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Abstract: Descriptors play an important role in point cloud registration. The current state-of-the-art
resorts to the high regression capability of deep learning. However, recent deep learning-based
descriptors require different levels of annotation and selection of patches, which make the model
hard to migrate to new scenarios. In this work, we learn local registration descriptors for point clouds
in a self-supervised manner. In each iteration of the training, the input of the network is merely
one unlabeled point cloud. Thus, the whole training requires no manual annotation and manual
selection of patches. In addition, we propose to involve keypoint sampling into the pipeline, which
further improves the performance of our model. Our experiments demonstrate the capability of our
self-supervised local descriptor to achieve even better performance than the supervised model, while
being easier to train and requiring no data labeling.

Keywords: point cloud registration; descriptors; self-supervised learning

1. Introduction

Point cloud registration (PCR) is an essential task in various applications, including 3D
reconstruction and simultaneous localization and mapping (SLAM). Usually, the accuracy
of the calculated transformation will dominate the performance of higher level tasks. Thus,
researchers either make back-end optimization on the high level task, such as SLAM [1–3],
or improve on the PCR side.

Various techniques have been invented for the point set registration problem. As dis-
cussed in [4], it is extremely hard to find the optimal transformation T and correspondence
matrix P simultaneously. The problem is addressed in [4] by alternating the optimization
of T and P. In recent decades, a multitude of algorithms have been proposed on 3D
registration. They are divided into rigid and non-rigid algorithms [5] and work either
iteratively to solve for the transformation matrix with repeatedly matched points [6–10]
or treat the problem as an optimization program that omits the necessity of computing
correspondences [11–13].

For large datasets, global optimization is inefficient. Iterative methods, such as the
Iterative Closest Point algorithm (ICP) [7], are more practical. To find the correspondences,
using distance among descriptors rather than Euclidean distance between points promises
improvements in point cloud registration, especially when no good initial guess is avail-
able. Then, handcrafted descriptors [10,14–20] and learned descriptors [21–27] have been
proposed during the last decades.

Although the learned point descriptors score better, their supervising usually requires
extra labor to label the data. Those algorithms either get the correspondences from the
matched point clouds [21–23,25], which is costly, or they are labeling the inter-point cloud
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relation [26,27], which is inefficient to train. Moreover, the existing models either train on
patches, which is not globally learned for the scene [21,22,24], or learn the scene as the
training loss works globally for the whole point cloud but comes with a triplet siamese loss
that is not directly related to the true transformation [26].

In this paper, we propose to learn a point cloud local descriptor for registration
without any annotation and selection of patches. The input of the network is a raw point
cloud for each iteration of training. In addition, our loss function is directly related to the
solved true transformation of registration. To realize the self-supervision, we propose the
Full Connection Form Solution (CF) to solve the PCR problem non-iteratively in one-step
without correspondences. Then, it serves as a layer of a neural network in the end of
the descriptor, the gradients are propagated back to the descriptor learner. Moreover,
in our model, we use a keypoint detector to sample points in the layer of sampling and
grouping [28] to avoid learning on non-interested points, which further improves the
performance.

To summarize, the major contributions of this paper are:

• We propose a self-supervised method to learn point cloud descriptors requiring no
manual annotation and selection during training.

• We propose a keypoint sampling manner during training, which can focus on interest-
ing points and further boost the performance.

• Experiments show that our self-supervised learned local descriptor has better perfor-
mance than the supervised 3DFeatNet.

Experiments on various datasets, i.e., on the Oxford [29] and KITTI [30] datasets,
demonstrate the performance of our descriptor.

2. Related Work

This section first reviews the technical advances in point cloud registration which are
related to our registration layer. Then, it describes handcrafted registration descriptors and
learned models.

2.1. Registration Model

The Iterative Closest Point (ICP) algorithm is the most famous registration method.
It has been widely applied to various representations of 3D shapes [7] and is able to align a
set of range images into a 3D model [8]. The generalized-ICP [9] even puts point-to-point
ICP and point-to-plane ICP into one probabilistic framework. ICP consists of two steps,
correspondence search and solving the transformation.

However, in ICP and related methods, the correspondences have to be recomputed
each iteration. To avoid this, the kernel correlation (KC) method [11] uses an objective
function that fully connects the point clouds. In each term of the summation, a robust
function, the Gaussian distance, has been utilized. Similar to Maximum Mean Discrepancy
(MMD), KC evaluates the distance between two distributions. Thus, it shows better
sensitivity to noise and is more robust than ICP-like methods. Some recent publications
do not rely on correspondences. Myronenko and Song [12] represented point clouds with
Gaussian mixture models and solve the transformation by aligning the model centroids.
Zheng et al. [13] built a continuous distance field for a fixed model and aligned the other
point set model to minimize the energy iteratively. Yang et al. [31] reformulated the
registration as a truncated least squares estimation (TEASER++), which is thus robust
to many wrong correspondences. Resorting to frequency domain, Huang et al. [32]
decomposed the registration problem of seven DoFs into multiple subproblems, which
they solved with a closed-form solution.

Those methods either require correspondences, needed in frequency domain, or
are solved iteratively, which cannot be applied as a differentiable layer in deep neural
networks to solve the transformation without pre-knowing the match. Thus, we propose a
registration layer to fill in this requirement.
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2.2. Descriptors

Point Feature Histograms (PFH) are known as the most typical local 3D descriptors.
They encode the geometrical properties of the neighborhood with a multi-dimensional
histogram [14]. For real time application, Fast Point Feature Histograms (FPFH) break the
full interconnection of neighbors in PFH. Thus, they achieve a linear time complexity and
gradually have become the most commonly used handcrafted 3D descriptor [10]. Apart
from the descriptors from point set geometry, spin images (SI) [15] and unique shape
context (USC) [16] split the spatial space into bins and count the number of points in each
as a histogram descriptor. In addition, the authors of [17,18] transformed local scans into
range images to extract features. Flint et al. [19] proposed to extend the 2D-SIFT onto 3D
images. Wu et al. [20] introduced a SIFT-like descriptor on projected 3D patches.

However, the correspondence from features requires a good distinctiveness of the de-
scriptor, but the performance of descriptors usually varies on different point sets. Therefore,
data-driven descriptors come into the view. 3DMatch proposes to learn a volumetric patch
descriptor from correspondence labels [21]. Based on PointNet [33], PPFNet introduces a
local descriptor that is highly aware of global context [23]. It learns from the truth corre-
spondence matrix. With a voxelized smoothed density value representation, 3DSmoothNet
also trains the network with a triplet of anchor and positive and negative samples [22].
Without using correspondence labels, PPF-FoldNet uses an encoder–decoder network to
reconstruct the local patch fed in [24]. D3Feat proposes a joint learning of keypoint detector
and descriptor [25]. The D3Feat provides descriptors and keypoint scores globally for all
points, which introduces extra cost during inference. Thus, this method is also unable to
provide descriptors solely for interested local patch.

As the training loss merely works on pairs of patches, the point-wise supervised
models are not learning globally for the entire scene within the dataset. We classify the
feature learning models into two groups, point-wise and point cloud-wise supervised
models, on whether they learn directly from the relation between point clouds. For point
cloud-wise supervised models, the training loss works globally for an entire point cloud,
which is more related to the registration application. This intuition directs us to learn our
model with only raw point clouds.

Weakly supervised on the positive/negative relation between point cloud frames,
3DFeatNet learns descriptors without explicitly specifying the correspondences [26]. As a
by-product of its attention-aware loss function, keypoints are extracted by applying non-
maximum suppression on the all points attentions. To tackle the speed issue, RSKDD
proposes to use random sampling to replace the Farthest Point Sampling (FPS) of 3DFeat-
Net [27]. In addition, it embeds chamfer loss and point-to-point loss from the keypoint
detection model USIP [34] to co-learn the keypoints and detectors. Since its learned de-
scriptor is not for the cluster center but for shifted point instead, the detector and descriptor
modules are not able to be decoupled. Therefore, 3DFeatNet provides a good basis to
feed in whole point cloud as we demand. In addition, our model does not require any
annotation and the loss function is directly on the solved transformation.

3. Method

In this section, the registration layer and keypoint sampling are introduced. Then, we
demonstrate the whole training pipeline to learn the descriptor model.

3.1. The Registration Layer

We intend to use both full connection and the least squares form in this module.
However, just replacing the kernel of KC with the quadratic distance will not work due
to the distant pairs that would dominate the loss. As discussed in [11], the gradient
of the quadratic function is very sensitive to outliers, so a more robust function, the
Gaussian kernel, has been utilized. However, with Gaussian kernel, a solution in one step
is impossible.
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Thus, instead, our formula is a summation of weighted square distances for each fully
connected point pair, which has a closed form solution for registration. Assume we have
two point clouds P and Q with pi ∈ P|i∈{1,···N} and qj ∈ Q|j∈{1,···M}. pi, qj ∈ R3. N and
M are the number of points in P and Q, respectively. Then, the optimization task is

min
R,t

N

∑
i=1

M

∑
j=1

wi,j||Rpi + t− qj||2 (1)

where R, t are the rotation matrix and translation vector to transform P into the coordinate
system of Q. The weight wi,j in range (0, 1] will be assigned for each term.

The other problem of Gaussian kernel distances in the KC method is that σ in the
Gaussian kernel has to be properly set according to the scale of different data sources. We
use the square distance, as it is invariant to scale [35].

For the weighted function (1), there is a full connection with quadratic distance
between every point p ∈ P and q ∈ Q. Then, Equation (1) is reformulated with full
connection as correspondences. The new point sets (X ,Y) are of size N ×M and each pair
is a connection. Let X = {p′1, · · · p′NM}, Y = {q′1, · · · q′NM}; the problem is formulated as

(R, t) = argmin
R∈SO(d),t∈Rd

NM

∑
i=1

wi||(Rp′i + t)− q′i||2 (2)

with known weights wi > 0.
The optimal solution is obtained with any algorithm that computes the transformation.

We choose the SVD [36], as also detailed by Sorkine [37]. To make the paper self-contained,
we briefly discuss this in Appendix A. Following Sorkine [37], we obtain a closed form
solution for above formula by using weighted SVD. However, to have the desired suppres-
sion effect of pairs, weights cannot be arbitrarily chosen. To determine the weights, we use
fX (x) to denote a function that extracts a feature descriptor of the point x from the point
cloud X . Then, the similarity is obtained as

wi = e−
1
β || fX (p

′
i)− fY (q′i)||

2
. (3)

The lower is the similarity, the lower is the weight of the pairs. Thus, the effect of the
term on the objective function will be less. In this way, a pair of points with low similarity
contributes only a little, as they have a large feature descriptor distance. The constant β in
Equation (3) scales the feature distance. It depends on the selected feature descriptor.

More details and testing about this CF registration is provided in the Appendices A
and B.

3.2. Keypoint Sampling

To learn with a whole point cloud as input, subsampling is a standard operation for
PointNet-like model. 3DFeatNet uses FPS to sample points that are evenly distributed on
the scene. RSKDD-Net uses random sampling to speed up on a large-scale dataset.

However, both sampling methods may result in the selection of non-interesting points,
e.g., points that are not distinctive and do not contribute to the registration success, which
requires to devote an extra pattern of features to those ordinary points. In the matching
step, only interesting points are involved. It means that they waste both training power
and feature space for non-interesting points.

Thus, in this work, we propose to use keypoint detectors in the sampling and grouping
layer. Since the descriptors are learned for a specific detector, during inference, with the
same detector, our descriptor scores better compared to the version with non-interesting
points included.
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We use one handcrafted ISS keypointer and learned 3DFeatNet keypoints (3DF kpt)
because ISS are widely used handcrafted keypoints and 3DF kpt specially distributes points
on the wall in Figure 1.

(a) ISS keypoints (ISS kpt) (b) 3DFeatNet keypoints (3DF kpt)

Figure 1. Keypoints demo. Two different keypoint detectors are applied to one selected Oxford frame, respectively: (left)
ISS detector; and (right) 3DFeatNet Detector. Keypoints are plotted with red dots on point cloud.

3.3. Network Architecture

We demonstrate the pipeline of the training process in Figure 2. The DESC module in
between is the f we want to extract.

DESC

DESC

PC1

PC2

CF

loss

Clustering Solving R, tDescriptor Rotation Error

3DFeatnet-
part1

3DFeatnet-
part2

(a)

(b) (c)

UΣV$ = XWY
R = VU$

* = +q − R+p
DESC CF: SVD

k × c × d

k × c × d

k × d

k × d

k × 32

k × 32

Figure 2. Pipeline of training: single input point cloud; branching with random rotation; clustering
(sampling and grouping); descriptor; CF layer to solve for R, t and rotation error as the loss function.

The whole training process consists of four parts. In the first stage, with a point
cloud PC1 as input, we apply a random transformation to generate PC2. For both PC1
and PC2, we sample k points from a specific keypoint detector as centers. Then, neighbors
are grouped around each center to obtain clusters. Then, those clustered are fed into the
descriptor network f . Each cluster is processed separately and outputs a descriptor vector
for the cluster center. Next, in the registration layer, CF (Section 3.1) solves Equation (2)
for the transformation of sampled points with sampled centers and their descriptors from
the two point clouds using the distance between the descriptors as weights according to
Equation (3). The Rotation Matrix Distance Module computes the error between the solved
R and Rgt considering the distance between the descriptors as weights, which is the loss
function for our model.

Given the ground truth transformation Rgt, tgt, the loss function is the deviation from
the identity matrix [38] as follows

loss = ||I− RRT
gt||F. (4)
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When training the network, we only supervise the rotation because also involving
the translation as a loss would further introduce additional hyperparameters to tune the
balance between the effect from rotation and translation. Furthermore, the rotation is more
important when performing the registration task.

With the above four parts of network components, the system merely requires to feed
in one raw point cloud to learn for each iteration. Since the whole pipeline is differentiable,
the parameters in the descriptor network are updated with gradient back-propagation.
Given a random rotation, we minimize its distance to the solved rotation by optimizing f .

We call our model a self-supervised learning model because we generate labels
(Rrandom) from nothing and train the unlabeled data in a supervised way. The model
is learned from a raw point cloud itself.

4. Experiment
4.1. Datasets

The Oxford RobotCar dataset [29] was used for network training and testing. Addi-
tionally, the KITTI dataset [30] was also used for testing the model.

4.1.1. Oxford RobotCar Dataset

The Oxford dataset contains repeated traverses through the Oxford city center from
May 2014 to December 2015 that were collected with the Oxford RobotCar platform.
We used the pre-processed data from [26], which have 35 trajectories for training and
another 5 trajectories for testing. The points were scanned from 2D LIDARs and are
accumulated into 3D point clouds, using the GPS/INS poses. Those poses were refined
with ICP. The training point clouds were then downsampled to about 50,000 ± 20,000
points and the test point clouds to exactly 16,384 points. In this way, 21,875 training and
828 testing point cloud sets were obtained.

4.1.2. KITTI Dataset

Additionally, we tested our model on the 11 training sequences from the KITTI
dataset [30] and processed them in the above-mentioned manner. The parts of the KITTI
dataset used in the experiments include Velodyne laser point clouds, ground truth poses,
and calibration files. The point clouds were also downsampled with a grid size of 0.2 m.
We obtained 2369 point clouds in the end.

4.2. Setting

Our implementation makes use of the open source release (https://github.com/
yewzijian/3DFeatNet) of 3DFeatNet [26]. In our pipeline, the descriptor directly uses the
descriptor body of 3DFeatNet. Since this descriptor only considers a z-axis rotation, our
provided Rrandom is generated by rotating around z-axis with φ ∼ N (0, σ2

r ). We used
σr = 0.6. In addition, we applied a 3D jitter with ∆p ∼ N (0, σpI) (σp = 0.01) for each point
in PC1 and PC2.

During the training of our model, we set batch size 6, Adam optimizer, and 32-
dimensional descriptor. The training point clouds were randomly subsampled to 4096
points before feeding into the pipeline. We used the ISS and 3DFeatNet detectors (3DF kpt)
to provide the keypoints as cluster centers to train. The setting of the 3DF kpt, e.g., βattention
and rnms, followed Yew and Lee [26]. We chose 256 keypoints from the point cloud to align
the batch. We also used FPS to sample points as comparison. The FPS samples 512 points,
which is the same as 3DFeatNet. In the cluster, each point is of dimension d, which can be
3 (xyz), 6 (xyzrgb), etc. We used d = 3, thus we only used the xyz location of the point.

3DFeatNet states that it is hard to train. It takes 2 epochs to pretrain 3DFeatNet
descriptor and the whole model can be trained in 70 epochs with lr = 10−5. In contrast,
our network is easy to train: without any pre-training, our model is randomly initialized
and saved at 10 or 20 epochs training with a learning rate lr = 10−3.

https://github.com/yewzijian/3DFeatNet
https://github.com/yewzijian/3DFeatNet
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We used a PCL implementation of ISS to provide the ISS kpt and the released Tensor-
flow [39] checkpoint to achieve the network weight of 3DFeatNet to provide keypoints and
run evaluation. We compared our method with handcrafted descriptors FPFH, SI, USC,
and CGF and learned descriptors 3DMatch and 3DFeatNet.

4.3. Precision Test

Using exhaustive search as in [26], this test searched for the nearest descriptor neighbor
in the paired models for each keypoint. Then, the Euclidean distance between the neighbor
location and ground truth location as computed. We show the plot in Figure 3. The x-axis
is a threshold to consider a pair as correct and the y-axis is the correct proportion.

Figure 3. Precision plot for distance between nearest neighbor point and the ground truth location.

For both 3DfeatNet descriptor and our descriptor, the test with 3DF kpt works better
than ISS kpt. Without using the keypoint sampling (with FPS instead), our proposed
unsupervised model achieves a similar result to 3DFeatNet descriptor on 3DF kpt and a
better result on ISS kpt. We used the x = 1 m line as a cut. Both 3DFeatNet descriptor and
our descriptor achieve around 15% precision, which is close to the best score in the record
of Yew and Lee [26].

While using the keypoint sampling, we learned our ISS descriptor and our 3DF
descriptor. ISS kpt + our ISS descriptor scores similar to our descriptor that used FPS. Both
of our descriptors are better than 3DFeatNet descriptor on ISS keypoints. However, using
ISS keypoint sampling during training does not improve our learned descriptor in the
precision test. As shown in Figure 1, the ISS keypoints are evenly distributed in Oxford
point cloud, which may introduce similar points as FPS. On the x = 1 m line, with 3DF kpt,
our 3DF descriptor learned the pattern and scores best. It is around 2% higher than the
supervised descriptor.

Overall, our proposed unsupervised method scores better than the 3DFeatNet from
which we borrow its descriptor part of model.

4.4. Geometric Registration

With ISS keypoints and 3DFeatNet keypoints, we evaluated the descriptors on the
geometric registration. The registration uses nearest neighbor matches RANSAC to estimate
the transformation. RANSAC iterations were limited to 10,000 and adjusted with 99%
confidence. The Relative Rotation Error (RRE) and Related Translation Error (RTE), with
respect to the ground truth, were computed to evaluate the accuracy of the registration.
A success was decided when RTE < 2 m and RRE < 5 ◦. The speed of converging was
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reflected by the average number of iterations. Since we used the same datasets (Oxford
and KITTI) as 3DFeatNet experiment [26], we compared to the results from their table.

The evaluation on the Oxford data is demonstrated in Table 1. The first eight rows are
taken from [26] and the last six rows are from our own experiments.

Table 1. Registration error on the Oxford dataset.

RTE (m) RRE (◦) Success
Rate Avg #Iter

ISS + FPFH 0.396 1.60 92.32% 7171
ISS + SI 0.415 1.61 87.45% 9888
ISS + USC 0.324 1.22 94.02% 7084
ISS + CGF 0.431 1.62 87.36% 9628
ISS + 3DMatch 0.494 1.78 69.06% 9131
ISS + PN++ 0.511 1.88 48.86% 9904
ISS + 3DFeatNet desc 0.314 1.08 97.66% 7127
3DFeatNet kpt + 3DFeatNet desc 0.300 1.07 98.10% 2940

ISS + 3DFeatNet desc 0.314 1.08 97.66% 7126
ISS + our desc 0.311 1.01 98.10% 5648
ISS + our ISS desc 0.311 1.00 98.23% 5545
3DF kpt + 3DFeatNet desc 0.304 1.08 97.66% 3294
3DF kpt + our desc 0.310 1.08 97.05% 3650
3DF kpt + our 3DF desc 0.298 1.02 97.90% 2703

We observe that, firstly, except for PN++, the handcrafted descriptors cannot exceed
the learned descriptors. Secondly, our unsupervised learned descriptor achieves the best
result on RRE and the success rate with ISS and best result on RTE and average iteration
with 3DF kpt. Thirdly, training merely on interested points, our keypoint sampling indeed
improves the performance.

An example of a registration is shown in Figure 4. We observe that our 3DF descriptor
has more inlier correspondences compared to 3DFeatNet descriptor by using 3DF keypoints,
hich is revealed by the denser connection of the red lines.

(a) 3DF kpt+3DFeatNet desc (b) 3DF kpt+our 3DF desc

Figure 4. Oxford data geometric registration success sample. Keypoints are plotted with red dots on the point cloud. Red
lines represent the matching between keypoints.

Then, the model was transferred to another outdoor dataset, the KITTI dataset. The
registration results are shown in Table 2. The first six rows of the results are taken from [26]
and the last six rows are from our experiments.
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Table 2. Registration Error on the KITTI Dataset.

RTE (m) RRE (◦) Success
Rate Avg #Iter

ISS + FPFH 0.325 1.08 58.59% 7462
ISS + SI 0.358 1.17 55.92% 9219
ISS + USC 0.262 0.83 78.24% 7873
ISS + CGF 0.233 0.69 87.81% 7442
ISS + 3DMatch 0.283 0.79 89.12% 7292
3DF kpt + 3DFeatNet desc 0.258 0.57 95.97% 3798

ISS + 3DFeatNet desc 0.246 0.627 93.50% 8311
3DF kpt + 3DFeatNet desc 0.264 0.599 95.58% 4394
ISS + our desc 0.215 0.510 93.50% 5960
ISS + our ISS desc 0.215 0.459 93.85% 4356
3DF kpt + our desc 0.258 0.570 95.44% 3732
3DF kpt + our 3DF kpt 0.244 0.501 95.87% 2631

In the table, we observe that, firstly, our unsupervised model exceeds the supervised
model. Secondly, ISS+our ISS descriptor achieves best accuracy. Its RRE even decreases
about 0.041 compared to the FPS version (ISS + our descriptor). Thirdly, with 3DF kpt, our
3DF descriptor also achieves better results. A further example of a registration is shown in
Figure 5. One can see that our ISS descriptor achieves much denser matching comparing to
3DFeatNet descriptor.

(a) ISS+3DFeatNet desc (b) ISS+our ISS desc

Figure 5. KITTI data geometric registration success sample. Keypoints are plotted with red dots on the point cloud. Red
lines represent the matching between keypoints.

Overall, without using keypoint sampling, our unsupervised model achieves similar
or even better performance than the supervised 3DFeatNet that uses the same descriptor
body. In addition, with only interest points to train, our keypoint sampling indeed helps
the model to learn more representative descriptors.

5. Conclusions

In this paper, we propose a novel self-supervised learning model to learn local de-
scriptors for registration. We realize this goal by using a registration layer in the end. Thus,
we use for supervision the randomly generated rotation of single point cloud input. In
addition, we use keyopint sampling to make our model focus on interest points, in order to
learn more expressive descriptors. In our pipeline, borrowing the same descriptor body as
3DFeatNet, our model is much easier to train, because this self-supervised method does
not require any manual effort on annotation, and, without any pre-training, it converges
with a higher learning rate, requiring far fewer iterations. Moreover, the experimental
evaluation shows that our descriptor achieves much better performance on precision and
geometric registration than the supervised 3DFeatNet descriptor.
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As future work, we want to embedded our model into a SLAM framework to enable a
no-annotation used data-driven descriptor for arbitrary scenes.
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Appendix A. CF Registration Model

The formula is a summation of weight square distances for each fully connected
point pair. Figure A1 illustrates the full connection, where weights are set according to a
similarity measure.

PC1 PC2

Figure A1. Full connection between two point sets. Each edge is a weighted Euclidean squared
distance term in our object function, given a proper wi,j to scale the cost term of the pair (i, j). The
thickness of the lines reflect the similarity (weight) of pairs.

min
R,t

N

∑
i=1

M

∑
j=1

wi,j||Rpi + t− qj||2 (A1)

Appendix A.1. Solving the Transformation

For the weighted function (A1), there is a full connection with quadratic distance
between every point p ∈ P and q ∈ Q. Equation (A1) is reformulated with full connection
as correspondences. The new point sets (X ,Y) are of size N × M and each pair is a
connection. Let X = {p′1, · · · p′NM}, Y = {q′1, · · · q′NM}; the problem is formulated as

(R, t) = argmin
R∈SO(d),t∈Rd

NM

∑
i=1

wi||(Rp′i + t)− q′i||2 (A2)
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with known weights wi > 0.
We cancel t by computing the weighted mean

p̄′ =
∑NM

i=1 wip′i
∑NM

i=1 wi
, q̄′ =

∑NM
i=1 wiq′i

∑NM
i=1 wi

(A3)

and centering the point clouds

xi := p′i − p̄′, yi := q′i − q̄′. (A4)

We can then compute R

R = argmin
R∈SO(d)

NM

∑
i=1

wi||Rxi − yi||2. (A5)

Let X denote the matrix where xi is the ith column. Similarly, we have Y. Thus,
X, Y ∈ R3×NM. W is a diagonal matrix with Wi,i = wi. The SVD solves it, where

UΣVT = XWYT (A6)

and the optimal rotation is computed by

R = VUT . (A7)

When the solution consists of a reflection, i.e., |V||U| < 0, the last column of V will be
multiplied by −1 before computing the rotation.

Finally, the translation is given as

t = q̄
′ − Rp̄

′
. (A8)

A schematic diagram to solve the registration is demonstrated in Figure A2.

PC1 PC2

Compute Weights 

Build 
Full Connection Form

SVD

R, t

Compute Features Compute Features 

Figure A2. Schematic diagram of the CF registration model.
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Appendix A.2. Weights as Similarity of Feature

To determine the weights, we use fX (x) to denote a function that extracts a feature
descriptor of the point x from the point cloud X . Then, the similarity is obtained as

wi = e−
1
β || fX (p

′
i)− fY (q′i)||

2
. (A9)

The lower is the similarity, the lower is the weight of the pairs. Thus, the effect of the
term on the objective function will be less. In this way, a pair of points with low similarity
contributes only a little, as they have a large feature descriptor distance. The constant β in
Equation (A9) scales the feature distance. It depends on the selected feature descriptor.

Appendix A.3. Time Complexity

The runtime for the proposed method is dominated by two parts: computing the
weights and solving the SVD. For convenience, we assume M = N. To compute the weight,
point descriptors of each point cloud are computed, which takes O(Nk log N), where k
is the number of neighbors for each point. Then, setting up the N2 weights takes O(N2).
In the SVD, we first compute the centroid and transform the point cloud to center, which
takes O(N2), because we have to consider NM terms. Since W ∈ RNM×NM is a diagonal
matrix, the multiplication for XWYT is equivalent to scaling each row i of YT with Wi,i.
Thus, to obtain XWYT takes O(N2). As XWYT is a 3-by-3 matrix, solving the SVD costs
only constant time.

Overall, the time complexity of the proposed method is O(N2).

Appendix A.4. A Variant: Applying on Point Set of Keypoints

For large point sets, the time complexity of O(N2) becomes infeasible. One possible
solution is to extract interest points and to apply the full connection cost to the two sets of
keypoints.

For each point set with N points, using a handcraft keypoint detector, computing
the normals takes O(Nk log N) and keypoint detection takes O(N). Assume n points are
extracted (n << N), and then weight and SVD computation is done on n points. Overall,
we yield max(O(Nk log N),O(n2)).

Appendix B. Experiments and Results

We compare the proposed algorithm with ICP, a feature based state-of-the-art algo-
rithm TEASER++ [31], Coherent Point Drift (CPD) [12] and Density Adaptive Point Set
Registration (DARE) [40]. We call our method Full Connection Form Solution (CF) and
CF-keypoint (CFK) (a variant with keypoints) for short.

In our experiments, the small 3D object datasets “bunny”, “dragon”, and “Armadillo”
(bun000, dragonStandRight_0, and ArmadilloStand_180) from the Stanford website (http:
//graphics.stanford.edu/data/3Dscanrep/) were used. They are in bounding boxes with
side lengths (0.156, 0.153, 0.118), (0.205, 0.146, 0.072), and (0.215, 0.275, 0.258) respectively.
They are shown in Figure A3. With those, we evaluated our algorithms with respect to its
sensitivity to noise, robustness to outliers, and accuracy of the registration.

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
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(a) bunny (b) dragon (c) Armadillo

Figure A3. Three point cloud used for experiments.

Appendix B.1. Settings

We first sampled the point clouds from the meshes using Meshlab [41]. For CPD,
the open source C++ implementation from the original project [12] was used. We set its
scale and reflection parameters to false. For DARE, we used the Python implementation
of Järemo Lawin et al. [40]. Its color label and feature label were disabled. We also
used TEASER++ from the implementation [31]. We implemented CF and CFK using
the Point Cloud Library (PCL) [42], where we used its FPFH descriptor and the SIFT
keypoint detector. The ICP experiments were also done with PCL. The normal and feature
computation in CF and CFK were performed with the same settings, i.e., searching k
neighbors. In our implementation, we fixed k to 150. In addition, the β used in Equation (3)
was fixed to 100.

We set the ICP parameters with max correspondence distance 0.5, max iteration 1000,
transformation epsilon 1 × 10−9, and Euclidean fitness epsilon 0.05.

For TEASER++, we used the same settings as for the feature descriptor FPFH. In the
matcher of TEASER++, the options absolute_scale and crosscheck were selected. The solver
used GNC_TLS with a 1.4 gnc factor, 0.005 rotation cost threshold, and 1000 max iterations.

In our experiments, the registration was done using two point clouds PCa and PCb,
which were generated with added noise or outliers from the original point cloud, as
described in more detail below. We then translated and rotated PCb to get PC

′
b. Thus, the

PCa was our PC1 and PC
′
b was our PC2 and our task was to align PC1 to PC2 by solving

for the transformation.
In the following experiments, PCb was transformed in two distinct ways to generate

PC
′
b. Firstly, we applied just a small, random rotation around the point clouds centroid.

For the second type of data, we applied a large random rotation around the origin of the
dataset, which is not the centroid.

The rotation vector is a concise axis–angle representation, for which both the rotation
axis and angle are represented in the same three-vector. The rotation angle is the length of
this vector.

The small rotation vectors have values drawn uniformly from [−π/8, π/8), while the
large rotation vectors are uniformly drawn from [−π/2, π/2).

Appendix B.2. Sensitivity to Noise

In this experiment, we evaluated the effects of different levels of noise on the registra-
tion. Each level was tested with 30 generated point clouds. Just for this experiment, we
fixed the large and small rotation angles to two certain values, to be able to concentrate on
the effects of the levels of noise and draw the diagrams of Figure A5. PC1 and PC2 used
500 points subsampled from the origin point cloud. Then, we rotated PC2 and added zero
mean Gaussian noise to each point.

Following the definition of sensitivity [11], we logged the mean average shift to
evaluate the performance, and the standard deviation was utilized as the metric. The
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noise scale was within the range (0, 0.02]. Because the size of the bunny does not exceed
0.3, too large noise would result in dysfunctional feature descriptors. We present the
noise data with different noise scales in Figure A4. The results are given in Figure A5. In
the small angle case of Figure A5, the TEASER++ curve breaks due to a low number of
correspondences and followed by failure.

(a) Small angle, centered

(b) Large angle, not centered

Figure A4. Noise data: (top) centered small angle; and (bottom) large angle. From left to right column is with noise standard
derivation 0.002, 0.01, and 0.02.
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(a) Small angle, centered

(b) Large angle, not centered

Figure A5. Sensitivity test. The left two plots show results with small rotation, centered. The right two plots show results
with large rotation, not centered. The first and third diagrams show the mean shift to noise scale. The second and fourth
diagrams show the standard deviation.

For the centered small rotation, ICP, CPD, and DARE achieve better average shifts
and less sensitivity to noise. For the feature based methods, our CF and CFK perform very
similar to TEASER++.

However, for the large rotation data, ICP, CPD, and DARE fail to align the point
clouds, while the feature-based methods CF, CFK, and TEASER++ are able to align with
good performance.

Appendix B.3. Robustness to Outliers

Similar to above, we also used 500 randomly selected points from the bunny object
and performed small and large rotations. Additionally, 100 random points were uniformly
drawn in a sphere and added to the rotated point set PC2 (with radius 0.2, around the
center of sampled point clouds).

Because the first 500 points in each set are also from the same sampled index, we
actually know the correspondence in the non-outlier parts. To quantify the robustness, we
computed the average shift as in Appendix B.2.

For both large and small rotations, we tested 100 times to record the mean and standard
deviation. The quantitive evaluation is given in Table A1. All experiments were made
using randomly drawn rotation vectors.
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CPD achieves extremely precise solutions for small rotations, while feature-based
methods (TEASER++, CF, and CFK) are similar and better than ICP and DARE. DARE
gives the largest error and standard deviation. For the large rotation case, the feature-based
methods (TEASER++, CF, and CFK) perform best, and the errors of the remaining methods
are several times worse and unstable, since they yield large standard deviations. The
performance of our one-step methods is close to TEASER++, even though its truncated
least squares is theoretically more insensitive to spurious data.

Table A1. Robustness test: smaller is better.

Small Rotation, Centered Large Rotation, Not Centered

ICP 0.0019± 0.0062 0.070± 0.023
CPD 2.4 × 10−9 ± 1.7 × 10−10 0.040± 0.047
DARE 0.012± 0.019 0.053± 0.035
TEASER++ 0.0055± 0.0027 0.0057± 0.0035
CF 0.0075± 0.0028 0.0078± 0.0032
CFK 0.0096± 0.0043 0.0099± 0.0052

Appendix B.4. Accuracy

Using the same given transformation applied to the original point sets as in Appendix
B.3, we achieve rotated models. Then we randomly sampled 500 points from both the
reference model and the rotated models for testing. In the accuracy test, the three point
sets in Figure A3 (bunny, dragon and Armadillo) were utilized. To evaluate the accuracy,
deviations from the identity matrix [38] were computed:

ACCRgt(Rpredicted) = ||I− RpredictedRT
gt||F

It is a distance measure using the Frobenius norm of a matrix, where Rgt is the given
rotation and Rpredicted is the predicted rotation.

Accuracy results are given in Table A2. For the centered small rotation case, we
observe that CPD also achieves the best score while feature-based algorithms (TEASER++,
CF, and CFK) are on the same level. For large rotations, CPD becomes unstable, which
results in much larger average rotation distances and their standard deviations. The feature-
based methods still show close results in different cases. Our one-step solution shows
similar result to the truncated least squares method TEASER++.

Table A2. Accuracy test: smaller is better.

Small Rotation, Centered Large Rotation, Not Centered

Bunny Dragon Armadillo Bunny Dragon Armadillo

ICP 0.045± 0.018 0.045± 0.19 0.036± 0.022 0.96± 1.14 1.09± 1.13 1.17± 1.15
CPD 0.016± 0.0089 0.014± 0.0083 0.012± 0.0074 1.15± 1.30 1.11± 1.19 1.13± 1.15
DARE 0.020± 0.0093 0.016± 0.0090 0.016± 0.0083 1.30± 1.26 1.34± 1.22 1.48± 1.16
TEASER++ 0.14± 0.076 0.15± 0.084 0.16± 0.095 0.15± 0.096 0.13± 0.082 0.14± 0.093
CF 0.16± 0.10 0.19± 0.13 0.28± 0.42 0.18± 0.14 0.14± 0.11 0.15± 0.12
CFK 0.26± 0.26 0.25± 0.22 0.33± 0.35 0.26± 0.23 0.19± 0.18 0.20± 0.17
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