IMPROVING GOOGLE'S CARTOGRAPHER 3D MAPPING BY CONTINUOUS- TIME
SLAM

Andreas Niichtet®, Michael Bleie’, Johannes Schau#t Peter Janotta

&Informatics VIl — Robotics and Telematics, Julius Maxiraili University of Wirzburg, Germany -
(johannes.schauer, andreas.nuechter)@uni-wuerzieurg.d
b Zentrum fur Telematik e.V., Wirzburg, Germany - michblelier@telematik-zentrum.de
¢ Measurement in Motion GmbH, Theilheim, Germany - peteaj@mim3d.de

KEY WORDS: SLAM, trajectory optimization, backpack, personal lagerser, 3D point clouds

ABSTRACT:

This paper shows how to use the result of Google's SLAM solytcalled Cartographer, to bootstrap our continuous-t8hAM
algorithm. The presented approach optimizes the consigtgithe global point cloud, and thus improves on Googlesihs. We use
the algorithms and data from Google as input for our contilseiime SLAM software. We also successfully applied outvgaife to a
similar backpack system which delivers consistent 3D pdimids even in absence of an IMU.

1 INTRODUCTION present successful applications of the software to our duvites
backpack system which delivers consistent 3D point clovds e

On October 5, 2016 Google released the source code of its redn absence of an IMU (Nuchter et al., 2015).
time 2D and 3D simultaneous localization and mapping (SLAM)
library Cartographet. The utilized algorithms for solving SLAM
in 2D have been described in a recent paper by the authors of
the software (Hess et al., 2016). It can deliver impressigeilts
— especially considering that it runs in real-time on comityod
hardware. A publication describing the 3D mapping solui®n
still missing. The released software however, solves thblpm.

2 STATE OF THE ART
2.1 Laser Scanner on Robots and Backpacks

Mapping environments received a lot of attention in the timso
- ; . I community, especially after the appearance of cost effe@D
In addition, Google published a very demanding, high laser range nders. Seminal work with 2D pro les in robotics

data set to the public for testing their algorithms. Alsotoos o = :
data sets are easy to process, as Google's software confes wivas performed by Lu and Milios (1994). After deriving 2D vari

. L . . ants of the by now well-known ICP algorithm they derived a
an integration into the robot operating system (ROS) (Q@vigit : i, :
al., 2009). ROS is the de-facto standard in the robotic commuPOSEQraphs"A'\/I solution (Lu and Milios, 1997), that conside

nity as middleware. It allows to connect heterogeneousvsoé all 2D scans in a global fashion. Afterw_ards, many other ap-
packages via a standardized inter-process communica®e) ( proaches to SLAM have been presented, including extended Ka

. . : L man lters, particle lters, expectation maximization a@taph-
system and is available on recent GNU/Linux distributions. SLAM. These SLAM algorithms aimed at enabling mobile robots

to map the environments where they have to carry out user spe-
ci c tasks. Thrun et al. (2000) presented a system, whereria ho
zontally mounted scanner performed FastSLAM —a partidier |

pproach to SLAM- while an upward looking scanner was used
0 acquire 3D data, exploiting the robot motion to consterct
vironments in 3D. Lu and Milios' approach was extended to 3D
R int clouds and poses with six degree of freedom (DoF) in{Bo
rmann et al., 2008).

Google's sample data set was recorded in the museum “Dagsch
Museum” in Munchen, Germany. It is the world's largest mu-
seum of science and technology, and has about 28,000 edhibit
objects from 50 elds of science and technology. The data se
was recorded with a backpack system, which features an ine
tial measurement unit (IMU) and two Velodyne PUCK (VLP-16)
sensors. The trajectory we processed was 108 meters long al
contained 300,000 3D scans from the PUCK sensors.

. . . . In 2004 an early version of a backpack system was presented.
D_ue toa h_|gh demand on exible mobile mapping $ystems, MaPSaarinen et al. {2004) used the teﬂgrsona?l LocalizatioF:] And
ping solutions on pushcarts, on trolieys, on mobile robatsj Mapping They used a horizontally mounted SICK LMS200 scan-
backpacks have recently been developed. Human carriezhsyst pping y Y

ner in front of the human carried and put additional sensods a
offer the advantage to overcome doorsteps and that thetopera the computing equipment into a backpack. Chen et al. (2010)
can open closed doors etc. To this end, several vendorsHuild puting equip pack. )

man carried systems which are also often called personat laspresented abackpack system that featurg anumber (.)f ”m. I.““e
scanners 2D pro lers (Hokuyo scanner) mounted in different viewing d

rections. In previous work, we tried to apply our algorithtos

This paper shows how to use the result of Google's SLAM squ-?aCkpaCk. stystefm vxlth.out ?n”IMU (Nutck(;tesrltcezt; lLl\iglli))o s
tion to bootstrap our continuous-time SLAM algorithm. Opr a €m consists of a horizontally mounte scanner

proach optimizes the consistency of the global point cl@ua and gspinning Rieg| \./2400' Sim”af'y tothe qurk of Thrun kta
thus improves on Google's results. We use the algorithms anf h?trlzont?jl scagnfr dli used t(c; tehstlrgaDteFan |rtl_|t|al t_lr_:;:[g?imt P
data from Google as input for our continuous-time SLAM solu- I afterwards updated to regard the 5 Do motion. The term Fer

: : : : sonal Laser Scanning System was shaped by Liang et al. (2014)
tion, which was recently published in (Elseberg et al., 30¥% They use a single FARO scanner and rely on the global navi-

Lhttps://opensource.googleblog.com/2016/10/ gation satellite system (GNSS) system. Similarly, the cemm
introducing-cartographer.htmi cially available ROBIN system features a RIEGL VUX scanner
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Figure 1: Left: Google's Cartographer system featuring Bedkuyo laser scanners (image: Google blog). Middle: Gds@artogra-
pher system with two Velodyne PUCKs and the Cartographen {@aage courtesy of the Cartographer team). Right: Secatitba
operating Wirzburg's backpack scanner.

and GNSS. In contrast, the Leica Pegasus is a commercialily av can be referenced without the need for collecting additimfiar-
able backpack wearable mobile mapping solution, whichis-co mation. This means that the trajectory is then used to “udWin
posed oftwo Velodyne PUCK scanners, cameras and a GNSSthe laser range measurements to produce the 3D point cldusl. T
The PUCKSs scan 300.000 points per second and have a maximapproach has been taken by Liang et al. (2014).

range of 100 meters. 16 pro lers are combined to yield a galti
eld of view of 15 degree. Some systems employ a horizontally mounted scanner and per-

form 2D SLAM on the acquired proles. Thrun et al. (2000)
The Google Cartographer backpack was initially presem&ep-  used FastSLAM, Nichter et al. (2015) used SLAM based on the
tember 2014. Back then, the backpack system was based on tviuncated signed distance function (TSD SLAM), or alteiuedy,
Hokuyo pro lers and an internal measurement unit (IMU). The HectorSLAM (Kohlbrecher et al., 2011). These 2D SLAM ap-
current version features two Velodyne PUCK scanners. Eigur proaches produce 2D grid maps. Similarly, Google's Caeogr

shows the system from Google and our backpack solution. pher code is for creating 2D grid maps (Hess et al., 2016rAft
o ) wards, the computed trajectory and the IMU measurements are
2.2 Calibration, Referencing, and SLAM used to “unwind” the laser range measurements to produce the

3D point cloud.
To acquire high quality range measurement data with modderl

scanner the position and orientation of every individuasees  The Google Cartographer library achieves its outstandielg p
have to be known. Traditionally, scanners, GPS and IMU ardormance by grouping scans into probability grids that thaly
calibrated against other positioning devices whose posel&a  submaps and by using a branch and bound approach for loop clo-
tion to the system is already known. The term Boresight cali-sure optimization. While new scans are matched with and sub-
bration is used for the technique of nding the rotationatgpa-  sequently entered into the current submap in the foreground
eters of the range sensor with respect to the already ctdibra the background, the library matches scans to nearby subtoaps
IMU/GPS unit. In the airborne laser scanning community, au-create loop closure constraints and to continually optntle
tomatic calibration approaches are known (Skaloud ande¢cha constraint graph of submaps and scan poses. The authors dif-
2007), and similarly vehicle-based kinematic laser saamhias  ferentiate between local scan matching which inserts namnssc
been considered (Rieger et al., 2010). In the robotics commuinto the current submap and which will accumulate errorg ove
nity there exist approaches for calibrating several rarggs time and global SLAM which includes loop closing and which
ners semi-automatically, i.e., with manually labeled dabader-  removes the errors that have accumulated in each submap that
wood et al., 2009) or using automatically computed qualigt-m are part of a loop. Both, local and global matching are ruhat t
rics (Sheehan et al., 2011; Elseberg et al., 2013). Oftedarsn same time.

do not make their calibration methods public and unforteiyat

the authors of this paper have no information on the caiitmat During local scan matching, the Cartographer library medch

of the Google Cartographer backpack. In general, calitmdti- ~ €ach new scan against the current submap using a Ceres-based

accuracies can to some extend be compensated with a SLAM afcan matcher (Agarwal et al., n.d.). A submap is a reguldsagro
gorithm. bility grid where each discrete grid point represents tfobabil-

ity that the given grid point is obstructed or free. These $s&ts
Aside from sensor misalignment, a second source of errers arare disjoint. A grid point is obstructed if it contains an ebsed
timing related issues. All subsystems on a mobile platfoemdh  point. Free points are computed by tracing the laser beam fro
to be synchronized to a common time frame. This is often accomthe estimated scanner location to the measured point thriheg
plished with pure hardware via triggering or with mixes ofdha grid. The optimization function of the scan matcher makesais
and software like pulse per second (PPS) or the network thme p the probability grid as part of its minimization function.
tocol (NTP). However, good online synchronization is netals
available for all sensors. Olson (2010) has developed disnlu During global SLAM, nished submaps (those that no longer
for the synchronization of clocks that can be applied after t change) and the scans they contain are considered for loep cl
fact. In ROS, sensor data is time-stamped, when it arrivestan ing. Just as during local scan matching, the problem is plasse
is recorded in an open le formati{ag les). Afterwards, one t0 Ceres as a nonlinear least squares problem. The algorithm

works with the time-stamped data using nearest values er-int iS accurate down to the groups of points de ned by the regu-
polation. lar probability grid of each submap. By taking the subma gri

size as translation step delta and the angle under whichda gri
As the term direct referencing or direct Geo-referencinglies,  point is seen at maximum range as the rotation step deltate n
it is the direct measurement of the position and orientatiba  set of possible transformations is created. This solutjgacs
mapping sensor, i.e., the laser scanner, such that eachvahge  is searched using a branch and bound approach where nodes are



traversed using a greedy depth rst search and the upperdbourd; within a close limit (Besl and McKay, 1992). Instead of the

of the inner nodes being de ned in terms of computationabreff
and quality of the bound. To compute the upper bound ef ¢jent
grids are precomputed for each height of the tree that ovéhnka

involved submaps and store for each obstructed grid pomt th

two-scan-Eq. (1), we look at thescan case

X X

E = JRimi+ 1t (Redi + te)j?;

@)

itk

maximum values of possible scores. This operation is done in ] )
O(n) with n being the number of obstructed grid points in eachWherej andk refer to scans of the SLAM graph, i.e., to the graph

precomputed grid.

Hess et al. (2016) describe the 2D version of the algorithhicky
uses the horizontally mounted 2D pro ler. The provided dsts

modeling the pose constraints in SLAM or bundle adjustment.
If they overlap, i.e., closest points are available, thex pbint
pairs for the link are included in the minimization. We sofee
all poses at the same time and iterate like in the original ICP

contain also data from a setup with Velodyne PUCK scannérs (c The derivation of a GraphSLAM method using a Mahalanobis

Figure 1 middle). Their algorithm is able to process 3D dai# a
to output poses with 6 DoF, however, a description of theiePP
proach is missing from their paper. Nevertheless, we utateis
from their published source code that their 3D implemeatati
is mostly an extension of their 2D approach to three dimerssio

with a 3D probability grid. Some changes have been made to

improve performance. For example, the 3D grid is not fulby tr
versed to nd free grid cells but only a con gurable distange
to the measured point is checked.

distance that describes the global error of all the poses
X

W (Ejx
ik
X
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ik
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whereEj‘;’k is the linearized error metric and the Gaussian dis-
tribution is (Ejx ; Cjx ) with computed covariances from scan
matching as given in (Borrmann et al., 2008)19 andX { denote

Only a few approaches optimize the whole trajectory in a conyhe two poses linked in the graph and related by the linear err

tinuous fashion. Stoyanov and Lilienthal (2009) preseiat@dn
rigid optimization for a mobile laser scanning system. Toptj-
mize point cloud quality by matching the beginning and thé en

metric. Minimizing Eq. (2) instead of (3) does not lead tdefif
ent results (Nuchter et al., 2010). In matrix notativnin Eq. (3)
becomes

of a single scanner rotation using ICP. The estimate of the 3D

pose difference between the two points in time is then used to

optimize the robot trajectory in between. In a similar ag@io

W=(E HX)'C YE HX):

Bosse and Zlot (2009) use a modi ed ICP with a custom corre-Here H is the signed incidence matrix of the pose graghis

spondence search to optimize the pose of six discrete points
time of the trajectory of a robot during a single scannertioma
The trajectory in between is modi ed by distributing the @s
with a cubic spline. The software of Riegl RIPRECISION MLS
automatically performs adjustments of GNSS/INS trajeesoto

the concatenated vector consisting ofl%ﬂ( andC is a block-
diagonal matrix comprised m:j;kl as submatrices. Minimizing
this function yields new optimal pose estimates.

Please note, while there are four closed-form solutionstHer

merge overlapping mobile scan data based on planar surfface @riginal ICP Eg. (1), linearization of the rotation in Eq) (& (3)
ements. Our own continuous-time SLAM solution improves theseams to be always required.

entire trajectory of the data set simultaneously based emaiv
point cloud. The algorithm is adopted from Elseberg et &113),
where it was used in a different mobile mapping context, @B.
platforms like the LYNX mobile mapper or the Riegl VMX-250.
As no motion model is required, it can be applied to any cantin
ous trajectory.

3 CONTINUOUS-TIME SLAM

3.1 6D SLAM

Globally consistent scan matching is a full SLAM solution fo
3D point clouds. It is an of ine algorithm and thus optimizes
all poses in the SLAM pose graph. As a result, processing more
scans will increase the algorithm's run-time.

3.2 Continuous-time SLAM

We also developed an algorithm that improves the entiredraj
tory of the backpack simultaneously. The algorithm is addpt
from Elseberg et al. (2013), where it was used in a differeot m
bile mapping context, i.e., on wheeled platforms. Unlikeeot

To understand the basic idea of our continuous-time SLAM, westate of the art algorithms, like (Stoyanov and Lilient/2009)
summarize its foundation, 6D SLAM, which was designed for a@nd (Bosse and Zlot, 2009), it is not restricted to purelyaloc

high-precision registration of terrestrial 3D scans,, igtobally
consistent scan matching (Borrmann et al., 2008). It islalvk

in 3DTK — The 3D Toolkit The globally consistent scan match-
ing is a full SLAM solution for 3D point clouds.

6D SLAM works similarly to the well-known iterative closest
points (ICP) algorithm, which minimizes the following erfanc-
tion

X

E(R;t):Ni m (Rd;+1) 1)

i=1

to iteratively solve for an optimal rotatioh = (R;t), where
the tuples(m;;d;) of corresponding modé¥l and data points
D are given by minimal distance, i.emn; is the closest point to

2http://threedtk.de

improvements. We make no rigidity assumptions, excepttfer t
computation of the point correspondences. We require no ex-
plicit motion model of a vehicle for instance, thus it workeliv

on backpack systems. The continuous-time SLAM for trajgcto
optimization works in full 6 DoF, which implies that even pk
trajectories are turned into poses with 6 DoF. The algoritem
quires no high-level feature computation, i.e., we reqoiy the
points themselves.

In case of mobile mapping, we do not have separate terrestria
3D scans. In the current state of the art in the robotics commu
nity developed by Bosse and Zlot (2009) for improving overal
map quality of mobile mappers, the time is coarsely diszeeti
This results in a partition of the trajectory into sub-sctret are
treated rigidly. Then rigid registration algorithms likeet ICP
and other solutions to the SLAM problem are employed. Ob-
viously, trajectory errors within a sub-scan cannot be oupd



in this fashion. Applying rigid pose estimation to this nagid
problem directly is also problematic since rigid transfations

large amounts of data. The octree is free of redundanciessand
nevertheless capable of fast access operations. Our ireptam

can only approximate the underlying ground truth. When a ne tion allows for access operations@{log n). We use 6-bytes for

discretization is used, single 2D scan slices or singletpoasult

that do not constrain a 6 DoF pose suf ciently for rigid algo-

rithms.

More mathematical details of our algorithm are given in éls
berg et al., 2013). Essentially, we rst split the trajegtorto sec-
tions, and match these sections using the automatic higtigion
registration of terrestrial 3D scans, i.e., globally cetesit scan

pointers as this is suf cient to address a total of 256 tetabywo
bit elds signal if there is a child or leaf node, thus our irapien-
tation needs a few bit operations and the 8 byte are suf dient
an octree node.

The preprocessing step of the continuous-time SLAM run2@or
iterations, where the edges in the graph are added, when more
than 400 point pairs between these meta-scans are predeat. T

matching that is the 6D SLAM core. Here the graph is estimatednaximal allowed point-to-point distance is set to 50 cm .uiFég3

using a heuristic that measures the overlap of sectiong k&
number of closest point pairs. After applying globally catent
scan matching on the sections the actual continuous-tireeroi-
rigid matching as described in (Borrmann et al., 2008; Hsgb
et al., 2013) is applied, using the results of the rigid ojtan
tion as starting values to compute the numerical minimunhef t
underlying least square problem. To speed up the calcoitio

and present 4 results where the consistency of the pointiclou
has been improved. Figure 5 shows the modi cations in the 3D
point cloud, while Figure 6 details the changes in the ttajgts
position and orientation. It is an open traverse, thus tlaghs
are mainly at the end of the trajectory. Processing was dorege o
server featuring four Intel Xeon CPUs E7-4870 with 2.4 GHx (4
cores, 80 threads). We have optimized the Google data s&Pfor

we make use of the sparse Cholesky decomposition by (Davigo 15 days (few interruptions).

2006).

Given a trajectory estimate, we “unwind” the point cloudoint
the global coordinate system and use nearest neighborhsiarc
establish correspondences at the level of single scanse(item

be single 2D scan pro les). Then, after computing the esti®a

5 FURTHER CARTOGRAPHER SLAM RESULTS

In further experiments, we evaluated the Cartographerh@dit
brary is fully integrated into ROS, we are able to exchangewn

of pose differences and their respective covariances, Waige  backpack HectorSLAM or TSD SLAM with Cartographer. In-

the trajectory. In a predependend step, we consider teaject door of ce-like environments are no challenge for all themeal

elements everk steps and fuse the trajectory elements aroundalgorithms. Featureless environments such as long tuonels-

these stepktemporarily into a meta-scan. door environments are problematic. Figure 2 shows a tygical
roneous map obtained with default parameters of Cartograph

A key issue in continuous-time SLAM is the search for closestys. HectorSLAM in the environment where the photo Figure 1

point pairs. We use an octree and a multi-core implememtatio (right) has been taken.

using OpenMP to solve this task ef ciently. A time-thresthébr

the point pairs is used, i.e., we match only to points if theyev

recorded at least time steps away. This time corresponds tothe 6 SUMMARY, CONCLUSION AND FUTURE WORK

number of separate 3D point clouds acquired by the PUCKSs. Iti

setto 0.1seck(= 300, | = 300). In addition, we use a maximal

allowed point-to-point-distance which has been set to 50 cm

This paper revisits a continuous-time SLAM algorithm aschip-
plication on Google's Cartographer sample data. The alyori
starts with splitting the trajectory into sections, and chas these
sections using the automatic high-precise registratiotewes-
trial 3D scans.

Finally, all scan slices are joined in a single point clou@mable
ef cient viewing of the scene. The rst frame, i.e., the r8D
scan slice from the PUCKs scanner de nes the arbitrary eefes
coordinate system. Needless to say, a lot of work remains to be done. First ofll,
plan to evaluate 2D mapping method as we have indicated above
Secondly, as calibration is as crucial as SLAM, we will apmly
calibration framework (Elseberg et al., 2013) to the datss pro-
vided by Google. Furthermore, we will transfer our continsto
time SLAM to different application areas, e.g., underwated

For improving the Cartographer 3D mapping, the graph is eSaerospace mappmg app”cations_

timated using a heuristics that measures the overlap obsect

using the number of closest point pairs. After applying glob

consistent scan matching on the sections for severalittesathe

actual continuous-time SLAM is started.

4 BOOTSTRAPPING CONTINUOUS-TIME SLAM
WITH GOOGLE'S SLAM SOLUTION

The data set provided by Google is challenging in severakway
Due to the enormous amount of data, clever data structuees a
needed to store and access the point cloud. We split thetvaje
every 300 PUCK-scans and joinl50 PUCK-scans into a meta-
scan. These meta-scans are processed with our octree where
use a voxel size of 10cm to reduce the point cloud by selec
ing one point per voxel. We prefer a data structure that storef
the raw point cloud over a highly approximative voxel repres
tation. While the latter one is perfectly justi able for senuse
cases, it is incompatible with tasks that require exacttpoiea-
surements like scan matching. Our implementation of areectr
prioritizes memory ef ciency. We use pointers in contrasse-
rialized pointer-free encodings in order to ef ciently &ss the

Figure 2: Left: Cartographer. Right: HectorSLAM.



Figure 3: Results of continuous-time SLAM on Google's Cgrapher sample data set Deutsches Museum in Munchen. ihpfit.
Right: output of our solution. Shown are 3D views (perspe}tof the scene. Major changes in the point cloud are higtéigin red.
Continued in Figure 4



Figure 4: Results of continuous-time SLAM on Google's Cgrepher sample data set Deutsches Museum in Miinchen. ihpfit.
Right: output of our solution. Shown are sectional viewshef nuseum hall. Major changes in the point cloud are higteidjin red.

0.1
1S
£
0.08 ®
o
c
I
0.06 »
e]
=
0.04 '©
e
o
S
0.02 &
£
o
o

Figure 5: Visualization of the changes in the point cloud.o@h are two views of the optimized 3D point cloud, coloredhatite
difference to the result from Google's Cartographer.



Figure 6: Visualization of the changes in the trajectory pated by our method to bootstraped trajectory. Left: distanRight:
orientation
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