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Abstract

In this paper, we present a method to compute the coefficient of correlation for two con-
secutive interdeparture time periods of a discrete-time GI/GI/1 system. In addition,
we provide an algorithm to create the one-step transition probability matrix of the in-
terdeparture time process of this system. The presented methodology can be applied to
approximate the correlations of continuous-time GI/GI/1 systems with a high degree of
accuracy.



1 Introduction

For assessing the performance of tandem queues or, in a more general context, queueing
networks with general interarrival and service times, a suitable model for the interde-
parture times is required. Normally, only the first few moments or, in some cases an
approximation of the distribution of the interdeparture times of a system are taken into
consideration due to complexity reasons. To increase the degree of feasibility of a per-
formance evaluation, independence of the interdeparture times is assumed. In general,
however, departures are correlated and performance measures based on an uncorrelated
stream of departures can be misleading. A study by Livny et al. [7] shows the tremendous

effect of correlated arrivals on the waiting time of the customers.

Despite its importance, the evaluation of the coefficients of correlation of interdepar-
ture times of GI/GI/1 systems is not addressed in a general manner in the literature.
Nevertheless, there are several solutions of diverse complexity for a limited number of

interarrival time and service time distributions.

In this paper, we provide a method to compute the coefficients of correlation of two consec-
utive interdeparture times of a discrete-time GI/GI/1 system with arbitrary interarrival
time and service time distributions. The comprehensiveness of the approach is supported

by the fact that the complete derivation takes place in time domain.

The approach can be used to approximate the coefficients of correlation of continuous-time
systems with a high degree of accuracy. In addition, we provide the one-step transition
probability matrix of the interdeparture time process that may serve as a model for the

arrivals of the consecutive system.

The paper is organized as follows. In Section 2, the notation and the concepts of discrete-
time analysis in time domain are presented. This section contains the methodology to
compute the distributions of waiting times and interdeparture times of a discrete-time
GI/GI/1 system. In Section 3, the computation of the coefficient of correlation of the
interdeparture times is derived. The algorithm to estimate the one-step transition prob-
ability matrix of the interdeparture time process is provided in Section 4. Information
about the approximation of continuous-time systems by the presented approach and the

accuracy of that method can be obtained from Section 5.



2 Discrete-time Analysis Basics

The subject of our study is the discrete-time GI/GI/1 queuing system with infinite wait-
ing room [1]. The time interval between the consecutive arrivals of two customers is
described in terms of a discrete probability mass function (PMF) a,(k): a,(k) is the
probability of having an interval of an integer number of k£ time units between the arrival
of customer number n and customer number n + 1. The service time of customer n is
given in terms of a discrete probability mass function b, (k). The interarrival times and the
service times are i.i.d. random variables. There is one single server and an infinite wait-
ing room. The customers are served in the order of their arrival (first-come-first-served,

FCFS).

The sum of the service times of the customers waiting for service and the remaining service
time of the customer currently being served is termed the unfinished work. The service
time distribution is discrete, and so is the distribution of the unfinished work. We denote
the PMF of the unfinished work by u(k). At the instant of arrival of customer n the
unfinished work is increased by the service time of customer n. If the server is busy the

unfinished work is decreased by one (discrete) work unit per (discrete) time unit.
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Figure 1: Unfinished work process of the GI/GI/1 system.

In the following the random variables of the interarrival time, service time etc. are de-
noted by uppercase letters corresponding to the lowercase letters of the PMFE’s, e.g. B,
denotes the service time random variable of customer n. Indicating ‘just prior to the

arrival instant’ by adding a superscript ‘—’ and ‘just after the arrival instant’ by adding



a superscript ‘+’ to the random variables and PMF’s respectively, we obtain the following

relations for the development of the unfinished work U:

Uf = U, +B,, (1)

n

Uy = max{U, —A4,,0}. (2)

The previous equation results from the fact that the unfinished work is decreased by one
work unit per time unit, i.e. during A, time units U, is diminished by A, work units.

Combining the previous two equations the following recursive equation is obtained:
U, = max{U, + B, — 4,,0}. (3)
Turning from random variables to the corresponding PMF’s this equation becomes:
U1 (B) = molu, (k) ® b (k) ® an(—F)]. (4)

Here, the linear operator m[-] “sweep[s] the probability in the negative half-line up to the

origin” ([6], Ch. 2.6):

(

0 for £ <0,
molz(k)] = % Z 10 for £ =0, (5)
: z(k) for £ > 0.

\

The operator ® denotes the discrete convolution. Defining the system function c, (k) by

the cross-correlation of a,(k) and b, (k), i.e.

cn(k) = bu(k) ® a,(—k), (6)
we obtain
Ui (k) = mo [uy (k) ® co(K)] - (7)

Observing the process of the unfinished work at arrival instants only, the unfinished work

just prior to the arrival instant of a customer is equal to this customer’s waiting time [5].



Denoting the (discrete) PMF of the waiting time distribution of customer number n by

wy, (k) we obtain the final result:
Waa(K) = o [wn(k) @ calk)]. 8)

The recursive formula just obtained can be viewed as the program to compute the waiting

time distribution of the GI/GI/1 queuing system iteratively.

The recursive scheme describes the non-stationary behavior of the system even with in-
terarrival time and service time PMF’s changing on a customer’s basis. The equilibrium
distribution is obtained by iterating until convergence is achieved, to within an appropri-

ate criterion.

In the following, we will outline the the computation of the PMFE’s of the idle period i(k)
and the interdeparture time d(k) [8]. Since the service time and the amount of unfinished
work are principally interchangeable the length of an idle period is exactly the amount of

virtual unfinished work u”(k) with negative values, where
u’(k) = w(k)®a(—k). (9)
We obtain the PMF of the idle period i(k) by
i(k) = Pr{I=k} = Pr{U'=-k} = K-u(-k). (10)
where the normalization constant K is given by
K= iu”(—j). (11)
j=1

Note, that I is defined to be non-zero.

The probability p;qe to leave an empty system is
EA—-FEB

Pidle = ol (12)
Hence, the interdeparture time PMF d(k) is obtained by
d(k) = piae(i(k) ® b(k)) + (1 — piaie) b(k). (13)

The above algorithms can also be used to approximate the continuous-time GI/GI/1
queuing system. To do this the continuous-time distribution functions are approximated

by suitably chosen discrete ones.



3 Computation of the Coefficient of Correlation

This section is devoted to the computation of the lag-1 coefficient of correlation of the
interdeparture times of the discrete-time system introduced in the above section. The
coefficient of correlation Corr[D,, D, 1] is defined by

E[DnDnJrl] - E[D]2
VAR[D]

Corr[D,, Dy, 1] (14)

where the mean E[D] and the variance VAR[D] of the interdeparture times can be obtained
directly from PMF d(k) (see Equation (13)). D,, denotes the interdeparture time between

customer n and customer n + 1

In the sequel, we derive the computation of E[D,D,1]. Given A,, B,, B,i1, and U},

the system evolves according to the following four cases.

Case 1: Busy period at arrival of customer n (U? > 0) and busy period at arrival of
customer n+ 1 (A4, < B, +U?). This results in D, = B,, and D, 1 = B4
(cf. Figure 2).
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Figure 2: System evolution: case 1.

Case 2: Busy period at arrival of customer n (U? > 0) and idle period at arrival
of customer n + 1 (A, > B, + U?). This results in D, = B, and D, =
Bn1 + A, — UY — B, (cf. Figure 3).
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Figure 3: System evolution: case 2.

Case 3: Idle period at arrival of customer n (U} < 0) and busy period at arrival of
customer n+1 (A4, < B,,). This results in D,, = B,, —U? and D, 1 = By,
(cf. Figure 4).
g/ A n n+1
arrivals ¢ ¢
H/_/
Ay,
\ B,
|
departures ¢ ¢ t
Dn Dn+1
Figure 4: System evolution: case 3.
Case 4:

By + A, — B, (cf. Figure 5).

Idle period at arrival of customer n (U’ < 0) and idle period at arrival of
customer n + 1 (A4, > B,)

. This results in D,, = B, — U? and D, =

The value of E[D,,D,, ;1] is now obtained by summing over the enumeration of all possible
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Figure 5: System evolution: case 4.

realizations of A,,, B,,, B,11, and U, weighted by respective probabilities and the resulting
values of D, and D, ;.

E[DnDyyi] = Z Z b(iBn)b(iBn+1)

an:O 1’Bn+1:

0o 1B, tiU
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4 Computation of the Transition Matrix

To facilitate the approximation of the interdeparture process of the discrete-time GI/GI/1
system by its distribution and the lag-1 correlation, the one-step transition matrix D is
often of greater value than d(k) and Corr[D,, D, 1] separately. The matrix D is defined
by

D,. = Pr{Ds1=c|D,=r}. (16)

In principle, we have to deal with the four cases the computation of the coefficient of
correlation Corr[D,, D, 1] was based upon. The perspective, however, has to be changed.
In Section 3, we considered the system at the instant of a departure and determined the
lengths of the next two departure periods. To compute the transition probabilities D,..,
we have to consider all cases where an interdeparture period of length r has finished and
a period of length ¢ has to be realized next, i.e. we consider the system at the departure

instant in between of two interdeparture periods.

To improve the readability, we introduce the function ¢{a} that indicates whether condi-
tion a is true or false. In addition, the implementation of the algorithm becomes straight-

forward. The indicator function simply has to be replaced by an if-clause.

ola} — 1 ?f a is true, (17)

0 if a is false.

The entries of matrix D are given by

{ Z (1 — piate) b(r) u”(iv) b {l(iB =) A (ia —iy < T)lv

ir=0 d(r) caggl
v[(iB+iA—iU:c+r)/\(iA—iU>7“)]}+ (18)
ca;;Q
'\ Digte D(r + i) u¥(i , . .
X ez ontwsn)y
o case 3

\/[(iB—FiA—iU:C—'—T‘) ZA—ZU>T]}}
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if d(r)>0 , re=0,1,2,....

To force D to be stochastic, the following workaround is applied if d(r) = 0.

1 if c=r+1,
D,. = (19)
0 else.

By means of this construction, state r becomes transient and, as expected, d(k) is the left
eigenvector of D for the eigenvalue 1.

The matrix D provides an alternative way to estimate the coefficient of correlation by

Corr[Dy Dyi] = Y rd(r)Y cDy.. (20)
r=1 c=1

5 Numerical Results

To apply the above results, infinite distributions have to be approximated by finite ones.
We suggest to cut off and normalize the PMF’s such that the probability mass that was
cut off from the original PMF is less than a given constant ¢, say 1071, Given the PMF

z(k) and the accuracy constant €, we obtain the following approximate PMF Z(k).

1=0

Fmax = ml?x{Zx(i)<1—e} , (21)

——x(k if &k < lkmax
sy = ) TEew ) ks |

0 else.

If a continuous PDF X (t) is given, it has to be approximated by a discrete PMF z(k)

with respect to a given degree of accuracy At first. To this end, we suggest the following

procedure.
H0) = x(3), (23)
W) = X((k+%)At) CX((k - %)At), E=0,1,2,... . (24)

In general, the PMF z(k) will have to be cut as outlined above.



Table 1: Accuracy of the discrete-time approximation of Corr[D,, D, 1].

At
closed formula
0.2 0.1 0.02
M/M/1 0 -0.00061875 | -0.00015576
M/D/1 0.07102044 0.07103136 | 0.07102333 | 0.07102073
D/M/1 -0.26536229 | -0.27150670 | -0.26695017 | -0.26542648

Note, that in some cases it is useful to cut not only the PMF’s a(k) and b(k) but also the
PMEF’s u”(k) and d(k) to save computation time.

In the sequel, we compare the coefficients of correlation obtained from the presented
discrete-time approach to those obtained from closed formulae. There is a large body of
literature on the interdeparture processes of GI/GI/1 queueing systems. Here, we restrict
our attention to the three prominent systems M /M /1 (2], M/D/1 [4], and D/M/1 [3] and

the lag-1 coefficients of correlation of their interdeparture times.

For the M/M/1 system, the output process is Poissonian with rate 1/E[A] if the system
load p = E[B]/E[A] < 1. As a consequence Corr|[D,, D, 1]y = 0 in these cases.

For the M/D/1 system with p < 1, the interdeparture time coefficient of correlation is

e’+p—1

Corr|D,, D, = 25
orr| +1]Mp 1+p (25)
For the D/M/1 system with p < 1, we obtain the output process correlation by
1 _1 . s-1
Corr[Dy, Dyiilpy = 25¢ " (0—1) with 6 = e7r . (26)

To assess the accuracy of Equation (16), we compare the closed formulae results to
discrete-time approximations with various discretization constants At. The cut-off crite-

rion € is set to 1072 and the system load p equals 0.5.

Table 1 shows that even for coarse discretizations of the continuous PDF the resulting

coefficients of correlations are very close to those obtained from closed formulae.

We checked the accuracy for each system for a variety of system loads and obtained the

same quality of results.
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If the value Corr[D,, D, 1] is estimated from an n x n matrix D by Equation (20) where
the same PMF’s are used as for Equation (16) and k.. (d) = n the same degree of
accuracy is obtained by Equation (20) and Equation (16).

6 Conclusion

In this paper, we presented a method to compute the coefficient of correlation for two
consecutive interdeparture time periods of a discrete-time GI1/GI/1 system. In addition,
we provided an algorithm to create the one-step transition probability matrix of the
interdeparture time process of this system. The presented methodology can be applied
to approximate the correlations of continuous-time GI/GI/1 systems with a high degree

of accuracy.

A future study will show whether the quality of the performance measures of a tandem
queueing system with arbitrary interarrival time and service time distributions can be
considerably improved by making use of the correlation measures provided by our meth-
ods. In particular, we are interested in a comparison of the waiting times at the second
queue if uncorrelated departures from the first queue are assumed and, on the other hand,

if the interdeparture process is modeled by means of the transition probability matrix D.
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