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Abstract
In this paper we have modelled the behavior of the CDMA cell using clustered

Poisson process. We have found that when the RF dynamics of the cell is modelled
using this two dimensional description of the user arrival process, the size and the
capacity of the cell are completely determined by the spatial traffic density and
stability arguments. This is much like provisioning a server in a queueing system.
This paper is an extension of the work presented in (Veeravalli, Sendonaris, and Jain

1997) by incorporating the idea of a clustered nature of customers in a cell.

1 Introduction

CDMA networks have recently seen a rapid growth all over the world. The reason for this
lies in its technological advantages over second generation systems. However, since the
newly rolled-out networks have often not yet reached their normal operation conditions,
the effects of varying traffic load on coverage and capacity still need to be investigated.
Additionally, soft capacity leads to a description of the term coverage that differs from its
conventional usage. Unlike conventional systems like FDMA or TDMA, where coverage
is purely determined by radio frequency (RF) aspects, the cell coverage in CDMA is
extremely sensitive to the customers that are supplied in the cell.

Due to the soft-capacity nature of CDMA networks, the coverage of a cell depends
on several factors: i) the transmission characteristics of the terrain, ii) the dynamics
of the power control procedure, iii) the desired quality of service in term of sustainable
interference level, and iv) the spatial customer distribution and corresponding time-
dependent customer traffic intensity.

From previous studies it is known that the coverage area of a CDMA cell is of an
elastic nature, cf. (Veeravalli, Sendonaris, and Jain 1997): as the number of customers
in the cell increases, the area of coverage may shrink. This effect indicates that the
customer population and its spatial distribution has to be taken into account carefully in
the context of CDMA network planning, especially in the design of connection admission
control (CAC) and overload control algorithms. Looking e.g. at the CAC, the impact
of accepting new calls is that those at the fringe of the cell would face a deteriorating
service. Therefore both, coverage and capacity of a cell need to be planned in such a
way that all calls are sufficiently supplied, i.e. power-controlled according to the defined

quality of service.



This paper is intended to provide the infrastructure to analyze a CDMA cell. We
define an outage condition metric that can be used in the network design process. When
analyzing a CDMA cell, its complexity is determined by the stochastic property of the
customer population and the probabilistic nature of the radio transmission. Due to these
issues, the cell capacity and the cell radius become probabilistic quantities. It is therefore
also necessary to define the coverage and the capacity in a probabilistic fashion.

As the analysis of the capacity and coverage of a CDMA cell are crucial issues for
network dimensioning, numerous work on this topic already exists. A first approach to
analyze the capacity of a cell by modeling it as M /M /oo queue is performed in (Viterbi
and Viterbi 1993), where equally loaded cells are assumed. An extension to that paper
is presented in (Evans and Everitt 1994), which also includes a good overview on further
traffic models. Another study that also assumes a non-uniform loading of cells is given
in (Landolsi, Veeravalli, and Jain 1996). Here, the number of customers is modeled as
Poisson random variables and focus is laid on the capacity of a hot cell in the center with
two tiers with less traffic surrounding it. We used results from (Veeravalli, Sendonaris,
and Jain 1997) as starting point in this study. In (Veeravalli, Sendonaris, and Jain 1997)
an equation for outage probability is developed that is conditioned on the number of
currently supported customers and their location. The approach in this paper differs
from the previously mentioned studies in that the population of customers in the cell
is considered as a number governed by a two dimensional Poisson process, cf. (Cressie
1991). Recent publications, such as (Tran-Gia and Gerlich 1996), indicate the growing
importance of modeling traffic with spatial cluster processes.

This paper is organized as follows. Section 2 describes the CDMA network model that
is examined. A short derivation of the term for outage probability is given. In Section 3,
the relation between cluster processes and traffic modeling is shown and included in the
network model. Numerical results are presented in Section 4, conclusions and an outlook

are given in Section 5.

2 Network Parameter Modeling Assumptions

We consider a cell in a CDMA network with a Base Transceiver Station (BTS) supporting
a number of calls (Fig. 1). At the observation instant there are k calls to be supported
and power-controlled in the cell.

We observe in particular a customer 4 in conversation phase. This is the period
of time, when a customer transmits an activity burst during his call. These bursts are

separated by idle phases, like illustrated in Fig. 2. The probability that the customer gets



Figure 1: CDMA cell with k& supported calls
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Figure 2: CDMA customer and call process

an acceptable link quality is a function of the distance z to the base station (BS) and the
current interference characteristics. The interference characteristic is however not only
depending on z, but is also a function of the distribution of calls currently supported in
the cell. In the general modeling context we consider the number of connections in cell
to be a random variable denoted by K, which is governed by a cluster process described
in the next section. At the observation instant K takes an instantaneous value denoted
by k (K = k).

We use as performance metric of the network an expression for the signal outage
probability, i.e. the probability that a customer at distance x from the base station will
require more than maximum power to maintain a desired signal-to—interference ratio
(SIR or Ep/Ip). In the following, we will be using the terms outage and signal outage
equivalently. In the North American IS-95 system (TIA /EIA/IS-95 1995) this maximum
transmit power is 200mW. In line with (Veeravalli, Sendonaris, and Jain 1997) let this
outage probability be defined as Poyi(z,k). Our aim in this paper is to uncondition
Pyt (z, k) by utilizing the properties of the spatial process, i.e. we want to obtain values
Pous(z) and Poyg (k).



A term for outage probability just depending on the location of the customer is
useful for network planning purposes, where the objective is to maintain a Pyt () below
a given threshold for all customers within a coverage circle of radius = in the cell. The
function Pyy4(k) on the other hand can be used for determining the maximum number
of customers that can be admitted to the network without exceeding a maximum outage
probability.

To ease the further reading of the paper we will in the following summarize the

derivation of Pyyi(x, k).

2.1 Outage Model for a Fixed Number of Customers

Consider a case where the number of customers, hence the interference characteristics of
the cell that is being analyzed, is a constant. The objective of this section is to estimate
the probability of outage for a fixed number of customers k. The model presented here

is along the lines presented in (Veeravalli, Sendonaris, and Jain 1997).

2.1.1 Outage Condition

If we look at the customer at a point in the cell, let the distance of this customer from
the transmitter be z. The transmit power (in dB-W) of the customer is given in terms

of his received power S at the BS by
Strans = S + PL(z) + Z, (1)

where PL(z) is the path loss at distance z from the BS (including antenna gains) and Z
is a random variable representing shadow fading. The path loss is usually well modeled

using Hata’s model, (Rappaport 1996):
PL(z) = K1 + Kslogz. (2)

The shadow fading variable Z is well modeled as a zero-mean Gaussian random variable
with variance 0’%, see (Rappaport 1996). As discussed in (Veeravalli, Sendonaris, and
Jain 1997) the probability of outage is the probability that Sirans exceeds Smax-

Thus, the probability of outage at a distance = from the BTS is given by
P(“outage”) = P (S 4+ PL(z) + Z > Smax) - (3)

The only quantity in Eqn. (3) that depends on the number of customers in the cell is S.
Thus, a relationship between coverage and number of customers k£ may be derived if we
find the distribution of S as a function of k.



2.1.2 OQOutage Probability

After giving the definition for the outage event, its probability can be computed. All
variables and notation are used in analogy to (Veeravalli, Sendonaris, and Jain 1997),
especially the notation that for any power or signal-to-interference ratio x in dB, its
transformation to linear space is denoted by x = 1076

The SIR €, for the j-th customer at the BS may be expressed in terms of the received

powers S of the various customers as:

ES{AS

&j

(4)

S US4 Ny + T
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Here, v; is the voice activity factor of the j-th call, as described above, cf. (Fig. 2). The
variables {v;} are modeled as independent Bernoulli random variables that take the value
1 with probability p. R denotes the information bit rate in bits per second and W is
the system bandwidth in Hz. The total interference in the denominator is added by the
background noise power spectral density Ny and the other-cell interference density 1.
The random variables S’, S’l, S’g, . ,S’k_l are modeled as i.i.d. log-normal distributed
random variables. Since the required SIR £ is also log-normal, £ = 10log ¢ is Gaussian
with typical values for the mean and standard deviation of m., = 7 dB and 0. = 2.5
dB, cf. (Viterbi and Viterbi 1993). The mean m: and second moment d; of the random

variable € are:

O¢ 2
e = 2222 gt g
and
5 = exp (2(fo.)?) exp(20m.) (6)

where 3 = hi%.
The mean and the second moment of S are then derived as:
(No + I)Wm,
Y — p(k = 1)m,

mg(k) =

and
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Examination of Eqn. (7) shows that k£ cannot exceed the value for which the denominator

is zero. This value is defined as the pole capacity

w
kpole = Rm

+1. 9)

ép
and can be interpreted as the limit on the number of customers a cell can support when
the coverage shrinks to zero.

Since S is log-normal, S is Gaussian. The mean and variance of S can easily be

calculated in terms of m¢ and d4 as given below:

ms (k) = 20log g mg (k) — 5logyg dg(k) (10)
and

o2 (k) = % (1010g4y 35 (k) — 20log 1 m (k) (11)

Assuming that S and Z are uncorrelated, we can hence rewrite Eqn. (3) as:

P o) — O (Smax — (Ky + Ky logz) — mg(k)) 12
o5(k) + 0%

where () is the tail of the Gaussian PDF and is defined as:

+2

1 7 e
Q(x)zﬁm/e > dt (13)

Eqn. (12) yields the probability of an outage as function of the distance of the cus-
tomer from the base station and the number of customers that are supplied in this cell.
However, it is desired to have a term that is unconditional of the second parameter,
i.e. making Pyy;(-) a function of only z or k. Considering the outage perceived by the

customer at distance x from the BTS, we can formulate Py (x) as:

Pout(z) =Y Poys(w,k) - P(“k calls in cell with radius z”) (14)
k

The derivation of the probability to have k customers in a cell based on a certain traffic
behavior is done with a spatial Poisson process and is described in Section 3. In a similar

fashion we will later describe:

oo
Poui (k) = /Pout(x, k) - P(“radius of cell with & calls is 2”) dx (15)
0



3 CDMA Coverage in a Clustered Environment

So far the randomness was only taken into account for the modeling of the transmission
channel. The equation for the probability of outage requires as parameters the number
of customers in the cell and the distance of the customer. Our aim is to uncondition the
outage probability of one of the parameters. By modeling the location of the customers
with a spatial process, we can obtain a mathematical description of the customer distri-
bution within the cell. We can then use the point process to characterize the relationship
between number and location of the customers. In this paper we will deal with the most
general case of spatial point processes, the homogeneous Poisson process, cf. (Cressie
1991).

3.1 Spatial Traffic and Basic Relations

To estimate the coverage of CDMA cells in a network planning context, we consider
in the following the customer population on a two-dimensional surface to constitute a
spatial homogeneous Poisson process. Thus, the distribution of the random variable K4
of calls on a surface with area A is Poisson distributed as:
(AA)F oA

k!

P(Kj=k) = (16)

where A (in calls per km?) denotes the spatial traffic intensity. The distribution of K4
given above is valid at any arbitrary observation instant.

Based on this Poisson process assumption we now consider a cell modeled by a circle
with radius Rc. One active call is assumed to be on the circle and k& — 1 connections are
inside the circle, see also Fig. 1. The corresponding coverage area is A = mRZ, where
both A and R¢ are random variables. To give a precise mathematical description, we
can define the random variable A as the surface of the smallest circle containing k points.
Due to the property of the spatial Poisson process, the size of the surface A is distributed

according to an Erlang-distribution of order k:

AW -PA<p-1-3 o)t o (17)
1=0 :

(]

with the probability density function:

d A(Ay)k_l -y

a(y) = dy (y) = -1 e (18)

It is more useful, however, to consider the radius of the cell rather than its surface,

as this can translate directly to the distance between customer and base station. The



distribution of the radius R¢ can be derived as

2 - (Amz?)’ Ara?
Re(z) =P(Re <z)=P(A<ma®)=1-) e (19)
i=0 :
with the probability density function
d d dy AArz?)k=t o
re(z) = %RC(fﬂ) = yds clz) = NUE AT (2m) (20)

With (20) we can now calculate the probability that we have a cell radius of z for a cell
currently supporting k calls assuming an intensity of A.

The following figures illustrate the shape of the curve of ro(x). Fig. 3 depicts the
sensitivity of ro(z) on variations of k. It shows that to support fewer calls, the mean
cell radius is in general smaller than for larger values of k, for a fixed traffic intensity of

A = 50. The shape and variance of the curves stay the same.
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Figure 3: Density function of the cell radius for different number of calls

In Fig. 4 the curve for r¢(z) is plotted with a fixed value of £ = 20 and varying traffic
intensities A. It indicates that for areas with high values of A, e.g. urban or dense urban
regions, the cell radius is more clearly defined than for areas with lower intensity, like the
curve for A = 10. The range of the radius is here more than double the size compared to
A = 100.

3.2 CDMA Cell Coverage

Considering the two-dimensional customer traffic process as discussed above, the coverage
area of a cell in a CDMA network will be estimated, where the outage probability given

in Eqn. (12) will be taken as the criterion to define the boundary of a cell.



é 16 100
§ 14 | i
> L [ i
2 2 | 80
210t [ traffic intensity 4
0 | A [calls/km?]
S 8 [ i
3 |
3 O [ 10 )
© c
4+ s ]
2 J
0 /. \_ ‘
0 0.2 0.4 0.6 0.8 1 1.2

cell radius [km]

Figure 4: Density function of the cell radius for different spatial traffic intensity

We can now get back to Eqn. (14) and Eqn. (15). With the Poisson process we now
have a mechanism to describe the probability to have k calls in the cell with radius x
and the probability that the radius of the cell with & calls is z.

First we look at a cell with radius Rc = x. The probability to have k connections
in the cell with radius z is simply Poisson distributed, as shown in (16). The overall

unconditioned outage probability for this cell can then be derived as:'

— (>‘7T$2)k —\mz?
Pout(z) = Pow(x, k) - e (21)
k=1 ’
The resulting outage probability in (21) is now no longer dependent on the number of
calls in the cell like Eqn. (12), but only on the distance from the base station and the
intensity of the cluster process. This translates to an assumed traffic value for the area
of the cell. Therefore, it is enough to know the environment of the cell, such as urban or
suburban, and map this value to a certain value of A.
We now focus on the question, how large the coverage area of a CDMA cell is if
we want to cover a given number of k active calls. From network design viewpoint the
coverage corresponds to a chosen outage probability, which can be derived by combining

Eqn. (12) and Eqn. (20).

Pout(k) = /Pout(xa k) ' Tc(.’L‘) dz (22)
0

'For the summation over k, values for Poy¢(z,k) = 1 were assumed, when k exceeded kpole-



Eqn. (22) gives us a relationship between probability of outage and number of calls. Here,
it is no longer necessary to know the distances of the individual customers as these are

being implicitly represented by the Poisson process.

4 Results

The results analyzed by this paper suggest that the CDMA cell has to be provisioned
like a processor in a queuing system. This implies that like queueing systems we can
construct load service curves and use stability arguments to determine how heavily they
should be loaded up. These curves are presented in this section. Like average delay, the
GOS for CDMA cell would be the outage probability Py .

The choice of P,,; would depend on the area over which the coverage of a CDMA cell
is desired. In this analysis, Py, is maintained along the edge of the cell, the area over
which the outage will be maintained will extend from the base station to the edge of the
cell. In general, the target of about 90-95% edge coverage is desired. In otherwords we
would like P,y to be between 5-10 %. In the following section we discuss this issue in

more details with some numerical examples.

4.1 Coverage Capacity Dynamics

Given a value of Pyyi(z, k) and a number of calls currently being supported by the cell,
the radius of the cell is fixed. Similarly, given a value of Py (z, k) and the radius of a
cell, the number of calls supported by the cell is fixed. These ideas are summarized in

Fig. 5, where we plot Poy(z, k) from Eqn. (12) versus calls and Fig. 6 with Pyy(z, k)
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Figure 5: Impact of customer-BTS distance on outage probability
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versus distance.
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Figure 6: Impact of number of calls on outage probability

Some interesting observations about the behavior of these relationships can be made.
Both curves have a slowly increasing part and a very fast increasing part. In general, we
would like to operate in the slowly changing part of the curve as far as possible to ensure
stability of the GOS for the customers.

4.2 Interaction of Capacity and Customer Dynamics

The interaction between customer dynamics and the capacity dynamics leads to the new
definitions of the coverage and the capacity of the cell as given by Eqn. (21) and Eqn. (22).
In particular, consider Fig. 7 and 8.

It is clear that the rate of change of P, (z) as a function of distance is small until
it reaches a certain point where it extends exponentially (much like the delay curves of
the queuing system). Similarly, if you look at the capacity part of the curve, the rate
of change of P,,;(k) is initially small but extends exponentially as the number of calls
increase. Both curves approach a step function for a limit of A — oo.

Thus, for a CDMA cell the capacity and coverage are both provisionable quantities
and will be dominated by stability issues more than actual resource constraints. In
general given a spatial traffic intensity A and Py, the capacity and the coverage of the

cell can both be determine by stability arguments.
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5 Conclusions and Outlook

In this paper we have modelled the behavior of the CDMA cell using clustered Poisson
process. We have found that when the RF dynamics of the cell is modelled using this two
dimensional description of the user arrival process, the size and the capacity of the cell
are completely determined by the spatial traffic density and stability arguments. This is
much like provisioning a server in a queueing system.

The above conclusion has some very interesting ramifications. For example, during
CDMA cellular network design it will be important to consider the spatial traffic intensity.
This is a new finding because in our opinion this was not a requirement for network
planning of TDMA and FDMA cellular system.

The definition of cell capacity has to be revisited. In the classical cellular systems the
capacity of the cell was defined as the number of radio channels or time division channels
that the cell could support. This number was independent of the spatial traffic intensity.
In CDMA the capacity of a cell will be dependent on the spatial traffic intensity.

So far we examined only a single cell, assuming a given value for interference from
other cells. Our next step will be to take a look at a cluster of two or more cells and
the shape of the outage probability at the common cell boundaries. This is especially
interesting, since through CDMA’s soft handoff a mobile station is contacting to 3 base
stations with the best signal-to—interference ratios at a time. Soft handoff will take place
at the cell boundary regions and further reduce the probability of outage there. We can
therefore consider the present work as a worst case approximation.

Another improvement can be done by enhancing the model of the spatial point pro-

12
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Figure 8: Relationship between cell radius and outage probability

cess, e.g. using a phase—type process (Latouche and Ramaswami 1997). Here, we hope to
be able to also consider areas with an inhomogeneous traffic distribution or the situation
where a cell with high intensity is next to a cell with lower intensity. A further topic
of research is the examination of different activity patterns of the customers to model

different types of traffic like voice and data.
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