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Abstract
Due to biased assumptions on the underlying ordinal rating scale in subjective Quality of Experience (QoE) studies, Mean 
Opinion Score (MOS)-based evaluations provide results, which are hard to interpret and can be misleading. This paper pro-
poses to consider the full QoE distribution for evaluating, reporting, and modeling QoE results instead of relying on MOS-
based metrics derived from results based on ordinal rating scales. The QoE distribution can be represented in a concise way 
by using the parameters of a multinomial distribution without losing any information about the underlying QoE ratings, and 
even keeps backward compatibility with previous, biased MOS-based results. Considering QoE results as a realization of a 
multinomial distribution allows to rely on a well-established theoretical background, which enables meaningful evaluations 
also for ordinal rating scales. Moreover, QoE models based on QoE distributions keep detailed information from the results 
of a QoE study of a technical system, and thus, give an unprecedented richness of insights into the end users’ experience 
with the technical system. In this work, existing and novel statistical methods for QoE distributions are summarized and 
exemplary evaluations are outlined. Furthermore, using the novel concept of quality steps, simulative and analytical QoE 
models based on QoE distributions are presented and showcased. The goal is to demonstrate the fundamental advantages of 
considering QoE distributions over MOS-based evaluations if the underlying rating data is ordinal in nature.

Introduction

The concept of Quality of Experience (QoE) constitutes a 
major research field, which aims to understand and improve 
the subjective perception of the quality of a technical sys-
tem as a whole by the end user. It is widely recognized that 
the QoE is influenced by different QoE factors, which are 
characteristics of the user, system, service, application, or 
context [1]. In order to identify these factors and quantify 
their influence on the QoE of a system, extensive subjective 
studies have to be conducted. In these studies, users assess 
their experience with a given stimulus on a rating scale, such 
as the Absolute Category Rating (ACR) scale [2–7], which 
is widely used. The ACR scale allows to quantify the user 
experience as one of five values ranging from 1 (bad) to 5 
(excellent). Then, the numerical values of the ratings are 
typically aggregated by using the arithmetic mean to obtain 
the Mean Opinion Score (MOS) [8], which has attracted a 

very high popularity and is widely used as the de facto QoE 
metric in both industry and academia.

However, the major pitfall of QoE evaluations based on 
the ACR scale is the underlying assumption about the map-
ping of QoE to the rating scale, which can be traced back 
to a long dispute on measurement scales and appropriate 
statistics, e.g., [9–12]. When conducting a subjective user 
study, user ratings are actually collected on a categorical 
scale, hence the name “Absolute Category Rating”, which 
allows to indicate the subjective QoE as one of five catego-
ries, namely, “bad”, “poor”, “fair”, “good”, or “excellent”. 
As the different categories can be sorted according to the 
QoE, i.e., “bad” < “poor” < “fair” < “good” < “excellent”, 
this rating scale also represents an ordinal scale. Although 
the numerical values associated to the categories might sug-
gest so, however, the rating scale is not an interval scale as 
the elements of the scale cannot be included into arithmetic 
operations. The reason is that, while some differences might 
look numerically equidistant, the corresponding differences 
between categories might not be actually equal [13–15]. In 
particular for QoE ratings, it is unclear and highly question-
able if, e.g., the difference in user experience between “bad” 
(1) and “poor” (2) is the same as between “fair” (3) and 
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“good” (4). Moreover, the differences between the rating 
categories might be different for each participant of a QoE 
study [16]. See Fig. 1 for a visualization of this pitfall, show-
ing the differences between the categories as colored boxes.

Note that this pitfall applies not only to the 5-point ACR 
scale, but to all rating scales with discrete options. One alter-
native could be to use continuous rating scales in QoE stud-
ies, where users rate a continuous score, typically within a 
given range, e.g., [17]. Also most standards typically allow 
both discrete and continuous rating scales, e.g., [3–7]. These 
continuous scales should not be considered ordinal scales, 
thus, the described pitfall might not apply. Nevertheless, 
ordinal rating scales are indeed frequently used in QoE stud-
ies. Apart from the 5-point ACR scale, this includes other 
discrete rating scales with a different number of options, 
ranging from binary acceptance scales, with as low as two 
options [18], to scales with a high number of options, such 
as 9- or 11-point rating scales as defined in [4]. The increase 
in the number of options of an ordinal scale is considered 
to be a compromise towards purely continuous scales, but, 
as it is still an ordinal scale, the pitfall remains. Moreover, 
rating scales might have different labels, such as the Degra-
dation Category Rating (DCR) scale [4], or show a different 
visual appearance, such as horizontally or vertically oriented 
scales, as well as color-coded, numerical, or purely linguis-
tic scales. Still, these scales are conceptually similar to the 
classical 5-point ACR scale, and might not even lead to sig-
nificantly different QoE results [19]. Thus, this paper will 
focus on the widely used 5-point ACR scale as a showcase, 
although the paper generalizes to all discrete rating scales.

The pitfall of ordinal scales continues to severely affect 
the evaluation and presentation of the results of QoE stud-
ies. Given that a discrete rating scale of a subjective user 
study is not an interval scale, averaging ratings by using 
the arithmetic mean is not an interpretable quantity. As a 
measure of central tendency, ordinal scales only allow to 
compute the mode, i.e., the category with the highest num-
ber of ratings, as well as the median, which is the 50-per-
centile of the ratings, i.e., the category, for which 50% of the 
ratings are less or equal. If the ratings of a subjective study 

are nevertheless aggregated in terms of arithmetic mean to 
a MOS, the implicit assumption is introduced that the dif-
ferences between numerical values represent the actual dif-
ferences in QoE. This would imply that all the differences 
in experience between adjacent QoE rating categories are 
equal, which is a substantial bias and can lead to systematic 
errors, e.g., [20].

When quantifying QoE differences or QoE improve-
ments of different stimuli, often differences of MOS val-
ues are reported, e.g., the MOS value of stimulus B is by x 
larger than the MOS value of stimulus A. However, these 
differences between MOS values face the same issues as 
differences between the rating categories, and are not a 
meaningful metric. Other works continue to quantify QoE 
improvements also in terms of percentages of MOS, e.g., 
stimulus B has a MOS improvement of x% over stimulus 
A. However, such operation would - in contrast to interval 
scales - be only interpretable on a ratio scale, which requires 
an absolute zero, and thereby, allows to compute multiplica-
tions and ratios of quantities. Still, an absolute zero for expe-
rience is hard to find, and the definition of ratios between 
categories has strange effects, such that, for example, a MOS 
increase of 100% is an increase of one category when hav-
ing “bad” (1) as baseline, but an increase of two categories 
when considering “poor” (2) as baseline. Consequently, this 
would allow for highly questionable interpretations that, for 
example, a “good” (4) experience is two times better than 
“poor” (2) experience, or four times better than “bad” (1) 
experience. Therefore, the expression of QoE differences 
in terms of MOS ratios is also not a meaningful quantity.

This paper proposes to consider the full QoE distribution 
over the ordinal rating categories for evaluating, reporting, 
and modeling QoE results instead of relying on MOS-based 
metrics. The QoE distribution can be represented in a con-
cise way by using the parameters of a multinomial distribu-
tion without losing any information about the underlying 
QoE ratings, and even keeps backward compatibility with 
previous, biased MOS-based results. Considering QoE 
results as a realization of a multinomial distribution takes 
a more holistic perspective of the subjective user study and 
allows to rely on a well-established theoretical background, 
which has various options for more meaningful evaluations. 
Existing and novel statistical methods that can be applied 
to QoE distributions in the context of a QoE study are 
summarized in this work, and their advantages over MOS-
based evaluations are outlined in this work with the help of 
examples.

Moreover, using the novel concept of quality steps, this 
paper proposes simulative and analytical QoE models based 
on QoE distributions, which keep detailed information from 
the results of a QoE study of a technical system. They allow 
to inspect the rating behavior for observed values of the 
parameters of a technical system, and allow to predict the 

Fig. 1  The ACR scale is just an ordinal scale, not an interval scale. 
Differences between rating categories might not be equidistant. More-
over, differences between the categories might be different for each 
participant
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experience at unobserved values. For each parameter value, 
the full QoE distribution can be extracted and evaluated with 
the methods presented in this paper, which gives an unprec-
edented richness of insights into the end users’ experience 
with the technical system.

Note that this paper is an extension of [21]. Compared to 
the earlier work, this paper presents background informa-
tion about the dispute on proper statistical analysis of ordi-
nal data, which has been ongoing in many related research 
fields. Moreover, it adds more statistical methods for QoE 
distributions to provide a comprehensive summary, and it is 
the first to tackle QoE models based on multinomial QoE 
distributions.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related works on the dispute on scales and 
statistics, as well as on QoE and MOS fundamentals. Sec-
tion 3 introduces the theoretical background on multinomial 
distributions, from which QoE distributions form a small 
subset. Statistical methods for QoE evaluations based on 
QoE distributions are described in Sect. 4, showing their 
advantages over MOS-based evaluations. Section 5 dis-
cusses the design and applications of simulative and ana-
lytical QoE models based on QoE distributions, and finally, 
Sect. 6 concludes this paper.

Related work

This section first presents the dispute on scales and statistics, 
which has been going on for a long time in many research 
disciplines. Afterwards, related works on QoE assessment 
and modeling methodology are outlined.

Dispute on scales and statistics

During an extensive survey of related works, it was found 
that the dispute on scales and statistics is mostly centered 
around two aspects, which are both relevant to the QoE 
community: 

1. Should single rating scales with a set of ordered, ver-
bally labeled alternatives be considered ordinal or inter-
val scales?

2. What kind of statistics can be used to analyze the data 
of such rating scales?

To answer these questions, first, the terminology and his-
torical context of these questions is outlined. Afterwards, 
concrete answers to these questions are given, pointing the 
interested reader to further literature on this dispute.

The dispute on rating scales and the appropriate statistical 
methods to evaluate the resulting data has been around since 
the mid of the last century, especially since the increased 

popularity of Likert scales in psychometric assessment of 
attitudes [22]. This methodology requires individual Lik-
ert items, which are statements that can be rated with one 
of five ordered alternatives, originally, “strongly approve”, 
“approve”, “undecided”, “disapprove”, and “strongly disap-
prove”, which were assigned consecutive numerical values, 
i.e., 1 to 5. The Likert scale is the average or sum of the 
answers to several individual items, based on the assumption 
that attitudes are distributed fairly normally [22].

Nowadays, such questionnaires exist in many variations 
[23], e.g., containing single or multiple Likert-type items or 
Likert response formats with a number of ordered, verbally 
labeled alternatives. In contrast to the original design, these 
items can be unipolar, unsymmetric, or have a different num-
ber of alternatives. As there is a lot of confusion around the 
terminology, in the following, the term “scale” will exclu-
sively refer to the measurement scale of a single experiment, 
such as the measurement of a physical quantity, or the rating 
of a single item or stimulus. In that sense, the 5-point ACR 
scale [2, 4] typically used in QoE studies to rate the experi-
ence with a stimulus, which is an unipolar Likert-type item, 
is also considered a measurement scale.

Stevens [24] distinguishes four levels of measurement 
scales (nominal, ordinal, interval, and ratio) depending on 
the rules for the assignment of numbers to the measured 
objects or events, the mathematical properties of the scales, 
and the statistical operations applicable to data measured 
on each scale. He provided a set of permissible statistics, 
which could be applied to each data depending on the level 
of measurement scale. For ordinal scales, for example, 
which require the determination of equality (nominal) and 
the determination of greater or less (ordinal), all statistics 
of nominal scales (number of cases, mode, contingency 
correlation), as well as median and percentiles (without 
interpolation) are permissible. Moreover, the ordinal scale 
is considered invariant under monotone transformations, 
i.e., order-preserving transformations. This concept was 
extended in [25], which suggests the usage of non-paramet-
ric statistics for ordinal data. In contrast, for interval scales, 
which additionally require the determination of equality of 
intervals or differences, further statistics are permissible, 
such as the mean, standard deviation, and product-moment 
correlation coefficients, as well as parametric methods.

Having defined the basic terminology, the reader is 
encouraged to follow the dispute in chronological order. 
From the huge amount of available works in many disci-
plines, such as psychology, psychometrics, medicine, sta-
tistics, education, and social sciences, the review in [9], the 
purely statistical perspective in [26], the corresponding reply 
from a measurement perspective in [27], and the reviews 
in [10–12] are highly recommended. They cover most of 
the arguments regarding the level of rating scales and the 
appropriate statistical methods.
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Level of rating scales

The first aspect of the dispute is the level of the rating scale. 
Here, most works agree that a single rating scale with a set 
of ordered, labeled alternatives has to be considered ordinal, 
e.g., [28–30]. The most confusion arises from the different 
terminology of each work, especially regarding the often 
misleading usage of the term “(Likert) scale” for a multi-
item questionnaire. In contrast to single items, which are 
considered ordinal, multiple items are often considered to 
produce interval or ratio data, e.g., [31, 32]. Please recall the 
above definition that, in this work, the term “scale” refers to 
the measurement/rating scale of a single experiment/item/
stimulus. This is in line with the typical usage in QoE stud-
ies as the rating scale, on which the experience with a single 
stimulus is rated.

Only [33] found in direct comparison to a visual analog 
scale (VAS) that interval data could be generated from a 
single rating scale, however, they noted that this effect could 
be due to the particular format of their experiment. Also [34] 
confirmed a high correlation to VAS, but points to works 
that even VAS could be considered an ordinal scale, e.g., 
[35]. [12] noted that adjectival scales were ordinal, but it was 
concluded from related experiments on the mental represen-
tation of numbers in [36, 37] that numerical scales with five 
or more categories could be considered interval. However, 
no results from dedicated studies were given to support this 
statement.

Considering the normality of obtained ratings, which is 
often a requirement for certain parametric statistics, the argu-
ment of [26] was that if the obtained data followed a normal 
distribution, then the data would be of interval scale nature 
because the intervals between any data points were known 
in terms of probability, i.e,. areas under the curve. However, 
as [38] replied, the issue here was that without knowing the 
exact nature of distances between scale points, the concept 
of normality of distribution became meaningless.

Focusing on the distance between rating categories, there 
are many works that emphasize the ordinal character of rat-
ing scales. The review in [39] stated that ordinal scores have 
unequal intervals, and [40] noted that, even in presence of 
numbers, which are an equidistant sequence, the subjective 
interpretations of the rating scale labels were nonlinear. [16] 
reviewed related works and concluded that the differences 
between the rating categories might be different for each 
participant. More detailed descriptions and visualizations of 
the biases in quantifying judgments are given in [13].

These statements are supported by dedicated studies. [41] 
found that the distances between the points of one single 
7-point rating scale were not equal. Participants reported 
bigger differences between the extreme as compared to the 
moderate categories. The presented study was a repetition 
of a previous study [42], which also found that categories 

are not equidistant. Also two other studies found from direct 
comparison to a VAS that the categories of a 7-point [43] 
and a 5-point rating scale [35], respectively, were not equi-
distant. [14, 15] presented similar findings for audio quality 
studies.

To sum up the presented arguments, there is clear evi-
dence that single rating scales cannot be considered interval 
scales, and the manner or extent to which given data devi-
ate from an interval scale cannot be known. Thus, treating 
ordinal data as interval data in statistical analyses involves 
possible errors, and researchers typically cannot determine 
the extent to which such errors are being made [44]. In the 
next subsection, this aspect is investigated in more detail.

Meaningful statistics

As stated in [45], measurement theory is important to the 
interpretation of statistical analyses. It was argued that the 
use of inappropriate statistics lead to the formulation of 
statements which are either semantically meaningless or 
empirically non-significant [46]. However, there is a huge 
dispute about the applicability of the level of measurements 
to statistics as recommended by Stevens [24]. This especially 
includes parametric statistics, i.e., statistics which assume 
that the data stem from a family of probability distributions 
with a fixed set of parameters. An example is Student’s t-test, 
which assumes that the mean follows a normal distribution. 
As the distribution parameter, e.g., mean, has to be estimated 
from the data, at least interval data would be required for 
parametric statistics according to Stevens.

Some gave counterarguments noting that statistics 
applied only to numbers [47], and that there was a difference 
between measurement theory, i.e., meaning of numbers, and 
statistical theory, i.e., relation of numbers [26, 48]. It was 
argued that, as numbers were naturally on a ratio scale, all 
statistics were permissible. In that sense, many works exper-
imentally confirmed the applicability and robustness of para-
metric statistics to monotone transformations of ordinal data, 
e.g., with respect to t-test [49], F-test/ANOVA [26, 48, 50], 
or correlations [30, 38, 51, 52]. Nevertheless, there was an 
early warning in [53] that while the violation of one assump-
tion did not appreciably alter the test, the violation of two 
or more assumptions frequently did have a marked effect.

However, it was also found that in functional analysis 
where partial regression coefficients were calculated, ordi-
nal statistical tests cannot be interchanged with interval 
ones [54]. Moreover, it was suggested that the early studies 
underestimated the magnitude of violations in data [55], and 
errors and dangers in practical applications were pointed 
out [56]. [57] found that also ANOVA was not invariant to 
monotone transformations leading to inconsistent results. 
In a simulation study, [58] found that correlations between 
continuous ratings and discrete ratings were high when the 
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underlying distribution was symmetric, but low when it was 
skewed. Also [20] showed false alarms, misses, and inver-
sions when applying metric models to ordinal data. [59] 
summarized robustness studies with respect to t- and F-test. 
It was noted that previous robustness studies mostly focused 
on ordinality, discreteness, nonlinearity, and skewness, but 
often neglected ceiling and floor effects, which could be 
a co-occurrence of the former concepts. Ceiling and floor 
effects were shown to increase bias and uncertainty, which 
caused inferior performance of t- and F-test. To overcome 
the problems caused by ceiling and floor effects, rank-based 
tests and generalized linear models were recommended [59], 
which already were applied in a QoE study [60]. Here, prob-
ability distributions were estimated per QoE category as a 
function of independent variables, e.g., link capacity, which, 
thus, can serve as a QoE model for a technical system.

Many works found that the data obtained from rating 
scales in fact cannot be considered normal and also often 
violated other typical assumptions for parametric statistics. 
[61] found a bias towards the left side of scale and pointed 
to more works which studies this effect. [40, 62] described 
three “form-related errors” resulting from subjects’ psycho-
logical reactions to different item formats in questionnaires: 
leniency (the tendency to rate either too high or too low); 
central tendency (reluctance to rate at the extremes); and 
proximity (the tendency to rate similarly for questions occur-
ring close to one another in the survey). Also [11] noted that 
rating data was often skewed or had floor or ceiling effects, 
and that normality checks necessitated post hoc selection of 
inference procedures. Moreover, they highlighted the low 
statistical power of normality tests with small sample sizes. 
[63] noted that ordinal data were not continuous and nor-
mally distributed, which created problems for many statisti-
cal procedures, especially since ratings just used a small 
number of choices but standard statistical tools assumed a 
continuous variable [40].

Noticing these problems, which [39] traces back to clas-
sical test theory, some works suggest to rely on other theo-
ries, such as item-response theory, which allows to construct 
interval data from ordinal rating scores, e.g., using the Rasch 
model, as input to parametric statistics [39, 63–65].

Another approach to avoid the issues of applying para-
metric statistics to ordinal data is using non-parametric sta-
tistics [12, 25, 66, 67]. In contrast to parametric statistics, 
non-parametric statistics are not based on assumptions about 
the family of probability distributions of the data. For exam-
ple, the Mann-Whitney U test is a non-parametric test to 
investigate whether two independent samples were selected 
from populations having the same distribution.

The application of non-parametric statistics preserves 
the ordinal nature of the rating data, and was thus favored 
by followers of Stevens’ arguments. [68] even called the 
usage of parametric statistics for ordinal data a sin. More 

constructively, [9] noted that the transition from meaningful 
assertions about numbers to meaningful assertion of con-
cepts required to consider the scale, and [54] emphasized 
that assumptions regarding the measurement level of the 
data and the corresponding analysis to be used affected the 
conclusions. [27] stated that the measurement scale gave 
meaning to numbers and showed examples of scale trans-
formations that changed statistical properties. Also [35] 
endorsed that numerical statements of rating scales should 
not be generalized to interpretations of the ordinal variable.

The early concern that non-parametric statistics were less 
powerful [57, 63] was countered by several works, e.g., [57, 
69]. Instead, many works highly recommended the applica-
tion of non-parametric statistics for ordinal data, such that 
several appropriate methods can be found in [11, 70–73].

To sum up, some works suggested that parametric sta-
tistics could be applied to ordinal data as they were robust 
to mild violations of their assumptions [30], however, the 
analysis might only investigate the relation of the numbers, 
but not the meaning of the numbers [26]. In contrast, some 
works emphasized that ordinality, discreteness, nonlinearity, 
skewness, as well as ceiling and floor effects in rating data 
[59] would create problems for many parametric statistical 
procedures [40]. The clean way out of this dilemma – with-
out having to switch to other study designs or other rating 
scales, without having to separate measurement theory 
(meaning of numbers) and statistical theory (relation of 
numbers), and without having to hope for robustness when 
violating assumptions of parametric statistics – is to rely 
on statistical methods that can handle ordinal data. Thus, 
in this article, existing and novel methods for ordinal data 
will presented, which are well suited for the domain of QoE 
research.

QoE assessment and modeling

A comprehensive definition of QoE was given in [1] 
including influence factors of QoE, such as human, sys-
tem, and context influence factors. However, it was not 
specified how QoE assessment should be conducted. 
After a variety of practical implementations in a multi-
tude of studies, cf., e.g., [74–77], an overview document 
was provided in [78], which links to several recommenda-
tions for QoE assessment for particular services, such as 
speech [2], web browsing [79], or multimedia applications 
[4]. Here, [78] names MOS as a QoE metric, although it 
recognizes that test methods can be classified according 
the applied scaling method and scale level, i.e., nominal, 
ordinal, interval, and ratio. However, the linked docu-
ments might lack this awareness, such as [2, 4], which 
recommend the usage of the 5-point ACR scale, from 
which MOS, confidence intervals, and standard devia-
tions shall be computed. However, as the ACR scale is an 
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ordinal scale, but not an interval scale, these metrics are 
not interpretable without introducing substantial bias. As 
an alternative method for QoE assessment, [18] compared 
the classical assessment of user satisfaction based on 
MOS with the notion of acceptability of service quality. 
Evaluation methods are reviewed and differences between 
both perspectives on QoE assessment are discussed.

Substantial contributions towards improving QoE 
assessment beyond the MOS were started in [80], which 
emphasizes that MOS values lose considerable amount 
of information about the QoE ratings. To overcome this 
issue, the authors suggested to additionally consider the 
standard deviation of opinion scores (SOS). However, 
SOS values face the same substantial bias as MOS, as it 
is implicitly assumed that the rating scale of user experi-
ence is an interval scale. The work in [80] was extended 
in [81], in which quantiles, entropy, and probability 
distribution were added to a recommended set of QoE 
descriptors. In contrast to MOS and SOS, the newly added 
descriptors do not face the issues that were previously 
discussed. Additionally, [81] postulated the idea that indi-
vidual ratings for a single test condition can be described 
as realizations of a binomial distribution. [82] continued 
the previous works and elaborated more on the value of 
quantiles and acceptance thresholds, such as percentage 
of Poor-or-Worse (%PoW) and Good-or-Better (%GoB). 
[83] modeled an individual user rating with a truncated 
normal distribution. Most recently, the concept of QoE 
was extended to QoE fairness [84], i.e., the notion that 
users in a shared system should experience a fair QoE 
distribution. The proposed fairness metric is based on the 
standard deviation of individual QoE ratings, which is 
again the SOS. Thus, the fairness metric also inherits the 
problems of SOS, which were described above.

Finally, there has not been much work towards QoE 
modeling beyond the MOS. [85] reaches out to the QoE 
of entire technical systems, which includes the formula-
tion of analytical relationships between QoE distributions 
to derive system-wide QoE metrics of interest. However, 
full knowledge of the QoE distributions at any value of 
the parameter of the technical system is required or needs 
to be approximated by a model to obtain the system QoE 
distribution, which describes an aggregated experience 
over the whole domain of the technical parameters. A first 
approach was presented in [60], which applied general-
ized linear models in a QoE study to obtain probability 
functions for each rating category, but did not consider a 
multinomial QoE distribution.

Both meaningful QoE assessment and the modeling 
of QoE based on multinomial QoE distributions, which 
are missing in related works, will be addressed in the 
remainder of this article.

Theoretical background on QoE 
distributions

This section introduces QoE distributions as a subset of 
multinomial distributions and shortly recaps the theoretical 
background. Afterwards, it is outlined how previously used 
MOS-based evaluations could be obtained from QoE distri-
butions. However, except for some backward compatibility, 
this would not be recommended due to the inherent bias 
when applied to QoE ratings on ordinal scales.

Multinomial distributions

In this article, the typical pitfall of QoE assessment is 
avoided by considering that all ratings of a test condition 
follow a multinomial distribution on the ordinal rating cat-
egories, which also takes a more holistic perspective of the 
subjective user study. Multinomial distributions describe 
probabilities in an experiment where n balls are drawn with 
replacement from a bag with balls of k different colors. 
The probability that a ball of color i is drawn is pi with ∑k

i=1
pi = 1 . The random variables Xi count how often a ball 

of color i is drawn. Then, the probability mass function of 
the multinomial distribution is given as:

Thus, Eq. 1 describes the joint probability for all i = 1,… , k 
that in an experiment, in which n balls are drawn with 
replacement, Xi = xi balls are drawn with color i.

QoE Distributions

This experiment, which constitutes multinomial distribu-
tions, can be easily mapped to QoE studies, in which n par-
ticipants rate the QoE of a stimulus. There are k categories 
on the rating scale, and the numbers Xi count the partici-
pants, which rate category i. The parameters pi describe the 
underlying and hidden probability that the presented stimu-
lus gives an experience in category i. In case of the 5-point 
ACR scale [2, 4], which is the most widely used rating scale 
in QoE studies, k = 5 and i represents the numerical value 
assigned to the rating categories, namely, “bad” ( i = 1 ), 
“poor” ( i = 2 ), “fair” ( i = 3 ), “good” ( i = 4 ), and “excel-
lent” ( i = 5 ). However, QoE distributions can be constructed 
from any number of ratings categories, such as k = 2 (binary 
satisfaction/acceptance [18]) or k = 9 (nine-grade numerical 
quality scale [4]). In the remainder of this work, only k = 5 

(1)

P(X1 = x1,X2 = x2,… ,Xk = xk)

=

⎧⎪⎨⎪⎩

n!

x1!⋅x2!⋅…⋅xk!
⋅ p

x1
1
⋅ p

x2
2
⋅… ⋅ p

xk
k
,

when
∑k

i=1
xi = n,

0, otherwise.
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will be considered, such that all methods are directly appli-
cable to QoE studies based on the 5-point ACR scale. Note 
that some formulae, which are presented in this article, have 
to be modified accordingly if another number of categories 
k is used.

Thus, the result of a QoE study is a rating distribu-
tion x = (x1, x2, x3, x4, x5), xi ≥ 0, i = 1,… , 5, based on 
n =

∑5

i=1
xi participants. It is important to note that the 

rating distribution x is a realization of an underlying QoE 
distribution p = (p1, p2, p3, p4, p5) with pi ≥ 0, i = 1,… , 5 
and 

∑5

i=1
pi = 1 , which comprise a subset of multinomial 

distributions. As each and every rating, which was collected 
in the QoE study, is included in x , this representation does 
not lead to any information loss.

The vector notation x of the rating distribution is a very 
compact and concise way to report the results of a QoE 
study. From this representation, also the underlying param-
eters of the QoE distribution pi can be estimated using a 
maximum likelihood approach, which allows to fully make 
use of the advantages of considering QoE distributions. For 
this, the estimated parameters p̂i can be obtained as:

Following Eq.  2, the outcome of a QoE study can 
also be reported with another compact representation 
p̂ = (p̂1, p̂2, p̂3, p̂4, p̂5, n) , from which one of the p̂i could be 
omitted as 

∑5

i=1
p̂i = 1 . Obviously both representations x and 

p̂ can be easily converted into the other representation. This 
also means that, given the study size n, the results of a QoE 
study can be identified by a multinomial distribution p̂i , as 
there is a trivial mapping via Eq. 2.

Note that the maximum likelihood approach in Eq. 2 
results in a point estimate for the underlying unknown QoE 
distribution, and thus, the estimated multinomial distribution 
with parameters p̂i might be different from the actual under-
lying multinomial distribution with parameters pi . Neverthe-
less, the estimated multinomial distribution p̂i is the most 
probable multinomial distribution given the observed results 
of the QoE study, and the discrepancy between p̂i and pi can 
be diminished by increasing the sample size n.

The presented aspects of multinomial distributions so far 
apply to any categorical scale. However, QoE distributions 
additionally consider the ordinal nature of the rating scale, 
which means that the order of all categories i is fixed and 
monotonically increasing in terms of QoE. Without loss of 
generality, it is assumed that the index i follows the natural 
numbers from 1 to k = 5 , and it is assigned to each rating 
category, such that categories with a better experience have 
a higher index value. For example, see the mapping of the 
categories of the 5-point ACR scale from bad QoE ( i = 1 ) 
to excellent QoE ( i = 5 ) above. Consequently, the order 

(2)p̂i =
xi

n
=

xi∑5

j=1
xj

, i = 1,… , 5.

of the corresponding xi in x , or p̂i in p̂ , is fixed, as already 
indicated by the tuple notation. This allows to relate each p̂i 
with the probabilities of preceding categories as follows: Let 
ĉ = (ĉ1, ĉ2, ĉ3, ĉ4, ĉ5, n) be the vector containing cumulative 
probabilities computed from p̂ , i.e., ĉi =

∑i

j=1
p̂j . Then, ĉi 

gives the probability of obtaining a rating of at most category 
i, which is intuitively based on the ordinal nature of the catego-
ries, but does not consider any differences between the catego-
ries. Note that ĉ is also a representation equivalent to x and p̂.

This compact representations allows to compute quantiles 
easily, which are a meaningful metric for ordinal scales. Thus, 
the q-quantile Qq is the category i given by:

Moreover, it is possible to directly compute a more intuitive 
percentage of Poor-or-Worse (%PoW) and Good-or-Better 
(%GoB), which is different from the previous definition 
based on the E-model [82]. This means, it is possible to lit-
erally obtain the %PoW as the percentage of users who rated 
the category “poor” (2) or worse, i.e., “bad” (1), and also 
the %GoB as the percentage of users who rated the category 
“good” (4) or better, i.e., “excellent” (5):

Note that, based on the parameter estimation in Eq. 2, if the 
context is unambiguous, the term QoE distribution might 
also be used for a rating distribution x , p̂ , or ĉ , which is a 
realization of a QoE distribution p or c.

Backward compatibility towards MOS‑based 
evaluations

Although MOS-based evaluations face the issues described 
above, for the sake of backward compatibility, MOS-based 
QoE metrics can be computed from QoE results expressed as 
rating distributions. In the following, these computations are 
outlined briefly.

First, the sample mean of ratings, or MOS value, can be 
obtained from x or p̂ as follows:

The sample standard deviation of ratings, or SOS value [80], 
is given by:

The confidence interval (CI) of the MOS for a confidence 
level of 1 − � can be computed for large enough n (cf. central 

(3)Qq = min{i|ĉi ≥ q}.

(4)%PoW = ĉ2 ⋅ 100%, %GoB = (1 − ĉ3) ⋅ 100%.

(5)MOS =

∑5

i=1
i ⋅ xi∑5

i=1
xi

=

∑5

i=1
i ⋅ xi

n
=

5�
i=1

i ⋅ p̂i.

(6)SOS =

�
xi ⋅ (i −MOS)2

(
∑5

i=1
xi) − 1

=

�
n

n − 1
⋅ p̂i ⋅ (i −MOS)2.
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limit theorem) using the (1 − �

2
)-quantile of the standard 

normal distribution z(1− �

2
):

Note that for small sample sizes, the standard normal distri-
bution should be replaced by Student’s t-distribu-tion. How-
ever, [86] generally considers a sample size greater than 25 
or 30 as sufficient for using the standard normal distribution. 
By substituting a desired CI width d in the error margin 
d

2
= z(1− �

2
)
SOS√

n
 of Eq. 7 and solving for n, also required sample 

sizes nS can be easily obtained:

Finally, also the QoE fairness index F [84], which was pro-
posed to quantify the fairness of the QoE among multiple 
users in a shared system in terms of the dispersion of the 
QoE distribution, can be obtained as:

Given the inherent bias of these MOS-based evaluations, in 
the following, improved QoE evaluations will be presented, 
which leverage the advantages of QoE distributions.

Statistical methods for QoE distributions

This section summarizes existing and novel statistical meth-
ods of QoE distributions, which give more meaningful QoE 
evaluations based on the ordinal rating scales of QoE stud-
ies. These methods solely require categorical or ordinal data, 
but do not assume interval or even ratio data. To demon-
strate the improved evaluations, the ratings for three stimuli 
S1 , S2 , and S3 are considered, which have been collected in 
a past crowdsourcing QoE study and have been filtered to 
exclude unreliable ratings [87]. In this study, the participants 
watched short video clips of 30s, which included a number 
of stalling events from 0 to 6 with different lengths. Note 
that more details to this study were reported in [88]. Three 
exemplary rating distributions are taken from this study 
and described in Table 1. The number of stalling events for 

(7)CI1−�
MOS

=

�
MOS − z(1− �

2
)

SOS√
n
;MOS + z(1− �

2
)

SOS√
n

�
.

(8)nS =

4 ⋅ z2
(1−

�

2
)
⋅ SOS2

d2
.

(9)F = 1 −
SOS

2
.

these stimuli differ, however, the length of a stalling event 
was always 4s, and the stalling events were regularly spaced 
within the video. Table 1 shows that S1 (condition: more than 
four stalling events) has a significantly lower MOS than the 
other stimuli, but the highest fairness score. S3 (condition: 
one stalling event) has a higher MOS than S2 (condition: two 
stalling events), but the 95% CIs overlap, and the fairness 
score is lower for S2 . The rating distributions of S1 (black), 
S2 (dark brown) and S3 (light brown) are also visualized in 
Fig. 2 as PDFs ( p̂ , bars) and CDFs ( ̂c , dashed lines).

Confidence intervals and sample size

After a QoE study has been conducted, the parameters of 
the multinomial QoE distribution can be estimated from the 
collected ratings in a maximum likelihood fashion using 
Eq. 2. In the following, different methods are presented, 
which allow to compute confidence intervals (CIs) for these 
parameter estimations. If the width of a CI is fixed before a 
QoE study, the methods also allow to compute the minimal 
amount of ratings needed for the desired CI width, i.e., the 
sample size. This can be helpful to plan in advance how 
many participants should be recruited for a QoE study.

Binomial confidence intervals for the parameters pi 
of the QoE distribution

Equation 2 described the maximum likelihood estimation 
of each of the parameters pi of the QoE distribution. To 
obtain confidence intervals, a binomial confidence interval 
can be computed for each parameter pi individually for large 

Table 1  Exemplary rating 
distributions from conducted 
study

Rating Distribution #Stalling MOS SOS CI0.95
MOS

F

S1 = (48, 20, 4, 3, 0) = (0.64, 0.27, 0.05, 0.04, 0.00, 75) 5 or 6 1.49 0.78 [1.32; 1.67] 0.61
S2 = (11, 25, 18, 7, 1) = (0.18, 0.40, 0.29, 0.11, 0.02, 62) 2 2.39 0.96 [2.15; 2.63] 0.52
S3 = (13, 15, 16, 21, 3) = (0.19, 0.22, 0.24, 0.31, 0.04, 68) 1 2.79 1.20 [2.51; 3.08] 0.40

 
 

Fig. 2  Exemplary rating distributions from conducted study
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enough n based on an approximation with the normal distri-
bution (cf. central limit theorem):

This and further methods for binomial CIs were compared 
in [89]. Note again that, if the sample size is small, the stand-
ard normal distribution should be replaced by the Student’s 
t-distribution. According to [86], a typical rule of thumb is 
that n is sufficiently large to use the standard normal dis-
tribution if n ⋅ p̂i ≥ 5 and n ⋅ (1 − p̂i) ≥ 5 . Eq. 10 results in 
five confidence intervals for each parameter pi of the QoE 
distribution. In Table 2, the 95% CIs are computed for each 
stimulus S1 , S2 , and S3 . Some CIs for the same parameter do 
not overlap, which indicates that there is significant differ-
ence for this parameter on a significance level of 5%, e.g., 
for p1 between S1 and the other two QoE distributions, or 
for p4 between S2 and S3 . Note that computing five CIs from 
the same data faces the multiple comparisons problem. This 
means that the global coverage probability for all CIs will be 
lower than the desired 1 − � of each individual CI (cf. Bon-
ferroni inequalities), however, this problem can be compen-
sated, e.g., by using Bonferroni correction. For this, the five 
individual CIs have to be computed with a confidence level

to reach a global coverage probability of 1 − � . For the con-
sidered example, Table 2 also shows the larger CI0.99

pi
 , which 

reach a global confidence level of 95%.
Equation 10 also allows to compute sample sizes nSi for a 

desired width di of CI1−�
pi

 with confidence level of 1 − � , 
which gives CI1−𝛼

pi
=
[
p̂i −

di

2
;p̂i +

di

2

]
 with half-length di

2
:

(10)

CI1−𝛼
pi

=

[
p̂i − z(1− 𝛼

2
)

√
p̂i(1 − p̂i)

n
;p̂i + z(1− 𝛼

2
)

√
p̂i(1 − p̂i)

n

]
.

(11)1 − �� = 1 −
�

5

After the sample sizes nSi have been computed with a desired 
width di for all parameters pi , the maximum sample size 
nS = maxi nSi should be used as the sample size of the entire 
QoE study. For the considered stimuli, a desired CI width of 
d = 0.1 would result in nS = 355 for S1 , nS = 370 for S2 , and 
nS = 328 for S3 using CI0.95

pi
 considering an individual confi-

dence level of 95% for each CI, and nS = 612 for S1 , nS = 639 
for S2 , and nS = 567 for S3 using CI0.99

pi
 for a global confi-

dence level of 95% based on the Bonferroni correction, see 
Table 2.

Simultaneous confidence intervals for the parameters pi 
of the QoE distribution

Instead of computing binomial CIs for each parameter pi 
of the QoE distribution one-at-a-time, i.e., pointwise, there 
exist also methods to compute simultaneous CIs. The 
advantage of simultaneous CIs is that they allow to control 
the coverage probability for the entire set of parameters 
[90], which is typically less conservative than the Bonfer-
roni correction. The approach presented by Goodman [91] 
constructs simultaneous CIs for a multinomial distribution 
with k categories using the (1 − �

k
)-quantile of the chi-

square distribution with one degree of freedom. Thus, for 
QoE distributions with five categories, the (1 − �

5
)-quantile 

of the chi-square distribution with one degree of freedom 
�2

(1−
�

5
),1

 has to be used:

(12)nSi =

4 ⋅ z2
(1−

𝛼

2
)
⋅ p̂i(1 − p̂i)

d2
i

.

Table 2  Confidence intervals 
for the parameters of the 
exemplary QoE distributions S1 , 
S2 , and S3 , and required sample 
sizes to reach a desired width of 
d = 0.1 , or a desired volume of 
D = (0.1)5 = 10−5 , respectively. 
The table shows 95% and 99% 
confidence intervals, as well as 
simultaneous 95% confidence 
intervals (sim.) based on the 
approaches from Goodman (G) 
and Sison/Glatz (SG)

CI p1 p2 p3 p4 p5 nd=0.1
S nD=10

−5

S

CI0.95
S1

[0.53; 0.75] [0.17; 0.37] [0.00; 0.10] [0.00; 0.10] [0.00; 0.00] 355 –

CI0.99
S1

[0.50; 0.78] [0.14; 0.40] [0.00; 0.12] [0.00; 0.10] [0.00; 0.00] 612 –

CI0.95
S1,sim.(G)

[0.49; 0.77] [0.16; 0.41] [0.01; 0.16] [0.01; 0.14] [0.00; 0.08] 606 167

CI0.95
S1,sim.(SG)

[0.51; 0.78] [0.13; 0.40] [0.00; 0.19] [0.00; 0.18] [0.00; 0.14] 597 –

CI0.95
S2

[0.08; 0.27] [0.28; 0.52] [0.18; 0.40] [0.03; 0.19] [0.00; 0.05] 370 –

CI0.99
S2

[0.05; 0.30] [0.24; 0.56] [0.14; 0.44] [0.01; 0.22] [0.00; 0.06] 639 –

CI0.95
S2,sim.(G)

[0.09; 0.33] [0.26; 0.57] [0.17; 0.45] [0.05; 0.26] [0.00; 0.12] 633 286

CI0.95
S2,sim.(SG)

[0.05; 0.33] [0.27; 0.55] [0.16; 0.44] [0.00; 0.26] [0.00; 0.17] 526 –

CI0.95
S3

[0.10; 0.28] [0.12; 0.32] [0.13; 0.34] [0.20; 0.42] [0.00; 0.09] 328 –

CI0.99
S3

[0.07; 0.31] [0.09; 0.35] [0.10; 0.37] [0.16; 0.45] [0.00; 0.11] 567 –

CI0.95
S3,sim.(G)

[0.10; 0.34] [0.12; 0.37] [0.13; 0.39] [0.19; 0.46] [0.01; 0.16] 561 358

CI0.95
S3,sim.(SG)

[0.08; 0.33] [0.10; 0.36] [0.12; 0.37] [0.19; 0.45] [0.00; 0.18] 477 –
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Goodman intervals are recommended when the the expected 
counts are at least 10 per category and the number of catego-
ries is small [90], which is the case for QoE distributions. 
The results of the simultaneous CIs for the exemplary QoE 
distributions S1 , S2 , and S3 can be found in Table 2. It can be 
observed that simultaneous CIs are generally larger as the 
binomial 95%-CIs, which is an expected finding. The reason 
is that with simultaneous CIs, the probability 1 − � must hold 
for all individual CIs to contain their respective parameter 
at the same time, which leads to larger CIs. Moreover, it has 
to be noted that Goodman CIs are not symmetric around the 
observed p̂i , which accounts for the skewness of the multino-
mial distribution, and they tend to extend towards parameter 
regions with high variance, i.e., towards 0.5. This can also 
be seen in Table 2. Except for p̂i of S1 , which is above 0.5, 
for all three stimuli and all parameters, the Goodman CIs are 
quite close to the binomial 95%-CIs at the lower bound of 
the CI, but they are particularly relaxed at the upper bound 
of the CI. If the estimated parameter is above 0.5, such as for 
p̂1 of S1 , the opposite trend can be observed.

Again, Goodman CIs can be used to determine the required 
minimal sample size nS necessary to achieve a specified cover-
age probability 1 − � for a given volume D of the confidence 
region. In a simple algorithmic approach, CIs can be calculated 
for increasing n using the Goodman formula in Eq. 13. Note 
that when n increases in Eq. 13, also the xi have to be updated: 
xi = p̂i ⋅ n . At each step the current volume is computed from 
the current widths di,(G)(n) of CI1−�

pi,sim.(G)
 , which obviously 

depend on n. This gives the sample size

For the considered stimuli, a desired volume of 
D = (0.1)5 = 10−5 would result in nS(G) = 167 for S1 , 
nS(G) = 286 for S2 , and nS(G) = 358 for S3 , see Table 2. These 
sample sizes behave different than the numbers obtained 
with binomial confidence intervals. The reason is that, in 
the binomial approach, the sample size was determined by 
the number of samples required to confine the width of the 
CI of the parameter with the highest variance, e.g., p1 for S1 . 
In contrast, as the volume of simultaneous CIs is a product 

(13)

CI1−�
pi,sim.(G)

=

⎡
⎢⎢⎢⎢⎣

�2

(1−
�

5
),1

+ 2xi −

�
�2

(1−
�

5
),1
(�2

(1−
�

5
),1

+
4xi(n−xi)

n
)

2(n + �2

(1−
�

5
),1
)

;

�2

(1−
�

5
),1

+ 2xi +

�
�2

(1−
�

5
),1
(�2

(1−
�

5
),1

+
4xi(n−xi)

n
)

2(n + �2

(1−
�

5
),1
)

⎤⎥⎥⎥⎥⎦
.

(14)nS(G) = min
n

5∏
i=1

di,(G)(n) ≤ D.

of all CI widths, it will become small when more parameters 
have more extreme values, and thus, a low variance and a 
small CI width, e.g., p3, p4, p5 in S1 . Thus, the required sam-
ple size will be smaller for simultaneous CIs in this case.

If all simultaneous CIs shall be constrained to a maxi-
mum width of d, Eq. 14 changes to:

As can be seen in Table 2, for a desired maximum width 
d = 0.1 , the trend of the results is again in line with the 
sample sizes computed from binomial CIs. However, slightly 
lower numbers can be observed compared to the binomial 
99%-CIs, namely, nS(G) = 606 for S1 , nS(G) = 633 for S2 , and 
nS(G) = 561 for S3.

Another approach to simultaneous CIs was presented by 
Sison and Glatz in [92] following a parametric bootstrap 
approach. If the expected counts are small and nearly equal 
across categories, [90] recommended this method over 
Goodman CIs, however, the intervals are harder to con-
struct. The presented approach iteratively increases the CIs 
with respect to an integer c until the desired coverage prob-
ability v(c) = P(xi − c ≤ Xi ≤ xi + c, i = 1,… , 5) ≈ 1 − � 
for the multinomial distribution Xi is reached. The method 
is based on Poisson distributions Vi with mean xi , and their 
truncations Yi to the interval [bi;ai] with mean E[Yi] = �i , 
variance Var[Yi] = �2,i = �2

i
 , and rth central moments �r,i . 

Then, for the computation of v(c), the following approxi-
mation is used:

where

using �1 =
1√
5

1

5

∑5

i=1
�3,i

(
1

5

∑5

i=1
�2
i
)3∕2

 and �2 =
1√
5

1

5

∑5

i=1
�4,i−3�

4
i

(
1

5

∑5

i=1
�2
i
)2

 , and the 

required central moments �r,i can be derived according to 
[93] as:

Equation 18 requires the Stirling number of the second kind 
[94]

(15)nS(G) = min
n

max
i

di,(G)(n) ≤ d.

(16)

P(bi ≤ Xi ≤ ai;i = 1,… , 5)

≈
n!

nne−n
�∑5

i=1
�2
i

�
5�
i=1

P(bi ≤ Vi ≤ ai)

�
fe

⎛⎜⎜⎜⎝

n −
∑5

i=1
�i�∑5

i=1
�2
i

⎞⎟⎟⎟⎠
,

(17)
fe(z) =

e
−

z2

2√
2�

(1 +
�1

6
(z3 − 3z) +

�2

24
(z4 − 6z2 + 3)

+
�2
1

72
(z6 − 15z4 + 45z2 − 15)),

(18)�r,i = (−�i)
r +

∑r−1

j=0

∑r−j

k=1
(−1)j

(
r

j

)
S(r − j, k)�

j

i
�(k).
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and a formula for the factorial moments given in [92]:

The approximation in Eq.  16 can evaluate v(c) by set-
ting bi = xi − c and ai = xi + c . Then, the integer c is 
iteratively increased until a value is found, such that 
v(c) < 1 − 𝛼 < v(c + 1) , and the simultaneous confidence 
intervals are given by:

Sison/Glatz CIs are almost symmetric around the observed 
p̂i , except for a skewness correction at the upper bound. The 
resulting CIs for S1 , S2 , and S3 are reported in Table 2. It 
can be seen that in this exemplary study, the CIs are wider 
than Goodman CIs, which is a worse performance. However, 
according to [95], the advantage of the Sison/Glatz CI is 
especially evident in the sample size determination problem.

For this, Sison/Glatz follow a different approach by 
decomposing the given volume D as D = (2

d

2
)5 , which gives 

d =
5
√
D

2
 as the maximum width of each CI. At each iteration 

of their algorithm, Eq. 16 is used to compute

until the desired confidence level is reached. The resulting 
sample size nS(SG) is given by:

(19)S(s, t) =
1

t!

t∑
u=0

(−1)t−u
(
t

u

)
us, 0 < s < t,

(20)

�(r) = xr
i

⎛
⎜⎜⎝
1 +

∑bi−1

v=bi−r
e−xi xv

i
∕v! −

∑ai
v=ai−r+1

e−xi xv
i
∕v!

∑ai
v=bi

e−xi xv
i
∕v!

⎞
⎟⎟⎠
.

(21)CI1−𝛼
pi,sim.(SG)

=

⎡
⎢⎢⎣
p̂i −

c

n
;p̂i +

c + 2
(1−𝛼)−v(c)

v(c+1)−v(c)

n

⎤
⎥⎥⎦
.

(22)
𝜂(n) = P(⌊np̂i − nd + 0.5⌋ ≤ Xi ≤ ⌊np̂i + nd⌋;i = 1,… , 5)

(23)nS(SG) = min
n

�(n) ≥ 1 − �.

As this algorithm forces all CIs to have at most width d at 
the same time, it requires a higher number of samples as in 
the binomial approach presented first, however, the resulting 
sample sizes are typically much smaller than those using 
Goodman CIs. This can also be observed for the exemplary 
rating distributions, for which the Sison/Glatz sample sizes 
are nS(SG) = 597 for S1 , nS(SG) = 526 for S2 , and nS(SG) = 477 
for S3.

Confidence intervals for the parameters ci of the cumulative 
QoE distribution

With respect to cumulative QoE distributions c , there are 
again the options to compute either pointwise or simultane-
ous CIs. In the pointwise case, each CI for ci can be based 
on the binomial distribution considering the probability that 
users rated at most category i. This allows to reuse Eq. 10. 
The only required modification is to replace p̂i with ĉi:

Note that when computing CIs for cumulative QoE distribu-
tions, it is not useful to compute a CI for c5 , because 
P(c5 = 1) = 1 by definition of the QoE distribution. Table 3 
shows the CI0.95

ci
 for the three exemplary rating distributions. 

It can be seen that the CIs for c1 are obviously identical to 
the CIs for p1 in Table 2 as p1 = c1 . Moreover, it can be seen 
that the cumulative CIs can overlap, e.g., for c2 and c3 in S1 . 
When constructing multiple CIs from the same data, again 
the Bonferroni correction has to be applied to control the 
global confidence level. Table 3, thus, also shows the larger 
CI0.9875

ci
 , which reach a global coverage probability of 95% 

for the four CIs. However, it has again to be noted that the 
CIs only guarantee this coverage probability pointwise, i.e., 
for each cumulative probability individually.

(24)

CI1−𝛼
ci

=

[
ĉi − z(1− 𝛼

2
)

√
ĉi(1 − ĉi)

n
;ĉi + z(1− 𝛼

2
)

√
ĉi(1 − ĉi)

n

]
.

Table 3  Confidence intervals 
for the parameters of the 
exemplary cumulative QoE 
distributions S1 , S2 , and S3 , and 
required sample sizes to reach 
a desired width of d = 0.1 . The 
table shows 95% and 98.75% 
confidence intervals, as well as 
simultaneous 95% confidence 
intervals (sim.) based on the 
Dvoretzky-Kiefer–Wolfowitz 
(DKW) approach

CI c1 c2 c3 c4 nd=0.1
S

CI0.95
S1

[0.53; 0.75] [0.84; 0.97] [0.92; 1.00] [1.00; 1.00] 351

CI0.9875
S1

[0.50; 0.78] [0.82; 0.99] [0.90; 1.00] [1.00; 1.00] 575

CI0.95
S1,sim.(DKW)

[0.48; 0.80] [0.75; 1.00] [0.80; 1.00] [0.84; 1.00] 738

CI0.95
S2

[0.08; 0.27] [0.46; 0.70] [0.79; 0.95] [0.95; 1.00] 375

CI0.9875
S2

[0.06; 0.30] [0.42; 0.74] [0.76; 0.98] [0.94; 1.00] 608

CI0.95
S2,sim.(DKW)

[0.00; 0.35] [0.41; 0.75] [0.70; 1.00] [0.81; 1.00] 738

CI0.95
S3

[0.10; 0.28] [0.29; 0.53] [0.53; 0.76] [0.91; 1.00] 373

CI0.9875
S3

[0.07; 0.31] [0.26; 0.56] [0.50; 0.79] [0.89; 1.00] 605

CI0.95
S3,sim.(DKW)

[0.03; 0.36] [0.25; 0.58] [0.48; 0.81] [0.79; 1.00] 738
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The required sample sizes nS can be likewise computed 
using Eq. 12, again replacing p̂i with ĉi , and taking the maxi-
mum of the sample sizes for each ci . For the exemplary 
stimuli and a desired CI width d = 0.1 , this results in 
nS = 351 for S1 , nS = 375 for S2 , and nS = 373 for S3 using 
CI0.95

ci
 considering an individual confidence level of 95% for 

each CI, and nS = 575 for S1 , nS = 608 for S2 , and nS = 605 
for S3 using CI0.9875

ci
 for a global confidence level of 95% 

based on the Bonferroni correction, see Table 3.
When it comes to simultaneous confidence intervals, the 

Dvoretzky–Kiefer–Wolfowitz inequality [96, 97] can be 
leveraged to compute a confidence band from the empirical 
distribution function ĉ , which gives simultaneous bounds for 
the cumulative probabilities. The confidence band is sym-
metric around ĉ and can be computed as follows:

Note again that the simultaneous CIs are typically wider than 
the pointwise CIs, and that the above comment on the CI for 
c5 applies here as well. Table 3 shows the CI0.95

ci,sim.(DKW)
 for S1 , 

S2 , and S3 . It can be seen that the resulting CIs are larger than 
CI1−�

ci
 , which is as expected. The half-length of the 

CI0.95
ci,sim.(DKW)

 is only depending on the number of ratings n 
and the significance level � , and thus, allows to easily com-
pute the required sample size nS(DKW) for a desired maximum 
width d of each CI:

Consequently, the sample size is independent of the actual 
QoE distribution, which can be seen in Table 3, where 
the required sample size to reach a CI width of d = 0.1 is 
nS(DKW) = 738 for all three exemplary QoE distributions.

This section presented methods for the computation of 
confidence intervals and sample sizes. In contrast to MOS-
based evaluations, multinomial QoE distributions have five 
parameters p̂i or four parameters ĉi , which have to be esti-
mated from the rating data. Different methods for pointwise 
(i.e., one by one) and simultaneous (i.e., all at the same time) 
confidence intervals have been presented. These methods 
further allow to compute sample size for the desired width of 
a confidence intervals. This means, given a desired width of 
the confidence interval, the presented methods can be used 
to compute the minimum number of ratings that need to be 
collected. Thus, these methods are especially useful in the 
design phase before conducting a QoE study.

(25)

CI1−𝛼
ci,sim.(DKW)

=

[
ĉi −

√
1

2n
log

(
2

𝛼

)
;ĉi +

√
1

2n
log

(
2

𝛼

)]
.

(26)nS(DKW) =
1

d2
log

(
2

�

)
.

Testing for significant QoE differences

QoE studies are often conducted when researchers are inter-
ested whether two or more stimuli give different experience 
to users. Thus, they present the stimuli to the participants, 
which return ratings according to their experience. After the 
rating distribution of each stimulus has been obtained, it has 
to be tested if there is a significant difference between them. 
The null hypothesis is that all realizations, i.e., all observed 
rating distributions, were drawn from the same QoE distribu-
tion. The p-value is the probability of facing the observed or 
more extreme realizations assuming that the null hypothesis 
was true. If the p-value is below the significance level � , 
which is the maximum acceptable probability of a type I 
error that was selected by the researchers, the null hypothesis 
is rejected, and thus, the QoE distributions are considered as 
being significantly different.

Independent groups of ratings

While many non-parametric statistical tests exist, which 
compare two probability distributions, the Wilcoxon-Mann-
Whitney U test [98, 99] should be considered for ordinal 
data [25] if the groups of ratings are independent, e.g., if 
they were collected in different QoE studies or from differ-
ent participants. It computes the U statistic from the ranks 
of the ratings in both QoE distributions A and B, considering 
the number of tied ranks ti = xA

i
+ xB

i
 . In the following, the 

formulae are given for computing the U statistic of distribu-
tion A only, however, they equally apply for distribution B. 
First, the sum of ranks RA has to be computed:

Then, the UA statistic of a QoE distribution A can be eas-
ily computed from the sum of ranks RA and the number of 
samples nA as follows:

The smaller value of UA and UB is used and its significance 
can be looked up in dedicated tables. For large samples, the 
standardized value zU =

U−�U

�U
 with mean �U =

nA⋅nB

2
 and tie-

corrected standard deviation

approximately follows a standard normal distribution, and 
thus, can be compared to the critical values ±z(1− �

2
) . In the 

(27)RA =

5∑
i=1

(
xA
i
⋅

(
1 +

i−1∑
j=1

tj +
ti − 1

2

))
.

(28)UA = RA −
nA(nA + 1)

2
.

(29)

�U =

√
nAnB

12

(
(nA + nB + 1) −

∑5

i=1

ti
3 − ti

(nA + nB)(nA + nB − 1)

)
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considered QoE study, the p-value for the Wilcoxon-Mann-
Whitney U test between S2 and S3 is 0.04 (two-tailed), i.e., 
the null hypothesis that both QoE distributions are equal has 
to be rejected on a significance level of � = 5% . The p-values 
between S1 and S2 and between S1 and S3 are much smaller 
( < 10−7 ), thereby, also indicating significant differences.

Note that, similar to the construction of multiple con-
fidence intervals, conducting multiple hypothesis tests on 
the same data also faces the multiple comparisons problem. 
Thus, in this case, also a correction method has to be applied 
in order to avoid the inflation of the probability of a type I 
error ( � ), such as the Bonferroni correction (cf. Sect. 4.1.1) 
or the Holm-Bonferroni method [100]. For the latter, con-
sider that all m tested hypotheses are sorted according to 
their p-values from lowest to highest: p(1),… , p(m) . For the 
given global significance level � , let j be the minimal index, 
such that

Then reject all j − 1 hypotheses with p-value lower than p(j) , 
and do not reject all hypotheses with p-value greater or equal 
to p(j) . If j = 1 , do not reject any hypothesis, and if no j 
exists, reject all hypotheses. This procedure ensures that the 
global significance level, i.e., probability of a type I error, is 
less or equal than � . Thereby, the Holm-Bonferroni method 
shows a lower increase of the probability of a type II error 
compared to the classical Bonferroni correction.

When comparing a set A of multiple QoE distributions 
with |A| > 2 , the Kruskal-Wallis test [101], which is the 
one-way analysis of variance (ANOVA) on ranks, can be 
used if the groups of ratings are independent. It is a non-
parametric test for ordinal data, which is similar to the 
Wilcoxon-Mann-Whitney U test. Again, the sum of ranks 
for each QoE distribution A ∈ A have to be computed con-
sidering the the number of tied ranks ti =

∑
A∈A xA

i
 among 

all QoE distributions in A , cf. Eq. 27. Then, the test statistic 
H can be computed as follows:

where N =
∑

A∈A nA is the sum of all ratings in all compared 
QoE distributions. The significance of the test statistic H can 
then be looked up in dedicated tables. For large samples, H 
approximately follows a chi-square distribution with |A| − 1 
degrees of freedom. When comparing the three exemplary 
QoE distributions A = {S1, S2, S3} , the Kruskal-Wallis test 
rejects the null hypothesis that all three QoE distributions are 
equal with a p-value < 10−11 . This was expected as already 
the Wilcoxon-Mann-Whitney U test rejected all hypotheses 
that any two QoE distributions in {S1, S2, S3} were equal.

(30)p(j) >
𝛼

m + 1 − j
.

(31)H =

�
12

N(N+1)

∑
A∈A

(RA)2

nA

�
− 3(N + 1)

1 −
∑5

i=1
(t3
i
−ti)

N3−N

,

Dependent groups of ratings

If the groups of ratings are dependent, e.g., if the same par-
ticipants rated different stimuli in a single QoE study, the 
Friedman test [102, 103] can be used to compare a set A of 
QoE distributions with |A| ≥ 2 . However, the individual rat-
ings have to be identified and matched in this scenario. Let 
x(A, a) be the rating of participant a, a ∈ {1,… , n}, on QoE 
stimulus A ∈ A . Based on these ratings, each QoE stimu-
lus A obtains an individual rank ra(A) considering again the 
number of ties ta

i
=
∑

A∈A �{x(A,a)=i} among a’s ratings for all 
QoE stimuli. Then, the sum of ranks RA can computed for 
each QoE stimulus A:

The test statistic T1 of the Friedman test can be computed as:

The significance of the test statistic T1 can be looked up in 
dedicated tables. For large samples, T1 approximately fol-
lows a chi-square distribution with |A| − 1 degrees of free-
dom. Note that this approximation is sometimes poor, so it 
is recommended to use the statistic

which follows an F-distribution with parameters |A| − 1 and 
(n − 1)(|A| − 1) [104]. For the QoE stimuli in the considered 
example, the Friedman test is not applicable, as the stimuli 
were rated independently.

To sum up, this section presented methods for testing 
differences between rating distributions. Such hypothesis 
tests can be conducted to investigate if one stimulus from 
a group of two or more stimuli gives a significantly differ-
ent rating distribution. Thus, the presented methods allow 
to distinguish (groups of) stimuli based on their underlying 
QoE distributions.

Comparison of QoE distributions

Next, researchers typically want to select the stimulus, which 
gives the best experience. So, instead of just testing for sig-
nificant differences between the observed rating distributions 
of the stimuli, the QoE distributions should be compared in 
terms of the resulting experience. For comparing different 

(32)

RA =

n∑
a=1

ra(A)

=

n∑
a=1

5∑
i=1

(
�{x(A,a)=i} ⋅ (1 +

i−1∑
j=1

ta
j
+

ta
i
− 1

2
)

)
.

(33)T1 =
(�A� − 1)

∑
A∈A

�
RA −

n(�A�+1)
2

�2

∑n

p=1

∑
A∈A (rp(A))2 −

n�A�(�A�+1)2
4

.

(34)T2 =
(n − 1)T1

n(|A| − 1) − T1
,
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QoE distributions, the concept of stochastic dominance 
[105] from decision theory can be utilized and transferred. 
Stochastic dominance describes a partial ordering between 
random variables. It can indicate if a gamble, i.e., a prob-
ability distribution over possible outcomes, is dominant and 
should be preferred. For QoE distributions, this means, that, 
if ratings (outcomes) are obtained from a superior QoE dis-
tribution, the corresponding stimulus (gamble) should be 
preferred. Different orders of dominance exist, but as it is 
a partial ordering, there might not always be a dominant 
distribution in comparisons of QoE results.

A QoE distribution B with cumulative representation cB has 
a first-order stochastic dominance (FSD) over a QoE distribu-
tion A with cA , if:

Intuitively, this FSD of B indicates that the probability of 
having a rating of at least category i, i.e., 1 − cB

i−1
 is higher 

than the corresponding probability for A, i.e., 1 − cA
i−1

 , for 
all categories. A weaker form of dominance is second-order 
stochastic dominance. QoE distribution B has a second-order 
stochastic dominance (SSD) over a QoE distribution A, if:

The intuitive explanation of SSD is that overall differences in 
probability mass between B and A are shifted more towards 
categories with higher QoE, i.e., 

∑j

i=1
cA
i
− cB

i
≥ 0 for all j. 

Obviously, FSD implies SSD. Note that the definition of 
SSD in this work avoids the typical definition via integrals, 
cf. [105], as integrals are not meaningful for ordinal scales. 
For the exemplary QoE distributions, S2 and S3 show FSD 
over S1 , while for S2 and S3 , neither FSD nor SSD can be 
observed in any direction.

To put it in a nutshell, this section transferred the concept of 
stochastic dominance in order to compare QoE distributions. 
This general concept allows to find stimuli that give superior 
ratings. Consequently, those stimuli can be considered to pro-
vide a better experience.

Quantification of QoE differences

Researchers are often interested in the QoE difference between 
two stimuli, e.g., if one stimulus represents the baseline config-
uration and other stimuli represent alternative configurations 
of the system under test. In this case, the difference between 
the resulting experience with the different stimuli has to be 
evaluated.

(35)cB
i
≤ cA

i
, ∀i = 1,… , 5.

(36)
j∑

i=1

cB
i
≤

j∑
i=1

cA
i
, ∀j = 1,… , 5.

Statistical distances between QoE distributions

To quantify differences between two QoE distributions, there 
exist a plethora of statistical distances, e.g., [106]. Simple 
examples include the total variation distance

which is the largest difference between the probabilities that 
both distributions assign to the same category [106], or the 
Kolmogorov-Smirnov test statistic

which is the maximum vertical distance between the cor-
responding cumulative probability distributions [107, 108]. 
The widely used Kullback-Leibler divergence DKL [109], 
however, is not recommended as it is not a metric. Moreover, 
if one of the categories was never rated by any users, i.e., its 
probability is zero, DKL and its derived symmetric versions 
become ∞ , e.g., in S1 for “excellent” (5).

A more robust and intuitive distance metric is given by the 
Wasserstein metric [110], which is also called earth mover’s 
distance DEM [111, 112]. It indicates the minimal amount of 
probability mass that has to be moved to change the shape and 
make one probability distribution look exactly the same as 
the other probability distribution. Obviously, the more differ-
ent the distributions are, the more probability mass has to be 
moved, hence, DEM will be larger. A simple formula exists to 
compute DEM between QoE distributions A and B:

Note that DEM indicates the absolute value of probability 
mass, which has to be shifted. However, the probability mass 
is counted for each of the intermediate categories, if it flows 
between categories that are not adjacent. Thus, it can only 
be interpreted as the shifted probability mass weighted by 
the number of categories that it has to be shifted. For exam-
ple, considering A = (0, 0, 0.1, 0, 0.9) , B = (0, 0, 0, 0.2, 0.8) , 
and I5 = (0, 0, 0, 0, 1) , both DEM(A, I5) = DEM(B, I5) = 0.2 . 
However, in the case of A, it means that a probability mass 
of 0.1 has to be shifted by two categories, while, in case of 
B, a probability mass of 0.2 has to be shifted by one cat-
egory. Note once again that it has to be carefully avoided to 
interpret these numbers in terms of numerical differences 
or ratios between QoE rating categories, which is not pos-
sible for ordinal rating scales and would again introduce 
the inherent bias discussed above. This means, for example, 
that although the above discussed shifts from A to I5 (0.1 for 
two categories) and from B to I5 (0.2 for one category) are 
numerically equal, they cannot be considered equal in terms 

(37)�(A,B) = max
i

|pA
i
− pB

i
|, i = 1,… , 5,

(38)DKS(A,B) = max
i

|cA
i
− cB

i
|, i = 1,… , 5,

(39)DEM(A,B) =

4∑
j=1

|cA
j
− cB

j
|.
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of QoE improvement, which is also indicated by the fact that 
DEM(A,B) = 0.2 ≠ 0.

For two arbitrary QoE distributions A and B, the maxi-
mum distance maxA,B DEM(A,B) = 4 , which is reached for 
the distance between I1 = (1, 0, 0, 0, 0) and I5 = (0, 0, 0, 0, 1) , 
i.e., a probability mass of 1 has to be shifted by four catego-
ries. Thus, it is possible to normalize the DEM to the unit 
interval [0, 1] by computing

For the considered QoE study, it can again be seen from 
DEM,norm(S1, S2) = 0.22 and from DEM,norm(S1, S3) = 0.33 
that S1 is not very close to S2 and S3 . In contrast, 
DEM,norm(S2, S3) = 0.11 , which confirms that S2 and S3 are 
rather similar.

Novel metrics derived from DEM

Since the Wasserstein metric or earth mover’s distance DEM 
nicely captures the intuition that users and their experience 
transition from one rating category to another, in the follow-
ing, novel metrics are defined, which allow to evaluate QoE 
differences in a purely ordinal way, without any assumption 
on the distances between rating categories.

First, a novel QoE deficit index QDI of a QoE distribution 
A can be constructed based on DEM,norm . For this, QDI is 
defined as the normalized distance to the ideal QoE distri-
bution I5 = (0, 0, 0, 0, 1) , for which all participants rated an 
“excellent” (5) experience:

QDI is in the unit interval, i.e., a QoE deficit index of 0 
indicates an ideal QoE distribution ( A = I5 ), and a QDI 
of 1 means that A has the worst possible QoE distribution 
I1 = (1, 0, 0, 0, 0) . Also, a novel corresponding QoE level 
index QLI of a QoE distribution A can be derived as

As QDI and QLI are based on DEM , the same limitations 
apply in terms of interpretation. Here again, consider the 
example discussed for DEM above, which equally applies 
to QDI. Note that there is also a mathematical relation to 
MOS via

It allows to define MOS based on a distance metric between 
QoE distributions over ordinal categories, rather than relying 

(40)DEM,norm(A,B) =
1

4
DEM(A,B).

(41)QDI(A) = DEM,norm(A, I5) =
1

4

4∑
j=1

cA
j
.

(42)QLI(A) = DEM,norm(A, I1) = 1 − QDI(A).

(43)
MOS(A) = 5 − DEM(A, I5)

= 5 − 4 ⋅ QDI(A) = 1 + 4 ⋅ QLI(A).

on a biased cast of ordinal rating data to an interval scale. 
Thus, it allows for an unbiased interpretation of MOS in terms 
of QoE probability masses, which are shifted and weighted 
by the number of shifted rating categories. Consequently, 
the ranking of the stimuli S1 , S2 , and S3 in terms of QLI 
with QLI(S1) = 0.12 < QLI(S2) = 0.35 < QLI(S3) = 0.45 is 
equivalent to the ranking based on MOS. The ranking and 
the QLI scores indicate that the highest QoE deficit is in S1 , 
in terms of the number of ratings and/or number of catego-
ries that would have to be shifted to reach an ideal QoE.

Next, the net flow of probability mass NFi(A → B)i from 
each category i of A towards category i + 1 of B is intro-
duced, which can be obtained from the terms of the sum in 
Eq. 39:

Here, a positive NFi(A → B) means that probability mass 
of A flows from category i towards i + 1 in B, i.e., towards 
higher QoE. In contrast, if NFi(A → B) is negative, A’s prob-
ability mass flows from category i + 1 to i in B, i.e., towards 
lower QoE. Note that, in contrast to DEM , NFi is signed and 
directed, such that NFi(A → B) = −NFi(B → A) . This con-
cept also allows to count the number of categories with a 
positive or negative net flow from A to B and vice versa. 
At the same time, NFi(A → B) also quantifies the net prob-
ability mass, which flows between the categories. Confer 
with Eq. 35, which indicates FSD when all NFi(A → B) are 
positive.

When all signed net flows are added, the resulting num-
ber indicates the net balance, which is a novel metric for 
the overall directed net probability flow from A to B:

Note the relation to SSD in Eq. 36, which follows if all par-
tial sums of NB(A → B) are positive. Also note the rela-
tionship to QDI, i.e., NB(A → B) = 4 ⋅ (QDI(A) − QDI(B)) , 
which follows directly from the definitions. Generally speak-
ing, NB(A → B) is a signed number that for positive values 
indicates a shift of probability mass towards higher QoE 
categories, such as in the considered example, in which 
NB(S1 → S2) = 0.89 and NB(S2 → S3) = 0.41 > 0 . Again, 
it is weighted by the number of categories and, as differently 
signed shifts of probability mass have been canceled out, it 
should not be interpreted in terms of quantitative differences 
or ratios between QoE rating categories, which cannot be 
obtained from ordinal scales.

To sum up, several methods for quantifying the dif-
ference between two QoE distributions were outlined. 
All methods purely rely on ordinal data, and thus, do not 
need to implicitly consider experience differences between 

(44)NFi(A → B) = cA
i
− cB

i
, i = 1,… , 4.

(45)NB(A → B) =

4∑
i=1

NFi(A → B).
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rating categories, which allows for a meaningful interpre-
tation of the QoE difference. For this, the Wasserstein 
metric or earth mover’s distance proves to be a versatile 
metric, which is well suited to illustrate the rating process. 
This means, the movement of probability mass, on which 
the metric is based, nicely resembles the concept that users 
move to a different rating category if the underlying expe-
rience changes. Novel metrics have been proposed, which 
allow to inspect the net flow and net balance between two 
QoE distributions in detail, at the same time quantifying 
the net movement of users between rating categories in a 
single metric.

Metrics for QoE fairness

There is a recent development to consider the QoE fair-
ness among users of a shared system, such that a system is 
considered QoE-fair if all users obtain the same QoE. The 
metric proposed in [84] quantified the fairness in terms of 
the dispersion of the QoE distribution, however, it relies 
on the standard deviation, which interprets the rating 
scales as an interval scale and considers equidistant dif-
ferences between the categories. To overcome this issue, 
also a novel concept for assessing the QoE fairness of a 
QoE distribution is presented. This novel concept is based 
on the ordinal scale of ratings, and thus, allows to derive 
meaningful metrics.

The novel QoE fairness concept is based on the intui-
tion that for any given QoE distribution A, the closest, 
perfectly fair QoE distribution ImA

 is the monolithic dis-
tribution, for which all participants have rated the modal 
QoE category of A, i.e., the category of A with the high-
est number of participants. This intuition of the closest, 
perfectly fair QoE distribution ImA

 is supported by the fact 
that, in order to reach ImA

 from A, the experience of the 
fewest number of users would have to be changed. The 

fair QoE distribution Im , which has category m ∈ {1,… , 5} 
as mode, can be described by pm = 1 and pi = 0, ∀i ≠ m . 
Consequently, a simple QoE fairness metric Fa can be 
described by the level of agreement on the modal category 
normalized to the unit interval:

The normalization takes into account that, due to the five rat-
ing categories, the minimum mode of any QoE distribution 
is 1

5
 . A fairness score of 1 indicates that all participants have 

rated the same category, while a fairness score of 0 indicates 
a uniform rating distribution. In the considered example, 
the QoE distributions reach the following fairness scores: 
Fa(S1) = 0.55 , Fa(S2) = 0.25 , and Fa(S3) = 0.14.

This concept of fairness towards a monolithic distribution 
also allows to define a more advanced QoE fairness score Fd , 
which is based on the DEM distance between A and its cor-
responding ImA

 . Considering the maximum distance between 
any QoE distribution A and its closest, perfectly fair QoE 
distribution ImA

 , which is maxA DEM(A, ImA
) =

7

3
 , the QoE 

fairness score can be normalized to the unit interval:

Here again, a fairness score of 1 indicates perfect fairness of 
the QoE ratings, i.e., all participants have rated the same cat-
egory, which is the mode of A. In contrast, a fairness score of 
0 indicates the highest unfairness in the QoE ratings in terms 
of DEM . This is achieved, e.g., for A = (

1

3
,
1

3
− �, 0, 0,

1

3
+ �) 

with a small 𝜀 > 0 , which has mode m = 5 . The distance to 
the corresponding I5 = (0, 0, 0, 0, 1) is DEM(A, I5) =

7

3
− 3� , 

which approaches the maximum value. In the considered 
QoE study, Fd(S1) = 0.79 , Fd(S2) = 0.68 , and Fd(S3) = 0.45 , 

(46)Fa(A) =
5

4
⋅

(
pmA

−
1

5

)
=

5

4
⋅

(
max

i
pi −

1

5

)
.

(47)Fd(A) = 1 −
DEM(A, ImA

)

7

3

= 1 −
3 ⋅ DEM(A, ImA

)

7
.

Table 4  Summary of presented methods for handling ordinal data in QoE studies

Use case Method Equation

Required number of ratings Sample sizes Eqs. 12, 15, 14, 23, 26
Parameters of QoE distribution Parameter estimation Eq. 2
Confidence intervals of parameter estimation Confidence intervals Eqs. 10, 13, 21, 24, 25
Signif. diff. between 2 indep. rating distributions Wilcoxon-Mann-Whitney U test Eqs. 27ff.
Signif. diff. between > 2 indep. rating distributions Kruskal-Wallis test Eqs. 31
Signif. diff. between ≥ 2 dep. rating distributions Friedman test Eqs. 32ff.
Adjustments for multiple comparisons Bonferroni, Holm-Bonferroni Eqs. 11, 30
Comparison of QoE distributions First-/second-order stochastic dominance Eqs. 35, 36
Differences between QoE distributions Statistical distances ( �,DKS,DEM) Eqs. 37, 38, 39f.
Absolute experience level of QoE distribution QoE deficit index (QDI), QoE level index (QLI) Eqs. 41, 42
Inspection of rater movement Net flow ( NFi ), Net balance (NB) Eqs. 44, 45
Fairness of QoE distribution Fairness metrics Eqs. 46, 47
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i.e., the fairness decreases from S1 to S3 , with S1 being closest 
to a monolithic QoE distribution.

In short, this section presented two novel QoE fairness 
metrics for QoE distribution. They rely on the difference to 
the respectively closest monolithic QoE distribution, which 
is a perfectly fair QoE distribution, for which all users rate 
the same experience. Thus, there is a change of the fairness 
concept from a dispersion measure, which required interval 
data, to the difference between ordinal QoE distributions.

All in all, throughout Sect. 4, existing and novel statistical 
methods were presented that can handle ordinal data and that 
are well suited for the domain of QoE research. Table 4 lists 
the presented methods according to their typical use case 
and provides a link to the corresponding equations. Note 
that most of the methods up to line “Differences between 
QoE distributions” are existing and well established meth-
ods, which can be found in standard statistical software, so 
there is no need to implement all the equations in this article. 
However, the presented equations help to fully understand 
the methods, which is beneficial for the interpretation of 
results. The novel methods for QoE distributions from line 
“Absolute experience level of QoE distribution” can be eas-
ily implemented from the provided equations.

QoE models based on QoE distributions

When considering QoE distributions, the question arises 
how to formulate QoE models for technical systems. Here, 
the assumption is made that the system under test can be 
configured by one or more parameters, which influences 
the resulting QoE distribution. For a start, technical sys-
tems with a single, continuous parameter will be considered, 
which has a monotonic relationship with QoE. Without loss 
of generality, it will be assumed that the experience increases 
monotonically when the technical parameter increases.

Quality steps

In the following, the range of the technical parameter will 
be discretized into quality steps, which is a novel concept 
introduced in this article. Thereby, a quality step is defined 
as an interval of the technical parameter range, in which the 
corresponding QoE distribution is fixed. Note that quality 
steps are a simple, yet universal metric, which can be applied 
to any technical system. In the following, their properties 
are elaborated.

Let n be a population of users of a fixed size. Then, there 
are a total of 4 ⋅ n quality steps from the worst possible rat-
ing distribution I1 to the best possible rating distribution I5 , 
and the technical system moves one quality step forward 
if and only if one user rates one category higher. At each 
quality step t ∈ {0,… , 4 ⋅ n} , there might be numerous pos-
sible rating distributions. In fact, at quality step t, all rating 
distributions A are possible, which fulfill

having x1 = n −
∑5

i=2
xi and all xi ≥ 0 ∀i ∈ {1,… , 5} . 

Normalizing this equation by the number of users n, this 
also gives a relation between the normalized quality steps 
t

n
∈ [0;4] and the quality level index QLI as defined above:

Following Eq. 49, when n tends towards infinity, there will 
be infinitely many quality steps, and moving one quality 
step becomes equivalent to shifting an infinitesimally small 
probability mass one category higher. Thus, the concept of 
quality steps can be transferred to QoE distributions even 
without the need for a realization, i.e., a rating distribution:

(48)t =

4∑
i=1

xi+1 ⋅ i,

(49)t

n
=

4∑
i=1

p̂i+1 ⋅ i = 4 ⋅ QLI(A).
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(a) Technical system A. (b) Technical system B. (c) Technical system C.

Fig. 3  Mean cumulative probabilities at each quality step of three technical systems with different characteristics
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Assuming a finite population n, the concept of quality steps 
discretizes the range of the technical parameter and is gen-
eral, such that it covers the situations when multiple users 
rate a category higher at the same time or one user rates 
more than one category higher by simply moving forward 
more steps at a time. Still, the technical system itself char-
acterizes where the quality steps are located and which QoE 
distribution can be found at each quality step.

To get a better understanding of the quality steps and their 
different characteristics, Fig. 3 shows the quality steps for 
three different technical systems. Three simulation studies 
were conducted with 1000 simulation runs each consider-
ing a population of n = 100 users. The three plots show the 
means of the cumulative probabilities ĉi over all runs at each 
quality step.

System A is designed such that a user is randomly 
selected from category 1, and in the next four quality steps, 
he always rates one category higher. Thus, System A shows 
a highly imbalanced progress of the users’ experience. The 
resulting QoE distributions have the probability mass in 
category 1 linearly decreasing and in category 5 linearly 
increasing, while only a negligibly small amount of prob-
ability mass, if any, resides at categories 2 to 4, as can be 
seen in Fig. 3a.

In System B, on the other hand, at each quality step, a 
user is randomly selected from the lowest rated category 
mini xi > 0 and simulated to rate one category higher to 
reach the next quality step. Thus, System B shows a very 
slow and balanced progress of the users’ experience and 
it visits all monolithic QoE distributions Ii at quality step 
t = (i − 1) ⋅ 100 as can be seen from Fig. 3b. Note that for 
System A and B all simulation runs result in the same QoE 
distribution at each quality step, so confidence intervals were 
omitted.

System C is designed to follow a stochastic process, 
such that at each simulation step, a random user is selected 
(excluding users which have already rated category 5) to 
rate one category higher. The users are randomly selected 
according to a uniform distribution. This design follows the 

(50)t� = lim
n→∞

t

n
=

4∑
i=1

pi+1 ⋅ i = 4 ⋅ QLI(A),
rationale that it is not known in advance, which user will 
switch next to a higher category, so all users are equally 
likely (principle of indifference). As can be seen in Fig. 3c, 
this results in a highly concave decrease of the mean of ĉ1 , 
sigmoidal decreases of the means of ĉ2 and ĉ3 , and a convex 
decrease of the mean of ĉ4 . Note that although the QoE dis-
tributions at each quality step differ at each simulation run, 
the 95% confidence intervals were negligibly small < 0.005 , 
so CIs were also omitted in Fig. 3c for better readability.

Since System C does not take any underlying assump-
tions – remember that all quality steps are taken uniformly 
random – it can be considered an average system in that 
sense, and will be studied in more detail. As no analytical 
solution could be derived for the curves of the probability 
functions pi(t) and ci(t) , which describe the mean probabili-
ties p̂i and ĉi at each quality step t, the observed probabilities 
from 100,000 simulation runs will be fitted using a non-
linear method of least squares. Table 5 shows the resulting 
curve fits and their goodness of fit in terms of the coefficient 
of determination R2 . Note that all R2 values are close to 1, 
which indicates that almost all of the variance in the simula-
tion data could be explained by the model. It can be seen that 
the probability functions consist of three building blocks, 
namely, a power of t

400
 , a power of the mirrored function 

1 −
t

400
 , and an exponential function of t

400
 . The polynomial 

functions were chosen based on the shape of the curves, and 
models relying only on them already reach quite decent fits. 
However, the fits could be improved by extending the models 
with exponential factors, which increased R2 by around 0.02 
for p(t), and between 0.02 and 0.08 for c(t). Note that an 
analytical confirmation of the presented results is still open. 
However, also the numerically fitted functions already allow 
to obtain – in the above described sense – average probabili-
ties and cumulative probabilites at each quality step.

To sum up, quality steps are a very general approach, 
which map the full range of a technical parameter to a 
bounded range of its corresponding experience. At any qual-
ity step, a plethora of QoE distributions can exist. However, 
each investigated technical system will only show a specific 
QoE distribution at each step. Thus, it is the ultimate goal 
of each QoE model of a technical system to fully describe 
its QoE distribution at each quality step.

Table 5  Curve fit of probability functions in System C

p(t) R2
p

c(t) R2
c

p1(t) = (1 −
t

400
)3.385 0.9941 c1(t) = (1 −

t

400
)3.385 0.9941

p2(t) = (
t

400
)0.522 ⋅ (1 −

t

400
)2.397 ⋅ exp(1.451 ⋅

t

400
) 0.9821 c2(t) = (1 −

t

400
)2.369 ⋅ exp(1.450 ⋅

t

400
) 0.9965

p3(t) = (
t

400
)1.109 ⋅ (1 −

t

400
)1.547 ⋅ exp(1.061 ⋅

t

400
) 0.9872 c3(t) = (1 −

t

400
)1.634 ⋅ exp(1.460 ⋅

t

400
) 0.9977

p4(t) = (
t

400
)1.839 ⋅ (1 −

t

400
)1.002 ⋅ exp(0.547 ⋅

t

400
) 0.9963 c4(t) = (1 −

t

400
)1.058 ⋅ exp(1.122 ⋅

t

400
) 0.9997

p5(t) = (
t

400
)2.654 0.9997 c5(t) = 1 -



Quality and User Experience             (2021) 6:3  

1 3

Page 19 of 27     3 

Identifying quality steps in QoE studies

Figure 3 visualized how the QoE distributions at each qual-
ity step fully characterize the users’ experience of a technical 
system. However, in practice, not all QoE distributions at 
each quality step will be known for a given technical sys-
tem, as a QoE study typically allows to only obtain the rat-
ing distributions for some values of the technical parameter. 
Nevertheless, the rating distributions resulting from a QoE 
study allow to determine the quality steps where each inves-
tigated parameter value is located using Eq. 48 or 49. Here, 
the normalized quality steps of Eq. 49 can also be applied to 
locate distributions with different numbers of ratings.

QoE studies further allow to find implausible rating dis-
tributions at other quality steps with respect to the observed 
rating distributions. Thereby, a rating distribution A at qual-
ity step u is plausible with respect to an observed rating dis-
tribution B at quality step v, v > u , if B is reachable from A 
in v − u valid quality steps, i.e., B’s user ratings can only be 
shifted towards a higher category to reach QoE distribution 
A. This means, for two rating distributions A and B with the 
same population size n, that B is reachable from A if

Given that A and B have the same population size n, ∑4

j=1
(
∑j

i=1
xA
i
−
∑j

i=1
xB
i
) = v − u . Similarly, following 

Eq. 49, B is reachable from A if

and it follows that NB(A → B) = v − u for normalized qual-
ity steps u and v.

As each observed rating distribution is a realization of 
the underlying QoE distribution, the simultaneous confi-
dence regions of the parameters are of interest, cf. Eq. 13 
for the probabilities p or Eq. 25 for the cumulative prob-
abilities c . Consider that pi is the probability of interest for 
now. The symmetric confidence interval with width di > 0 
indicates that the true pi is within lpi = max(p̂i −

di

2
, 0) and 

upi = min(p̂i +
di

2
, 1) . Now, it becomes clear that, at the 

lower bound of the confidence interval, probability mass 
was removed from category i, while at the upper end of the 
confidence interval, probability mass was added. However, 
since probability mass was moved to other categories, the 
quality steps at lpi and upi are different from the observed rat-
ing distribution. This suggests to consider confidence areas 
instead of confidence intervals.

A confidence area for pi can be constructed between four 
“bounding” QoE distributions, namely, the smallest and 
greatest QoE distributions, which reach lpi and upi , respec-
tively. Here, “smallest” and “greatest” are meant in terms 
of quality steps. The smallest bounding QoE distributions 

(51)
j∑

i=1

xA
i
−

j∑
i=1

xB
i
≥ 0, ∀j ∈ {1,… , 4}.

(52)NFi(A → B) ≥ 0, ∀i ∈ {1,… , 4},

will be called pi,l,s and pi,u,s , while the greatest bounding 
QoE distributions will be called pi,l,g and pi,u,g . They can be 
computed as described in Algorithm 1:

First, pi,l,s = pi,l,g and pi,u,s = pi,u,g are initialized with the 
lower and upper CI bounds, respectively (Lines 1-2). Note 
that pi,l,s, pi,l,g, pi,u,s , and pi,u,g are no valid QoE distributions 
yet as 

∑5

k=1
lpk is typically less than 1 and 

∑5

k=1
upk is typi-

cally greater than 1, and the missing or excess probability 
mass still has to be redistributed (Lines 3-4). For pi,l,s , fix 
lpi and distribute the missing probability mass leftmost. 
This means, starting from category 1 to 5, fill the missing 
probability mass into category j (j ≠ i) , until – in order to 
stay within the CI bounds of category j – at most upj prob-
ability mass resides (Lines 5-9). If all other categories 
j (j ≠ i) have been filled until upj , and still some probability 
mass is missing, add it to category i (Line 14). Following 
this simple algorithm will result in pi,l,s , which is the 
smallest valid QoE distribution, which approaches the 
lower bound of the CI for pi , such that no CI bound of any 
other category is violated. Similarly, pi,l,g can be computed 
by redistributing the missing probability mass rightmost, 
i.e., starting from category 5 down to 1, but following the 
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same procedure (Lines 16–20,25). The same procedure 
also applies to pi,u,s and pi,u,g , where the excess probability 
mass is subtracted rightmost (Lines 16–17,21–23,26) or 
leftmost (Lines 5–6,10–13,15), respectively. The resulting 
confidence area for pi is then given by the quality steps of 
the bounding QoE distribution and their respective prob-
ability masses at category i.

The concept of confidence areas will be visualized for 
an exemplary QoE study. Again, the filtered ratings of the 
crowdsourcing QoE study in [87, 88] are used. Remem-
ber that the participants watched short video clips of 
30s, which included a number of stalling events from 0 
to 6. Each stalling lasted for 4s, and the stalling events 
were regularly spaced within the video. Thus, the techni-
cal parameter of this system is number of stalling events. 
Table 6 shows the corresponding rating distributions p̂ 
obtained during the QoE study and the number of reliable 
ratings for each condition. Note that for illustrating the 
confidence areas, an overall population of n = 100 users 
is assumed, and the rating distributions of Table 6 are 
scaled accordingly. Moreover, the convention will be kept 
that an increase in quality steps increases the experience, 
although for this system, the experience increases when 
the parameter (i.e., number of stalling events) decreases. 
This means, for now, the axis of the technical parameter 
will be “reversed”, such that the worst experience still 
resides at quality step 0, and the best experience resides 

at quality step 400. The corresponding quality step of each 
rating distribution is given in the last column of Table 6.

Figure 4a shows the cumulative QoE distributions at 
their corresponding quality step. Thereby, the colors indi-
cate the rating categories in a traffic light style from “bad” 
(red), “poor” (dusky pink), “fair” (yellow), “good” (green) 
to “excellent” (dark green). For each cumulative probabil-
ity, the four bounding QoE distributions were computed 
according to Algorithm 1 with respect to the simultaneous 
confidence intervals from Eq. 25. The bounding QoE dis-
tributions indicate the smallest and largest quality step at 
which the lower and upper bound of the CI of a cumula-
tive probability can be reached without violating any other 
of the simultaneous CIs. Thus, there are four bounding 
distributions and they span the confidence area along the 
horizontal axis, i.e., the quality step axis (smallest to larg-
est quality step) and along the vertical axis (lower bound 
to upper bound of CI). Given the restriction to not violate 
any other of the simultaneous CIs, the confidence areas are 
not completely trapezoid as can be seen in Fig. 4a, but they 
can be irregular quadrilateral polygons. The advantage of 
the confidence areas is that they not only show the range of 
the parameters of a QoE distribution, but also the range of 
quality steps at which the QoE distribution can be located.

Table 6  Exemplary rating 
distributions from conducted 
QoE study for the technical 
parameter number of stalling 
events 

Parameter p̂1 p̂2 p̂3 p̂4 p̂5 n QS ( n = 100)

0 0 0 0 0 1 44 400
1 0.19 0.22 0.24 0.31 0.04 68 179
2 0.18 0.40 0.29 0.11 0.02 44 139
3 0.38 0.30 0.21 0.11 0 47 105
4 0.47 0.32 0.18 0.03 0 38 77
5 0.55 0.32 0.08 0.05 0 38 63
6 0.73 0.22 0.03 0.03 0 37 36
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(a) Confidence areas based on bounding
QoE distributions.
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ĉ3
ĉ2
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(b) Viterbi paths between observed ra-
ting distributions.
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(c) Mean paths between observed distri-
butions and comparison to System C.

Fig. 4  Quality steps of exemplary QoE study
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Simulative QoE models

The purpose of a QoE model is to describe the relation-
ship between a technical parameter z ∈ ℝ of a system 
and the corresponding Quality of Experience. It allows 
to investigate the QoE response when a technical param-
eter is varied, and it also allows to interpolate the QoE 
of technical parameters, which were not explicitly stud-
ied. As a QoE distribution p consists of five parameters, 
it is thus required to find a QoE model as a mapping 
m ∶ ℝ → [0;1]5,m(z) ↦ (p1, p2, p3, p4, p5) with 

∑5

i=1
pi = 1 . 

Similarly, a QoE model can also map from the same domain 
to (c1, c2, c3, c4, c5) with c1 ≤ c2 ≤ c3 ≤ c4 ≤ c5 = 1 , as the 
representations p and c are equivalent.

As a technical system is fully characterized by the QoE 
distributions at each quality step, a straightforward approach 
is to compute or simulate the most likely path through QoE 
distributions at any quality step based on the observed rat-
ing distributions. Figure 4b shows this path for the exem-
plary QoE study. For this, the range of quality steps was 
split at each observed rating distribution into segments, and 
a Viterbi-like algorithm was employed to compute the path 
with the highest probability for each segment. Here, the 
QoE distributions at each quality step are the hidden states. 
Again, a uniform distribution was assumed for 

∑4

i=1
xi active 

participants, i.e., those participants that could still increase 
their rating category. this means that all active participants 
were equally likely to trigger a transition to another state, 
namely, a QoE distribution at the next quality step.

As it can be seen in Fig.  4b, the resulting Viterbi 
paths show the characteristics of System B, cf. above, 
such that there is a slow and balanced increase of rat-
ing categories, starting from the lowest category. The 
reason is that this behavior first bundles the probabil-
ity mass in the lowest rating category, which will lead 
to higher transition probabilities, and thus, a higher path 
probability. To fully understand this behavior, consider 
an example with a Viterbi path between (1, 99, 0, 0, 0) 
and (0, 99, 1, 0, 0) for a population of n = 100 . The path 
(1, 99, 0, 0, 0) → (0, 100, 0, 0, 0) → (0, 99, 1, 0, 0) has a proba-
bility of 1

100
⋅

100

100
=

100

10000
 , which is clearly superior to the alter-

native path (1, 99, 0, 0, 0) → (1, 98, 1, 0, 0) → (0, 99, 1, 0, 0) 
with probability 99

100
⋅

1

100
=

99

10000
 . As a side note, it shall also 

be mentioned that the behavior of System A reflects the path 
with the smallest probability.

Nevertheless, the Viterbi path is only one of a multi-
tude of possible paths through the quality steps, and in 
particular, it does not consider that QoE distributions can 
reside on multiple paths. For instance, see the example 
above where the two paths split at (1, 99, 0, 0, 0) but reu-
nite at (0, 99, 1, 0, 0). Thus, it is better suited to simulate 
many paths through the quality steps and take the average 
QoE distributions at each step. Again, for each segment, a 

uniform approach is employed for all active participants, 
which resembles the behavior of System C. Afterwards, 
the mean paths for each segment are computed. Figure 4c 
shows the resulting mean paths for the exemplary QoE 
study with solid lines. The mean paths are compared to 
the mean probabilities of System C, i.e., a technical sys-
tem without any observed rating distributions, which are 
shown with dotted lines. It can be seen that the mean prob-
abilities of System C approximate the mean probabilities 
of the observed technical system well, and reach a high 
goodness of fit of R2 = 0.9927.

However, when taking a closer look, it becomes evi-
dent that the fit is especially good at low quality steps 
below 100, but shows some divergence between 100 and 
200. Starting from the observed rating distribution at qual-
ity step 139 (two stalling events), it can be seen that the 
observed ĉ3 and its yellow confidence area are slightly 
above the dashed yellow line (mean c3 , category “fair”), 
and that ĉ1 and its red confidence area are below the dashed 
red curve (mean c1 , category “bad”). The divergence 
becomes especially pronounced at the rating distribution 
for one stalling event (quality step 179). Here, the ĉ3 and 
the yellow area are below the dashed yellow curve, and ĉ4 
and the tiny green area are above the dashed green curve 
(mean c4 , category “good”). This shows a substantial dif-
ference from the average behavior of System C.

In particular, in this QoE study, it can be seen that the 
technical system exhibits a substantial QoE distortion 
between quality steps 100 and 200. This means that the 
observed rating distributions have many ratings in a lower 
category than would be on average. For example, com-
pare the difference between the solid and dashed green 
and yellow curves at quality step 179 (one stalling event), 
which indicate the difference between the average and the 
observed probability for the category “good”. In the con-
sidered QoE study, this results from the fact that the first 
stalling event of a video is a substantial degradation of the 
experience. This locates the observed rating distribution 
at a relatively low quality step, where the QoE distortions 
with respect to the average QoE distribution at this qual-
ity steps become evident. To get more detailed insights 
in the deviation from an average technical system, distor-
tion curves could be computed showing the differences 
between the average ci(t) and the observed ĉi , or the aver-
age ĉi , which were simulated based on the observed rating 
distributions.

To sum up, simulative QoE models not only allow to 
interpolate the QoE distributions at intermediate quality 
steps, which were not observed during the QoE study, but 
they also allow to compare the behavior of the technical 
system to an average rating behavior over the progression 
of quality steps. With this, it is possible to detect substan-
tial QoE distortions caused by the investigated technical 
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parameters when the corresponding rating distribution is 
located at a quality step, where other rating distributions 
would be expected assuming an average rating behavior.

Analytical QoE models

After the simulative QoE models were presented, analyti-
cal QoE models are discussed next. The goal of analyti-
cal models is to provide a functional relationship between 
the technical parameter z and the resulting QoE. Figure 5a 
presents a QoE model for the exemplary QoE study, which 
maps z to the normalized quality steps of the corresponding 
rating distribution. As the normalized quality steps have a 
linear relationship to the quality level index QLI (cf. Eq. 50), 
which in turn has a (numerical) linear relationship to MOS 
(cf. Eq. 43), this model is equivalent to the QoE models in 
[87, 88], which mapped the technical parameter to MOS for 
different lengths of the stalling events. Thus, here again an 
exponential function can be fitted, cf. [113], which is shown 
as a dotted line in Fig. 5a.

The fitted exponential model m(z) = 3.36 ⋅ exp(−0.82 ⋅ z)

+0.57 shows a high goodness of fit of R2 = 0.9782 and is 
almost identical to the model for MOS reported in [88] 
(  mMOS(z) = 3.35 ⋅ exp(−0.89 ⋅ z) + 1.62, R2 = 0.978  ) . 
The slight differences, i.e., most notably the verti-
cal shift of around 1, can be attributed to the differ-
ent codomains (quality steps: [0;  4], MOS: [1;  5]) and 
to minor numerical issues during the fitting. Neverthe-
less, an even better fit could be achieved by consider-
ing an additional linear term in the model, namely, 
m(z) = 2.21 ⋅ exp(−2.17 ⋅ z) − 0.24 ⋅ z + 1.79 , which gives 
an almost perfect fit with R2 = 0.9991 . This fit is shown as 
a dashed line in Fig. 5a.

Two insights can be derived from the QoE models for 
quality steps. First, it becomes clear that any such QoE 
model represents a transformation of the quality step axis 
into the axis of the technical parameter, see x-axes in Figs. 4 
and 5a. For this, different segments of the quality step axis 

are scaled differently, e.g., in the exemplary QoE study, qual-
ity steps 400-179 are contracted to [0; 1], whereas quality 
steps 179-139 are contracted to [1; 2] on the axis of the 
technical parameter (number of stalling events), and so on. 
Second, the problem remains that the quality step only gives 
an indication of how much probability mass has been shifted 
from the worst experience at 0 towards the best experience 
at 4, weighted by the number of shifted rating categories, 
cf. the relationship to QLI (Eq. 50). However, it does not 
indicate how the probability mass has been shifted. In fact, at 
each quality step, numerous QoE distributions are plausible 
as indicated in Eqs. 48–50. Thus, the descriptive power of 
such QoE models for quality steps, or equivalent QoE mod-
els for MOS, is very limited, which again advocates against 
the usage of MOS-based evaluations.

In contrast, QoE models should fully leverage all infor-
mation that can be obtained from a QoE study. Thus, they 
should consider the entire QoE distribution for the mapping 
of the technical parameter z. Figure 5b shows such a QoE 
model for the exemplary QoE study. It models the rating 
probabilities pi, i = 1,… , 5, for each value z of the technical 
parameter, which results in five mapping functions mpi

(z) . 
The five mapping functions are shown by solid lines whose 
color matches the rating category from i = 1 (“bad”) in red 
to i = 5 (“excellent”) in green. They were fitted based on the 
observed rating distributions only, this means, e.g., mp1

(z) 
(red) was fitted based on the seven p̂1 values for z = 0,… , 6 . 
The resulting model functions are given in the first column 
of Table 7. However, during the selection of the functions 
also the simulated mean probabilites from Fig. 4c (dotted 
lines) were considered such that the mapping functions also 
approximate them well. This is why two goodness of fit val-
ues are presented in Table 7. Rp describes the goodness of 
fit only at z = 0,… , 6 , whereas Rp,sim describes the goodness 
of fit with respect to the simulated mean probabilities for 
all z ∈ [0;6] . Note that in addition to R2 , also the compat-
ibility of the mapping functions with the CIs of p̂i has to 
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Fig. 5  QoE models based on QoE distributions



Quality and User Experience             (2021) 6:3  

1 3

Page 23 of 27     3 

be checked, and that mapping functions always have to be 
bounded to the domain [0; 1] as they model a probability.

It can be seen that the same building blocks can be reused 
that were already used above for fitting the mean probabili-
ties of System C, but with two exceptions. mp1

(z) shows a 
clearly linear behavior and mp5

(z) shows an exponential rela-
tionship. These different relationships also point to the obvi-
ous QoE distortion of the observed technical system com-
pared to the average System C. Moreover, 1

7
 was used as a 

scaling factor for the parameter z due to the different domain 
of the model. All five fittings show decent R2

p
 values at the 

seven investigated parameter values. Also with respect to the 
simulated mean probabilities, the R2

p,sim
 values are high, 

except for mp4
(z) . Although it is expected that R2

p,sim
 might 

be lower than R2
p
 , because the fittings are not optimized on 

the whole parameter range z ∈ [0;6] , R2
p,sim

 is only moderate 
for mp4

(z) . Thus, in this case, the fitted model cannot extrap-
olate well with respect to the simulated mean probabilities 
at other quality steps, especially for z between 0 and 1. How-
ever, as the number of stalling events can never actually be 
in between 0 and 1, this issue can be neglected here. For the 
exemplary QoE study, the most important property of a QoE 
model is that the mappings are accurate for all realistic val-
ues of z, i.e., for all z = 0,… , 6.

The presented model achieves this goal, and is thus well 
suited for the considered use case. If the purpose of the QoE 
model was to inter- or extrapolate for realistic, but unob-
served values of the technical parameter, more attention 
would have to be given to the design of the QoE model, as 
the selection of the fitted mapping functions will influence 
the goodness of the prediction of the QoE model for the 
unobserved values. Note also that for practical applications, 
i.e., to obtain the QoE distribution for a certain value of z, 
the outcomes of the five mapping functions might have to 
be normalized. This means, due to the fitting, the obtained 
probabilities might not perfectly sum to 1, so some minor 
scaling might be required.

Finally, Fig. 5c shows a fitted QoE model for the cumu-
lative probabilities observed in the exemplary QoE study. 
Here, the model consists of four individual mappings mc 
from the technical parameter z to ci, i = 1,… 4 . Note that 
mc5

(z) = c5(z) = 1 by definition, and thus, does not need 

to be fitted. Moreover, it also implies that all probabili-
ties obtained from this model perfectly sum to 1. Dur-
ing fitting, the same procedure was followed as described 
above, and the resulting mapping functions are shown in 
the fourth column of Table 7. It can be seen that all map-
ping functions are composed of a power of z

7
 and an expo-

nential function of z
7
 , except for mc1

 , which is identical to 
mp1

 , and thus, also linear. Here, all coefficients of determi-
nation R2

c
 are very high, which indicates a good fit for the 

observed cumulative probabilities ĉi . With respect to the 
simulated mean probabilities, the mappings show a good 
fit for category 1 and 2. However, R2

c,sim
 is lower for i = 3 

and especially for i = 4 , again because of bad approxima-
tions for z in between 0 and 1. Nevertheless, as discussed 
above, the fitted QoE model shows an overall very good 
performance for all realistic values of z = 0,… , 6 , which 
is the most important aspect for the considered use case.

Also generalized linear models can be used to fit simi-
lar QoE models, as was demonstrated in [60]. They can 
include multiple technical parameters directly in the 
underlying linear model, and share a subset of the esti-
mated model parameters for all rating categories. In con-
trast, the approach presented in this work is a more easily 
applicably approach, which is not restricted to any model 
assumptions, e.g., a certain family of functions. Instead, 
the proposed QoE models show a high flexibility as distri-
butions for each category can be fitted with arbitrary func-
tions. Moreover, the proposed QoE models purely rely on 
the observed ratings, and abstract any technical parameters 
into the notion of quality steps.

To sum up, the most striking advantage of this kind of 
QoE models is that they allow to deduce the full QoE dis-
tribution at each observed value of the technical parameter. 
The proposed QoE models come with the additional effort 
of fitting five mapping functions (or four for ĉ ) instead of 
one function, which is required for MOS-based QoE models. 
However, this additional effort is justified, as the models 
keep detailed information from the results of a QoE study. 
At any value of the technical parameter, the correspond-
ing QoE distribution can be extracted to inspect the rating 
behavior. Then, the obtained QoE distributions can be fur-
ther analyzed with the statistical methods summarized in 
Sect. 4, e.g., in terms of QoE differences, or in terms of QoE 

Table 7  Curve fit of probability functions in exemplary QoE study

mp(z) R2
p

R2

p,sim
mc(z) R2

c
R2

c,sim

mp1
(z) = 0.114 ⋅ z + 0.014 0.9718 0.9846 mc1

(z) = 0.114 ⋅ z + 0.014 0.9718 0.9846
mp2

(z) = (
z

7
)0.627 ⋅ (1 −

z

7
)0.457 ⋅ exp(−0.626 ⋅

z

7
) 0.9027 0.8580 mc2

(z) = (
z

7
)0.451 ⋅ exp(0.014 ⋅

z

7
) 0.9996 0.9586

mp3
(z) = (

z

7
)0.590 ⋅ (1 −

z

7
)1.999 ⋅ exp(0.378 ⋅

z

7
) 0.9832 0.9560 mc3

(z) = (
z

7
)0.176 ⋅ exp(0.034 ⋅

z

7
) 0.9848 0.7279

mp4
(z) = (

z

7
)0.266 ⋅ (1 −

z

7
)4.489 0.8835 0.3052 mc4

(z) = (
z

7
)0.019 ⋅ exp(0.011 ⋅

z

7
) 0.9997 0.0806

mp5
(z) = exp(−3.182 ⋅ z) 0.9996 0.8693 mc5

(z) = 1 - -
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fairness. Finally, the QoE models can be used to predict the 
rating behavior also at unobserved values of the technical 
parameter. This gives an unprecedented richness of insights 
into the end users’ experience with the technical system.

Conclusion

This work described the inherent bias in many MOS-based 
evaluations of QoE studies, which is caused by too sim-
plistic assumptions about the mapping of QoE to the rat-
ing scale. Very often, QoE studies use only ordinal rating 
scales, such as the 5-point ACR scale, for which means, 
differences, and ratios between categorical values are not 
meaningful. The dispute on scales and appropriate sta-
tistics was outlined based on works from many research 
domains. Given the partially contradicting arguments 
and counterexamples, the clean way out of this dilemma 
– without having to switch to other study designs or other 
rating scales, without having to separate measurement 
theory (meaning of numbers) and statistical theory (rela-
tion of numbers), and without hoping for robustness when 
violating assumptions of parametric statistics – is to rely 
on statistical methods that can handle ordinal data.

For this, this work considered QoE distributions, which 
can be based on the well-established theoretical framework 
of multinomial distributions. Existing and novel statisti-
cal methods for QoE distributions were summarized and 
exemplary evaluations were described. All methods purely 
rely on ordinal data, and thus, do not need to implicitly 
consider experience differences between rating catego-
ries. This gives meaningful results also for ordinal rat-
ing scales, and thus, shows fundamental advantages over 
biased MOS-based evaluations. All presented methods are 
applicable to the typical use cases when planning a QoE 
study and analyzing the obtained ratings, and thus, should 
be helpful for QoE researchers to come up with meaning-
ful results.

Moreover, this work proposed to also design QoE mod-
els for a technical system based on QoE distributions. For 
this, the novel concept of quality steps was introduced, 
which allows to discretize the range of the technical 
parameters using a simple, yet universal metric. Methods 
to obtain simulative and analytical QoE models were pre-
sented, and exemplary models were demonstrated. The 
resulting QoE models keep detailed information from the 
results of a QoE study, and allow to extract the full QoE 
distribution at each value of the technical parameter. This 
provides rich insights into the end users’ experience with 
the technical system along the whole investigated param-
eter range.

As future work, several arguments and possible solu-
tions to the dispute on scales and statistics should be 

revisited. For example, it should be investigated if item-
response theory can be used in the QoE domain to obtain 
interval data from ordinal QoE ratings [63, 64]. Another 
option would be to present other rating scales in QoE stud-
ies, such that parametric statistics can be meaningfully 
applied. This especially includes continuous rating scales, 
which should provide interval data, such that the described 
issues do not apply. Nevertheless, this property of continu-
ous scales to provide interval data has been questioned for 
a visual analogue scale (VAS) in [34, 35], and thus, still 
has to be confirmed for QoE studies. Moreover, when rely-
ing on ordinal rating scales, the modeling of QoE results 
using generalized linear models [60] could serve as an 
alternative to the QoE models presented in this article, and 
thus, also deserves another close look from the research 
community.

Finally, the presented concept of QoE distributions is still 
in its infancy, and the provided statistical methods and mod-
els in this paper can rather be considered as a first step and a 
motivation to the problem, than as a final solution. Thus, any 
additional contributions to the tool box of statistical methods 
for QoE distributions based on ordinal data and the pre-
sented approach to QoE models, which were initialized in 
this article, will only further advance the methodology in the 
QoE domain, and therefore, would be highly appreciated.
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