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Abstract

In this article we demonstrate the identication of a nonlinear� dynamic process

with recurrent neural structures� The employed network�structure is a Recurrent

Multilayer Perceptron �RMLP�� which combines feedforward� and recurrent archi�

tectures� We will show that RMLPs are capable of learning the temporal behavior

and characteristic of an arbitrary� nonlinear� dynamic process� Apart from con�

ventional gradient�based algorithms� a sophisticated statistical method has been

considered for this challenging task � Global Extended Kalman Filtering �GEKF��

This powerful algorithm yields neural structures with a signicantly better perfor�

mance� compared to conventional gradient�based approaches� The new element in

this work is the application of the GEKF�Algorithm for recurrent neural structures�

which are employed in the identication of nonlinear� dynamic processes� In order to

supervise the quality of network�training� appropriate performance�indexes for neu�

ral identication are introduced� The distribution of the Moving Average Squared

Error �MASE� is employed as an objective optimality�criterion� in order to survey

the actual performance of recurrent neural structures during training�

� Introduction

Since the early ����s� a growing interest in the �eld of neural processing and adaptive

algorithms could be observed� concerning their employment for the identi�cation and

control of technical processes� Mathematical systems theory� which has evolved into a

scienti�c discipline with wide applicability over the past �ve decades� deals with the anal�

ysis and synthesis of mathematical models of dynamic processes� This theory provides
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methods for the treatment of dynamic systems� using well�established techniques based

on linear algebra� complex variable theory and the theory of ordinary linear di�erential

equations� The drawback of conventional approaches is their potential complexity� in

particular if a high level of re�nement and accuracy is required� Hence� a satisfying

solution� which describes a given process� does not necessarily need to exist	 even for

apparently simple systems�

In order to provide a feasible� supplementary approach toward reducing the complexity

of analytical model
 and controller�design� a new approach has been considered for this

task � adaptive� recurrent structures with a sophisticated training�algorithm� the Global

Extended Kalman Filter �GEKF�

An outline for a typical life�time�cycle of a controller�design is depicted in Fig� �� cf� ����

Designing a feedback�controller requires an initial process�model� If the model proves

to be insu�cient it has to be successively re�ned� However� if conventional methods are

used� a re�nement�step results in an increased complexity of the mathematical model�

as mentioned above�

initial
process model

controller
design

performance
controller

ok ?

no

yes

refinement
step

Figure �� Controller design�

In order to overcome the complexity of conventional methods an alternative approach

has to be chosen� which requires less background�knowledge about the process being

modeled� Adaptive structures� such as recurrent neural networks� are capable of pro�

viding an implicit representation of the dynamics of a process rather than an exact

mathematical solution� The major drawback of a neural approach is the problem of

stability� which cannot be guaranteed from the outset� However� since an exact solution

might be very expensive� sometimes even unfeasible� adaptive systems are expected to

be a good compromise to obtain an initial process�model�
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Identi�cation of the temporal behavior of a system is equivalent with the characterization

and modeling of relevant process�variables and their interaction� Ideally� identi�cation

produces an exact image of the real process�behavior� For real�world applications� this

assumption turns out to be illusory� due to the relation between the desired degree of

accuracy and the complexity of the process�model�

Mathematical methods for the treatment of nonlinear systems are introduced by ���

and ���� However� the presented methods are always tied to a speci�c class of systems

and su�er from the lack of general applicability� The desire for a general framework�

suitable for the identi�cation of arbitrary nonlinear� dynamic processes� motivates a new

approach � Recurrent Multilayer Perceptrons with Extended Kalman Filter Training�

This class of recurrent neural networks combines the topologies of conventional Mul�

tilayer Perceptrons with those of general recurrent network�structures� eg� Hop�eld

Networks�

output-layer

input-layer

hidden-layers

external recurrence

Figure �� Recurrent Multilayer Perceptron �RMLP�

As depicted in Fig� �� a RMLP consists of successive layers with no recurrent weight�

connections between them� External recurrences between nodes in the output�layer

and nodes in the input�layer of a RMLP are also admissible� Since there are distinct

back
 and forth�connections between two particular neurons� a particular layer could be

regarded as an �extended Hop�eld�Network��

��� Representation and characterization of processes

Characterizing a process means determining all static and dynamic factors e�ecting its

behavior� The term dynamic refers to the temporal behavior of the process itself� as well
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as to its parameters� However� dynamic systems can be divided into two major groups�

discrete�time systems and continuous�time systems�

u (n) y (n)
process

x (n)

Figure �� Characterization of a process�

In Fig� �� a discrete�time system is depicted� The vector �x�n represents the internal

state of the process� Depending on the dimensions of the vectors �u�� and �y��� the

process is denoted a SISO�System �Single�Input�Single�Output� respectively a SIMO
�

MISO
 or a MIMO�System�

Time�invariant� linear Systems

A time�invariant� linear system can be described in discrete�time ��� by the linear equa�

tions�

�x�n� � � A�x�n �B�u�n

�y�n � C�x�n �D�u�n�
��

in continuous�time� by the linear di�erential equations�

��x�t � A�x�t �B�u�t

�y�t � C�x�t �D�u�t�
��

where A� B� C� D are system�matrices of appropriate dimensions�

Time�invariant� nonlinear systems

Any time�invariant system which cannot be expressed using �� or �� is de�ned to be

nonlinear� Nonlinear systems are described in discrete�time by�

�x�n� � � f��x�n� �u�n

�y�n � h��x�n� �u�n�
��

�
The variable t is used in order to indicate that continuous time is assumed�
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in continuous�time by�

��x�t � f��x�t� �u�t

�y�t � h��x�t� �u�t�
��

where f��� h�� are nonlinear� vector�valued functions�

Time�variant� nonlinear systems

The systems described so far are time�invariant� i�e� their behavior does not change�

However� in reality some e�ects� e�g� ageing processes� might cause the system�behavior

to change with time� Hence� time must also be taken into account as a factor� e�ecting

the system�behavior�

In discrete�time Eqn� � becomes�

�x�n� � � f��x�n� �u�n� n

�y�n � h��x�n� �u�n� n� ��

In continuous�time Eqn� � becomes�

��x�t � f��x�t� �u�t� t

�y�t � h��x�t� �u�t� t� ��

��� Identi�cation with neural networks

Modi�ed feedforward�structures such as tapped delay lines �TDLs� have been previously

applied for modeling nonlinear� dynamic systems by ���� This technique allows only a

limited number of information to be considered for obtaining a suitable process�model�

Assuming the utilization of recurrent neural structures� an arrangement used for iden�

ti�cation is depicted in Fig� �� The resulting recurrent network implicitly represents

the relevant process�parameters� which are obtained by considering only the input
 and

output�signal of a real system�
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Figure �� Identi�cation with a neural network�

Since no thorough investigation of the intrinsics is necessary� the required amount of

expert�knowledge is reduced considerably� compared to conventional approaches� After

successful identi�cation� the neural network is capable of imitating the real system� ie� to

behave like the original process� being exposed to the same input�sequence u��� Obtain�

ing this identi�cation�network is essential for further implementation of neural feedback�

controllers�

� Training recurrent neural structures

In this section� two training�algorithms for recurrent neural networks are presented �

Real�Time�Recurrent�Learning �RTRL and the Global�Extended�Kalman�Filter Algo�

rithm �GEKF�

��� Real Time Recurrent Learning

RTRL is� as well as standard Backpropagation� a pure gradient�based algorithm for

general structured neural networks� which was proposed by ����

The output of a particular neuron is governed by the following equation�

oj�n� � � �

�
kX
i��

�wi�joi�n � uj�n� �

�
��
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Similar to standard Backpropagation this yields for the adaption of a particular weight

wi�j�

�wi�j � ��
�E�n

�wi�j
� �

MX
k��

Ek�n
�ok�n

�wi�j
� ��

where M is the number of output�neurons and � denotes the learning rate�

Depending on the structure of the network being used� two possibilities of determining

the partial derivatives �ok�n�
�wi�j

are presented� which are refered to as static and dynamic

derivatives�

Static derivatives

The partial derivatives �ok�n�
�wi�j

presented in Eqn� �� denoting static derivatives� are ob�

tained by di�erentiating Eqn� � with respect to a particular weight wi�j�

�ok�n

�wi�j
�

�

�wi�j
���netk�n � ���netk�n

�
�i�koi�n� � �

X
m

wm�k

��om�n� �

�wi�j

�
��

where �i�k is the Kronecker symbol�

�i�j ��

�
� � i � j

� � i �� j�
���

When employing static derivatives� no particular network structure is required� ie� static

derivatives can be applied to networks with arbitrarily connected neurons� A less general

method� which allows spatial
 and temporal dependencies between particular neurons

to be taken into account� are dynamic derivatives�

Dynamic derivatives

Using dynamic derivatives ���� requires a RMLP� depicted in Fig� �� According to this

de�nition� each layer is treated as a separate subnetwork� The output yi�j�n of a neuron
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j in layer i is a function of the output�vector �yi���n of the preceding layer in time�step

n� the output�vector �yi�n � � of the actual layer in the preceding time�step and the

weight�vector �wi of the i�th subnet�

The output of neuron j in subnet i is governed by�

yi�j�n � F ��yi���n� �yi�n� �� �wi � ���

where

F ��yi���n� �yi�n� �� �wi � �

��Ni��X
p��

w
f�i
p�jyi���p�n �

NiX
p��

w
r�i
p�jyi�p�n� �

�A ���

and

�yi���n is the output vector of subnet i� � at

time�step n�

�yi�n� � the output vector of subnet i at

time�step n� ��

�wi the weight vector of subnet i�

yi�j the activation of neuron j in layer i�

w
r�i
k�j the recurrent weight from neuron k to

neuron j in layer i and

w
f�i
k�j the feedforward weight from neuron k

in layer i� � to neuron j in layer i�

Similar to Eqn� �� the rule for adapting a particular weight wx�g
k�j is�

�wx�g
k�j � ��

�E�n

�w
x�g
k�j

� �

NlX
p��

Ep�n
�yl�p�n

�w
x�g
k�j

� ���

where Nl is the number of neurons in layer l �the output layer of the RMLP and

x �

�
r� for recurrent weights

f � for feedforward weights�

Compared to static derivatives� the overlined notation in Eqn� �� points out the dynamic

character of this type of derivative� which is obtained by di�erentiating Eqn� �� with
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respect to a particular weight wx�g
k�j and application of the general chainrule� The symbol

�g�i in the last term of Eqn� �� denotes the Kronecker symbol�

�yi�j�n

�w
x�g
k�j

�
� �F ��yi���n� �yi�n� �� �wi

�w
x�g
k�j

�

Ni��X
p��

�yi�j�n

�yi���p�n

�yi���p�n

�w
x�g
k�j

�

NiX
p��

�yi�j�n

�yi�p�n� �

�yi�p�n� �

�w
x�g
k�j

�

�yi�j�n

�w
x�g
k�j

�g�i� ���

The partial derivatives
�yi�j�n�

�yi���p�n�
�

�yi�j�n�
�yi�p�n���

and �g�i
�yi�j�n�

�w
x�g
k�j

in Eqn� �� are found to be�

�yi�j�n

�yi���p�n
� ���neti�j�nw

f�i
p�j � ���

�yi�j�n

�yi�p�n� �
� ���neti�j�nw

r�i
p�j and ���

�g�i
�yi�j�n

�w
x�g
k�j

�

�
� � if g �� i

���neti�j�nyi�k�n � if g � i�
���

��� Global Extended Kalman Filter

For the parameters of linear systems with white input
 and observation�noise the Kalman

Filter� proposed by ���� is known to be an optimum estimator� The Global Extended

Kalman Filter� which employs a linearization around the current point of estimate� can

be used to determine the parameters of nonlinear systems� in our case the weights of

recurrent neural networks�
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Conventional applications of the Global Extended Kalman Filter� eg� in radar�tracking

devices� are used for the direct estimation of actual system parameters� Regarding a

recurrent neural network as a dynamic system and its weights as the parameters to be

estimated� ��� showed the applicability of the GEKF as a training�algorithm for such

structures� Compared to conventional� gradient�based training�algorithms� the weights

are successively estimated� based on the input�vector �u�n in time�step n and the de�

viation of the network from the desired output� Estimating the weight�vector �bw�n of
the neural network is equivalent with the problem of determining the minimum of the

expectation value of the mean squared error between the actual weight�vector �w�n and

its estimation �bw�n�

E

	

�w�n� �bw�n�T � S �



�w�n� �bw�n�� ���

The GEKF is proved� for linear systems� to �nd the minimum of Eqn� �� by calculating
�bw�n from previous estimates� The term global refers to the introduction of a covariance�

matrix P �n� which describes the dependencies of all weights with each other� based on

previous estimations and inputs� Due to the remarkable length of the derivation� only

the Global�Extended�Kalman�Filter equations are given below� A detailed mathematical

background is presented extensively in ��� and ����

The Global�Extended�Kalman�Filter Equations are�

P �n� � � P �n�K�n �HT �n � P �n �Q�n

K�n � P �n �H�n �
h
���n � S�n�� �HT �n � P �n �H�n

i
��

�bw�n� � � �bw�n �K�n �


�d�n� h��bw�n� �u�n� �

where

��



�d�r �

�BBBBBBBBB�

d��br

d��r

�

�

�

dm�r

�CCCCCCCCCA
is the desired output�vector of the neural

network in time�step r�

h


�bw�r� �u�r� �

�BBBBBBBBBB�

h�



�bw�r� �u�r�

h�



�bw�r� �u�r�

�

�

�

hm



�bw�r� �u�r�

�CCCCCCCCCCA

describes the output�vector of the neu�

ral network� depending on the estimation

of the weight�vector �bw�r and the input�

vector �u�r in time�step r� h�� represents

the observation�function of the neural net�

work�

�bw�r �

�BBBBBBBBB�

bw��rbw��r

�

�

�bwn�r

�CCCCCCCCCA
is the estimation of the weight�vector in

time�step r� comprising all weights of the

neural network�

H�r �

�BBBBBBB�

�y��r�
�w��r�

�y��r�
�w��r�

���
�ym�r�
�w��r�

� � �

� � �

� � �
�y��r�
�wn�r�

�y��r�
�wn�r�

���
�ym�r�
�wn�r�

�CCCCCCCA
depicts the Jacobi matrix� linearizing the

nonlinear system around the point of esti�

mate in time�step r�

K�r �

�BBBBBB�
k����r k����r ��� k��m�r

� � �

� � �

� � �

kn���r kn���r ��� kn�m�r

�CCCCCCA
is the Kalman�gain matrix� used for up�

dating the covariance�matrix P �r�

P �r �

�BBBBBB�
p����r p����r ��� p��n�r

� � �

� � �

� � �

pn���r pn���r ��� pn�n�r

�CCCCCCA
represents the covariance�matrix� The el�

ements of P �r describe the dependencies

of all weights with each other� based on

previous estimation
 and input�data�
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Q�r �

�BBBB�
q����r � ��� �

� q����r ��� �

� � � �

� ��� � pn�n�r

�CCCCA
is the noise�matrix Q�r� introducing arti�

�cial noise to prevent the estimation pro�

cess from getting stuck in local minima�

qi�i �

����� ����

�
� i � �� ���� n

S�r �

�BBBB�
s����r s����r ��� s��m�r

s����r s����r ��� s��m�r

� � �

s��m�r s��m�r ��� sm�m�r

�CCCCA
is a user�de�ned� positive de�nite� sym�

metric matrix� S�r de�nes� in conjunc�

tion with ���� the learning�rate�

� Performance indexes for neural identi�cation

��� Error�Functions

In order to supervise network�training� modi�cations of the standard error�functions

are used as objective optimality�criterions� Since real�time algorithms are employed�

appropriate error�functions are required� The error�functions� which are used throughout

this work are theMaximum Squared Error �MSE and theMoving Average Squared Error

�MASE� These functions are de�ned as follows�

� The Average Squared Error

EASE�n �
�

�

MX
k��

�tk�n� ok�n
� ���

is the sum of the squared errors of all output neurons in time�step n�

� The Maximum Squared Error�

EMSE�n � max
k

�tk�n� ok�n
�� ���

is the maximum of the squared errors of all output neurons in time�step n with

k � �� ����M �

��



� The Moving Average Squared Error

EMASE�n �

nX
k�n�N��

EASE�k �
�

�

nX
k�n�N��

MX
l��

�tl�k� ol�k
� ���

is the sum over all average squared errors EASE�n within the considered time�

horizon� where

M � IN is the number of output�neurons and

N � IN the size of the time�horizon�

��� Residue

In control technology� in order to gain information about the performance of a controller�

a number of caracteristic quantities are determined� The remaining� integral system�

deviation� or residue ����� is a quantity� which can be transfered to the problem of

system�identi�cation with recurrent neural networks� It is de�ned in the following way�

The residue Eres�n of a control system with the desired output t�n and the actual

output o�n is de�ned as�

Eres�n� � � ��

n���X
k�n�

E�k� with E�k �� o�k� t�k� ���

.

.t ( )

.u ( )

.
resE    ( )

τ

o ( )

Iterationsn0

Figure �� Residue

Figure � shows the response t�n and the approximation o�n of a system� being exposed

to an input�signal of random steps� The residue Eres�� is determined over the interval

�n�� n� � � �� where n� marks the beginning of an input�step� The constant � depends

on the settling�time of the neural network and speci�es the number of time�steps to be

considered for the residue�
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��� Statistics

In order to obtain objective means for comparing the experimental results in Section ��

basic methods of statistics are chosen� Considering the residue de�ned above� its mean

value 	 can be calculated from the distribution of its relative frequency�

Let X be a discrete random variable and fx�� x�� ���� xm��g �m � IN an equidistant par�

tition of the interval �xmin� xmax�� The distribution of the relative frequency is described

by� P �X � x� with x �� xk if xk � Eres�n 
 xk���

0

o(n) < t(n) o(n) > t(n)

P(X=x)

Figure �� Distibution�

Figure ��a depicts the distribution of the relative frequency of the residue� which has

been de�ned in Eqn� ���

Let X be a discrete random variable and x�� x�� ��� the realizations of X� The expected

value 	 of the random variable X is de�ned as�

E �X� �
X
i

xiP �X � xi� ���

��



� Identi�cation of a nonlinear� dynamic process

	�� Problem�Statement

The nonlinear� dynamic process ����� which is described by the second order state�space

equations�

x��n� � � ����� x��n� ����� x��n � ����� u�n�

x��n� � � x��n�
� � ���� �x��n���

� ����� u�n�

y�n � � tanh


x��n�
	

�
�

���

is considered for identi�cation with a RMLP� In Eqn� ��� the variables x��n and x��n

are the internal states in time�step n� y�n the observation or output and u�n the input

to the process� The goal is to adjust the weights of a RMLP� according to Fig� �� to

obtain a neural network with the same temporal behavior�

-1

-0.5

0

0.5

1

50 100 150 200 250 300 350 400

u(n)
y(n)y(n)

u(n)

Figure �� Process�behavior�

Figure � depicts the behavior of the exemplary process described by Equations ��� The

dynamics of this process are oscillatory with unity static gain around zero� The de�

nominator in the second state�equation� along with the tanh�� in the output�equation�

increases the damping and decreases the static gain in large amplitudes� cf� ����� In this

example� the input�sequence to the deterministic process consists of steps of random

amplitude and a random duration of � to �� time�steps� During training the neural net�

work is provided with patterns� depicted in Fig� �� including the input�signal u�n and

the desired output y�n� In time�step n� the identi�cation�error ei�n is determined from
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the response �y�n of the network and the desired output y�n� This error is minimized

with a training�algorithm� by successively adjusting the weights of the recurrent neural

network�

	�� Net�Structure and Parameters

The Recurrent Multilayer Perceptron� depicted in Fig� �� is employed for identi�cation

of the nonlinear� dynamic process described in Eqn� ���

y(n)^

L1 2LL0 L3

u(n)

1 1

2 2

6 6

1

1

2

Figure �� Identi�cation�network

� Network�Structure

The employed network consists of one input layer L� with a pseudo input�node�

two hidden layers L�� L� and an output�layer L
� The output of the neural network

is fed back� through an external recurrent weight�connection� into a pseudo input�

node in layer L�� According to Fig� �� the neural network is provided only with

the input�signal u�n and the desired output y�n� which is used with the network�

response �y�n for calculating the approximation error ei�n�

� Learning Rate

The learning rate is set to � � �����

� Initialization of Weights

The values of the weight�connections are uniformly distributed over the interval

������ �����

��



� Training�Sequence

During training� the neural network is exposed to the sequence� consisting of ����

training�patterns� The input�signal consists of steps of random amplitude from

���� �� and random duration between �� and ��� iterations�

� Training�Algorithm

Identi�cation is performed� using the Global Extended Kalman Filter with dynamic

derivatives�

	�� Results

In Figure �� the output �y�n of the neural network� during the �rst epoch of training�

is plotted along with the desired output y�n� which illustrates the extremely rapid

accommodation of the neural network�

-1

-0.5

0

0.5

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

u(n)
y(n)
y(n)
y(n)^

Figure �� Behavior during training�

After approximately ���� patterns ���� training�epochs� have been presented to a ran�

domly initialized network� its output �y�n begins follow the desired trajectory y�n�

In Fig� ��� the Moving Average Squared Error and the Maximum Squared Error are

plotted against the number of iterations and training�epochs� After �� epochs of training�

the network reaches a state of over�training and the MASE increases rapidly� The MSE

of a small number of training�patterns remains almost zero� whereas the MSE for the

majority of patterns diverges to large values� which can be observed in Fig����

Figure �� and �� depict the behavior of the neural network during recall� after �����

iterations or �� training�epochs have been performed� In Fig���� the input�signal consists

of steps with random amplitude and duration of � to �� iterations� Although� the network
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Figure ��� Recall after �� training�epochs� Input�signal� steps � to �� iterations�

did not explicitly learn how to respond to this kind of input�signal� its output follows

the desired trajectory�

In turn� the neural network represents an identi�cation of the original nonlinear� dynamic

process� In Fig� ��� steps of random amplitude and duration of �� to ��� iterations� are

utilized as input�signal� In both cases� the input to the network� is not identical with

the training�sequence�

The results� which have been presented in this section� show the principal applicability of

recurrent neural networks for the identi�cation of nonlinear� dynamic processes� In order

to investigate e�ects of di�erent parameters on the quality of identi�cation� parameter�

studies are carried out in the sequel�
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	�	 Parameter Study

Utilization of neural structures requires various network�parameters to be chosen prop�

erly� Since no reliable methods for the determination of reasonable parameters from

scratch is available� the e�ects of particular parameters are investigated in this section�

In order to provide reasonable clues for successfull identi�cation� the distributions of the

residues during an actual recall phase �Section ��� are compared for various parameters�

Training�Algorithms

Based on the parameters in Sec� ���� the learning�algorithms Real Time Recurrent Learn�

ing �RTRL and Global Extended Kalman Filter �GEKF are employed for identi�cation�

RTRL is combined with static
 and the GEKF with dynamic derivatives� yielding two

training�methods to be investigated�

Figure �� depicts the Moving Average Squared Error of both algorithms� The upper

x�Axis displays the number of epochs� the lower x�Axis the number of performed it�

erations� Comparing both algorithms shows clearly better convergence results for the

GEKF network� While the MASE of the network� trained with RTRL� reaches a stable

value� the MASE of the network� trained with the GEKF� is conspicuous for its drop�o�

after approximately ������ iterations� In the sequel� recalls will be performed with both

networks� when training has been stopped around the drop�o� point of the MASE�

In Fig� �� and ��� the distributions of the residue� which are obtained during actual recall�
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Figure ��� Distributions �RTRL� static deriv��

are plotted against the number of training�epochs� As expected from the trajectory of

the MASE for the GEKF in Fig� ��� the drop�o� point� after �� training�epochs� also

appears in Fig� ��� Comparing the distributions of the residue of both algorithms� the

employment of the GEKF�Algorithm shows a clearly better quality of identi�cation�

The GEKF�network produces smaller errors� which are distributed around zero more

frequently� compared to the RTRL�trained network�
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Neurons

In this section� the e�ect of the number of hidden neurons on the quality of identi�cation

is investigated� Based on the network�structure introduced in Sec� ���� the hidden layers

L� and L� consist of ���� ��� or ��� neurons�
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Figure ��� MASE during training�

In Fig� ��� the MASE is plotted against the number of training�epochs for di�erent

sizes of hidden layers� Comparing the MASEs of the ��� and ��� networks� with the

MASE of the ����network� no drop�o� point is observed for the latter� This leads to

the assumption of the existence of a constellation for the hidden layer� yielding stability

during training�

Figure �� shows a poor identi�cation� performed by the according ����network� since

the distributions of the residue are  at and highly variant� However� if a ����network

is employed for identi�cation� a stable distribution is reached after approximately ��
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Figure ��� Distributions ��x��network�

epochs� showing no further point of instability� The best quality of identi�cation is ob�

tained by a ����network after �� training�epochs� although the network reaches a state

of instability after �� epochs� The obtained results lead also to the assumption of an op�

timal structure for hidden layers� yielding stability during network�training� However� an

optimal network�size depends on the accuracy�of�approximation versus computational�

complexity trade�o� and has to be chosen speci�cally for each problem� Furthermore�

correlations with other parameters� eg� the learning�rate �� have to be considered also

in the network�design�
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Layers

Refering to the parameters from Sec� ���� the in uence of the number of hidden layers on

the quality of identi�cation is investigated for one
 and two hidden layers� Identi�cation

is performed with a RMLP� comprising � neurons in its hidden layer�s�
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Figure ��� MASE during training�

In Fig� ��� the MASEs of both networks are depicted� After approximately �� training�

epochs� a drop�o� point can be noticed� similar to the previous section� In Fig� �� and ���

the distributions are presented� depicting the behavior of the considered networks during

actual recalls� The neural network� incorporating only one hidden layer in its structure�

yields a poor overall performance� compared to the two�hidden�layer network�
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Figure ��� Distributions �� hidden layer�

Learning Rate

In this section� the in uence of the learning�rate on the performance of the resulting

identi�cation�network is investigated� based on the parameter�set from Sec� ���� Identi�

�cation is performed with the learning�rate � set to ���� ���� and ������

In Fig� ��� the according MASEs are plotted against the number of training�epochs�

Figure �� clearly depicts the e�ect of the learning�rate � on the convergence of the

employed RMLP� Decreasing the learning�rate � postpones the drop�o� point of the

MASE and yields better identi�cation results� The neural network� with � � ������

shows the best results and no point of instability is reached during training� As

expected from the trajectory of the MASE� a learning�rate of ��� does not yield a network�

successfully identifying the process�behavior� However� the best identi�cation�network

is achieved by employing a lerning�rate � � ������
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Figure ��� Distributions �� � ����

The results of this section show a strong correlation between the learing�rate � and

the stability during training� The drop�o� point of the MASE is postponed or even

completely suppressed� when applying small learning�rates� Refering to Fig� ��� one can

also perceive � to have an essential in uence on the quality of identi�cation�
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� Conclusion

The main objective of this work was the investigation of recurrent neural structures for

identi�cation of nonlinear� dynamic processes� This work was also intended to provide

a general framework for a supplementary approach toward this problem� in order to

overcome the complexity of analytical methods� Apart from conventional gradient


based algorithms for the training of neural networks� a new method has been considered

with remarkable success � Global�Extended�Kalman�Filter training� During this work�

a library has been implemented� which provides numerous functions for the e�cient

simulation and training of arbitrary recurrent neural structures�

In Section �� a nonlinear� dynamic process could be successfully identi�ed �Section �

by employing a Recurrent Multilayer Perceptron and Global�Extended�Kalman�Filter

training� Paramerter�studies have been carried out� to determine the in uence of var�

��



ious parameters on the performance of resulting identi�cation�networks� It turned out

that recurrent neural structures are suitable for identifying nonlinear� dynamic processes�

The obtained results showed that Global�Extended�Kalman�Filter training is a sophis�

ticated algorithm� yielding neural networks with signi�cantly better performance than

conventional gradient�based algorithms�

The conclusion that can be drawn from the results of this work is that recurrent neural

networks are capable to perform identi�cation and control of nonlinear� dynamic pro�

cesses� Furthermore� recurrent neural structures provide a general framework for the

system engineer� which allows a process to be modeled and controlled without detailed

knowledge about its intrinsic structure� However� employing recurrent neural network

without prior feasibility�study� with respect to the process to beidenti�ed� might yield

unsatisfying results�

The application of recurrent neural networks should be understood as a supplement� not

a substitute� of conventional mathematical systems theory� It turned out that recurrent

structures are a promising approach toward the reduction of complexity during system

modeling and controller�design�
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