illustrated
in the histograms in Figure 10).

Figure 10. Histograms of the randomly generated joint angles ϕ1 . . . ϕ6 representing the frequency
per bin of the joint angles in radian (360 bins in total).

To evaluate the capability and accuracy of the inverse solver, the following solver
variants based on

1. Equations (14), (30), (33) and (42)–(44);
2. Equations (14), (30), (33) and (45)–(47); and
3. Equations (14), (30), (33), (45), (47) and (48)

are examined. The detection of singularities, described in Section 6.4, is disabled, i.e., the
threshold for the detection of shoulder and wrist singularities is set to zero. The solver
variants are both simulated on PC and tested with the embedded board using the implicit
and explicit equations. For the explicit calculation variants, the explicit equations derived
in Section 5.1 are used, whereas for the implicit calculation variants, the stated matrix
multiplications are calculated and then the resulting matrix entries are substituted into
the equations. To compare the presented solver with the analytical solver IKFast, the
source code of IKFast is generated based on the geometry of the manipulator, exported,
and adapted for use on the embedded board. In order to obtain comparable results, the
identical, randomly generated data set depicted in Figure 10 is both used for the simulation
and the evaluation of the inverse solver. The data are transmitted without loss of numerical
precision. After executing steps 3 to 5 of the test procedure (cf. Section 6.1) on the embedded
board, the results are transferred to the PC for further analysis.

The capability and accuracy of the solver are evaluated based on the maximum joint
angle error ϕerr,max for each combination j of all n = 6 joints (cf. Equation (65)). The desired
result is to exactly resolve the joint angles ~ϕcurr, i.e., the angular difference to the resolved
joint angles ~ϕinv expressed with the joint angle errors ~ϕerr is zero and thus the desired
maximum joint angle error ϕerr,max is zero.

ϕerr,max = max(~ϕerr) = max
∣∣~ϕcurr − ~ϕinv

∣∣ = n
max
i=1

∣∣ϕcurr,i − ϕinv,i
∣∣ (65)

The histogram and the associated box plot of the maximum joint angle error ϕerr,max using
the solver variant 2 with explicit equations are depicted in Figure 11 (calculated with
MATLAB® on the PC) and Figure 12 (calculated with the embedded board). The histogram
and the associated box plot of the maximum joint angle error ϕerr,max of IKFast executed on
the embedded board are depicted in Figure 13 (note the different scaling of the x-axis).
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Figure 11. Histogram and box plot of the maximum joint angle errors ϕerr,max of the solver variant 2
with explicit equations simulated with MATLAB® on the PC.

Figure 12. Histogram and box plot of the maximum joint angle errors ϕerr,max of the solver variant 2
with explicit equations executed on the embedded board.

Figure 13. Histogram and box plot of the maximum joint angle errors ϕerr,max of IKFast executed on
the embedded board.
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For further examination, all solver variants are tested and examined. The histograms
of the remaining variants 1 and 3 present the same course as the histograms shown in
Figures 11 and 12. Due to the fact that the histograms represent an irregular distribution
with a wide value range, the percentiles of the distribution of the maximum joint angle
errors ϕerr, shown in Table 3, are used for the characterization.

Table 3. Percentiles of the distribution of the maximum joint angle errors ϕerr.

Solver Variant
Percentile [10−16 rad]

0th
(Min.)

5th 25th 50th
(Med.)

75th 95th 99th 100th
(Max.)

PC

implicit
1 0.0 2.2 4.4 8.9 17.8 125.4 770.5 107,642.8

2 0.0 2.2 4.4 8.9 17.8 125.5 770.5 107,642.8

3 0.0 2.2 4.4 8.9 17.8 127.4 783.3 107,642.8

explicit
1 0.0 2.2 4.4 7.8 13.3 102.1 532.8 309,219.3

2 0.0 2.2 4.4 8.3 13.3 102.1 532.8 309,219.3

3 0.0 2.2 4.4 8.9 15.5 106.6 537.3 309,219.3

Embedded Board

implicit
1 0.0 2.2 4.4 8.9 14.4 102.1 562.3 267,226.2

2 0.0 2.2 4.4 8.9 14.4 102.1 562.3 267,226.2

3 0.0 2.2 4.4 8.9 15.5 106.6 579.5 267,226.2

explicit
1 0.0 2.2 4.4 8.9 14.4 102.1 532.8 309,219.3

2 0.0 2.2 4.4 8.9 14.4 102.1 532.8 309,219.3

3 0.0 2.2 4.4 8.9 15.5 106.6 532.8 309,219.3

IKFast 13.3 40.0 71.1 113.2 340.8 3466.1 20,643.5 24,375,716.2

For further investigation, the mean calculation time tmean of the presented solver
variants and IKFast are compared to the average joint angle error ϕerr. For this purpose,
the calculation on the embedded board is repeated k = 100 times for each joint angle
combination j. The required calculation time tl is measured for each repetition l with a
resolution of 1 µs. Subsequently, the average, minimum, and maximum calculation times
tmean, tmin, and tmax of each joint angle combination are determined. The calculation times
for variant 2 are depicted in Figure 14 and in Figures A4 and A5 in Appendix B. Variant 2
is shown as a representative of all solver variants, which show similar normally distributed
courses. The calculation times for IKFast are depicted in Figure 15, and the interesting area
is enlarged and depicted in Figure 16.

An overall arithmetic mean value tmean of all m = 10,000 combinations is calculated
from the arithmetic mean values tmean in order to obtain a reasonable parameter for the
comparison of the solver variants (cf. Equation (66)).

tmean =
1
m

m

∑
j=1

tmean =
1

m · k
m

∑
j=1

k

∑
l=1

tl (66)
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Figure 14. Histogram and box plot of the mean calculation times of the solver variant 2 executed on
the embedded board.

Figure 15. Histogram and box plot of the mean calculation times of IKFast executed on the embedded
board.

Figure 16. Enlarged interesting area of the histogram and box plot of the mean calculation times of
IKFast executed on the embedded board from Figure 15.
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The average joint angle error is obtained via the arithmetic mean of all joint angle
errors of all combinations and is calculated according to Equation (67), where the joint
index i runs from one to the maximum number of joints n = 6 for each combination j
running from one to the number of m = 10,000 combinations.

ϕerr =
1

m · n
m

∑
j=1

n

∑
i=1

ϕerr,i,j =
1

m · n
m

∑
j=1

n

∑
i=1

∣∣ϕcurr,i,j − ϕinv,i,j
∣∣ (67)

The results of the average calculation time stated in Equation (66) and the average
joint angle error stated in Equation (67) are compared in Table 4.

Table 4. Average joint angle error ϕerr and average calculation times tmean on the embedded board.

Solver Variant
PC Embedded Board

ϕerr [10−15 rad] ϕerr [10−15 rad] tmean [µs]

implicit
1 2.86 3.05 378.3

2 2.86 3.05 313.7

3 2.93 3.13 310.1

explicit
1 3.16 3.19 316.1

2 3.16 3.20 252.0

3 3.24 3.27 252.9

IKFast - 153.99 1856.2

7. Discussion

Based on the histograms and box plots depicted in Figures 11 and 12, which cover the
majority of the data, no difference in accuracy between the simulation and the execution on
the embedded board can be observed for solver variant 2 (the histograms and box plots
of the solver variants 1 and 3 show an analogous course). Moreover, it can be observed
that the majority of the joint angle combinations exhibit a minor joint angle error. On the
basis of the percentiles stated in Table 3, it can be determined that 99% of the joint angle
combinations exhibit a maximum error below 10−13 rad (cf. 99th percentile in Table 3). In
the worst case, the maximum error is less than 10−10 rad (cf. 100th percentile in Table 3).
Hence, it can be concluded that the presented solution is valid and moreover that the
inverse solver is sufficiently accurate.

Furthermore, it can be seen that there is no significant numerical degradation due to
the different variants since all variants exhibit similar results at the examined percentiles
of the maximum joint angle errors. Additionally, it can be shown that the solver provides
similarly accurate results both when simulated on the PC and when deployed on the
embedded board.

Compared to IKFast, the presented solver variants show significantly lower error (cf.
Table 3). The error of IKFast is more than ten times as large as that of the geometric solvers
over the entire range of values, and the maximum error is at least more than eighty times
greater (depending on the solver variant). This trend can be confirmed when comparing
the histograms and box plots depicted in Figures 11–13 (note the different scaling of the
x-axis).

In Table 4, it can be observed that the average joint angle error of the calculation on
the embedded board is slightly greater than the average joint angle error compared to the
simulation on the PC. Hence, the solutions are slightly less accurate when calculated on the
embedded board than the simulation results calculated on the PC. The largest joint angle
errors are caused by poses in the vicinity of singularities (cf. Figure A3 in Appendix A).
Moreover, the explicitly calculated variants exhibit a higher average error than the implicitly
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calculated variants. In addition, the error of variant 3 is greater compared to the other
variants, with variants 1 and 2 having similar joint angle errors.

Furthermore, it can be observed that the average calculation times of the explicitly
calculated variants are considerably lower than those of the implicitly calculated variants
(cf. Table 4). In addition, a significant reduction of the average calculation time can be
achieved with variants 2 and 3 compared to variant 1, whereas the average calculation
times of variants 2 and 3 are approximately the same.

The average joint angle error ϕerr shows that the presented algorithm achieves signifi-
cantly more accurate results than IKFast (cf. Table 4). However, the greatest achievement
becomes clear when comparing the average calculation times tmean. It can be shown that
the presented algorithm provides a considerably faster calculation of the solution in every
case. Moreover, the presented algorithm provides more predictable calculation times due
to the fact that the values are located in a more condensed range (cf. Figures 14–16).

In summary, the solver variant 2 exhibits a low average calculation time in combination
with a low average joint angle error and therefore combines the advantages of the different
solver variants. The average joint angle error can be minimized by using the implicit
calculation variants at the expense of higher calculation times, otherwise, the explicit
calculation variants are sufficiently accurate. The proposed algorithm is suitable for use
on embedded systems due to the real-time capability (cf. Figure A5 in Appendix B) and
furthermore requires significantly less computation time than alternative algorithms such
as IKFast. In addition, the accuracy of the solver is noticeably better than using IKFast.

8. Conclusions and Future Work

IK is the process of determining the joint angles of a robot manipulator that correspond
to a desired end-effector position and orientation. This is a fundamental problem in robotic
control, as it allows the manipulator to move to a desired location in the workspace.
However, solving the IK problem can be computationally expensive and time-consuming,
especially for complex robot manipulators with a high number of DOF.

One solution to this problem is to use a geometric approach for solving the IK of a 6R
robot manipulator. In this approach, a geometric relationship between the end-effector and
the joints of the manipulator is utilized to solve the IK problem. Thus, the algorithm can be
simplified compared to analytical approaches. As a result, this method is computationally
efficient and can be implemented on embedded boards in real-time, which makes it suitable
for a wide range of mobile robotic applications. The proposed method is based on the
following steps:

• The geometric relationship between the end-effector and the joints of the manipulator
is established.

• The end-effector pose is expressed in terms of the joint angles of the manipulator.
• The IK problem is solved using this geometric relationship.

The effectiveness of the proposed method is demonstrated through simulation and
experimental results. The simulation results show that the proposed method can accurately
determine the joint angles of the manipulator for a wide range of end-effector positions and
orientations. The experimental results show that the proposed method can be implemented
in real-time and can be used to control the 6R robot manipulator to move to a desired
location in the workspace. Compared to universal out-of-the-box solutions such as IKFast,
the computation time can be significantly reduced and the accuracy of the solver can
be noticeably improved. In summary, the proposed method provides an efficient and
accurate solution to the IK problem for an anthropomorphic 6R robot manipulator with a
spherical wrist.

The developed manipulator software framework will be crucial for developing safer
and more powerful mobile manipulation tasks that can operate effectively in human envi-
ronments in the future. Further algorithms which provide distance-checking capabilities
that should generate collision detection and avoidance are a major goal. In addition, an-
other significant milestone is to develop a differential kinematic algorithm in order to
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establish the relationship between the velocity of the TCP and the joint velocities. Fur-
thermore, investigations concerning path and trajectory planning are to be conducted in
order to achieve a smooth movement of the TCP. These measures are primarily intended to
intuitively enable teleoperated control of the manipulator to perform a variety of handling
and inspection tasks to be accomplished in the field of rescue robotics. As a result, safe,
controllable, and efficient motions of the manipulator in space should be achieved.

In conclusion, the integration of the platform-independent IK solver presents a promis-
ing avenue for achieving efficient and optimized motion trajectories in robotic manipulators.
The proposed framework provides a foundation for future research and development in
the field of motion planning for robotic systems on embedded platforms.
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Appendix A. Simulation with MATLAB®

Figure A1. Solutions 1. . . 4 for a randomly generated goal pose in MATLAB®.

Figure A2. Solutions 5. . . 8 for a randomly generated goal pose in MATLAB®.
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Figure A3. Solutions with the largest joint angle errors simulated in MATLAB®. Pose 1—elbow
singularity; Pose 2—shoulder and wrist singularity; Pose 3—elbow singularity; Pose 4—elbow
singularity; Pose 5—elbow singularity; Pose 6—shoulder singularity; Pose 7—wrist singularity; Pose
8—wrist singularity.
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Appendix B. Calculation Times of the IK Solver Executed on the Embedded Board

Figure A4. Histogram and box plot of the minimum calculation times of the solver variant 2 executed
on the embedded board.

Figure A5. Histogram and box plot of the maximum calculation times of the solver variant 2 executed
on the embedded board.
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