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ABSTRACT6

Around 4.9 billion Internet users worldwide watch billions of hours of online video every day. As a result, streaming is by
far the predominant type of traffic in communication networks. According to Google statistics, three out of five video views
come from mobile devices. Thus, in view of the continuous technological advances in end devices and increasing mobile
use, datasets for mobile streaming are indispensable in research but only sparsely dealt with in literature so far. With this
public dataset, we provide 1,081 hours of time-synchronous video measurements at network, transport, and application layer
with the native YouTube streaming client on mobile devices. The dataset includes 80 network scenarios with 171 different
individual bandwidth settings measured in 5,181 runs with limited bandwidth, 1,939 runs with emulated 3G/4G traces, and
4,022 runs with pre-defined bandwidth changes. This corresponds to 332 GB video payload. We present the most relevant
quality indicators for scientific use, i.e., initial playback delay, streaming video quality, adaptive video quality changes, video
rebuffering events, and streaming phases.

7

Background & Summary8

The nationwide rollout of new mobile communication technologies requires in-depth traffic analysis, usage studies, and network9

management. With more than 4.9 billion Internet users worldwide1, 2, online videos and entertainment are among the most10

popular activities of users, and thus, of particular interest. However, datasets on Internet traffic dealing with mobile streaming11

of videos from major streaming platforms are currently sparsely treated in literature. Thus, the study of current mobile traffic12

and prediction of future traffic for accurate network management is a challenging task without a data basis.13

Overall, approximately 1.24 billion monthly users watch nearly 1 billion hours of online video on YouTube every day3–5.14

Statistically speaking, every person in the world watches an average of 7.55 minutes on YouTube every day5. This makes15

YouTube the second most visited website in the world6, 7, with mobile access accounting for two-thirds of the platform’s16

video views in the second quarter of 20218–11. In fact, YouTube generates over a fifth (20.4% downlink, 5.4% upstream) of17

all global mobile Internet traffic12. But in literature are only a few datasets available that document the use of YouTube in18

mobile environments. The available archives mainly concentrate exclusively on data collection via the desktop version of19

YouTube13–15.20

The desktop version used in modern web browsers behaves differently from Android or iOS versions, as different libraries,21

application types, and operating systems come into play13, 16, 17. Thus, it is not representative for mobile usage. Although22

YouTube follows the Dynamic Adaptive Streaming over HTTP (DASH) standard18 on both platforms, it uses different settings23

for adaptive streaming16. Ramos et al.19 show that, for example, other buffer threshold values are used for the mobile app.24

Furthermore, YouTube mobile is more aggressive with throttling factors at higher encoding rates. Other studies show a far25

greater use of the Quick UDP Internet Connections (QUIC) protocol20 for mobile applications than for desktops21. The few26

public datasets on YouTube that contain measurements from mobile clients16, 19, 21, 22 provide network or application traces27

only. Focusing solely on one type of trace offers only a limited view of the streaming process, since there are interactions28

between the network and the application, especially during adaptive video streaming.29

Our dataset23 aims to close this gap by providing measurements that were obtained simultaneously at the network, transport,30

and application level. The data was generated using YouTube’s native Android application over 29 months between January31

2018 and May 2020. We provide 1,081.18 hours of time-synchronized video measurements, resulting in 45 days of continuous32

video with the native YouTube streaming app on mobile devices. The dataset includes 11,142 measurement runs conducted33

with 171 different bandwidth limitations used in 80 different network scenarios. The measured data corresponds to a total of34

332 GB of video payload with TCP and UDP/QUIC traffic. Thus, this dataset stands out from related work in particular with35

the combination of a large number of different network scenarios and videos to understand, model, or predict current or future36

networks.37
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At the application, we extracted a wide range of adaptive streaming parameters from YouTube’s mobile client, among38

others, streaming quality, buffer level, and frame playout information. We recorded available and generally accepted parameters39

in the network such as packet length, number of flows, transport protocol, and transport layer protocol ports. This was made40

possible by our freely available wrapper app24, which enables remote control and monitoring of the native Android application41

by YouTube. The dataset was extensively post-processed and annotated. We present the most relevant quality indicators for42

scientific use, namely initial playback delay, streaming video quality, adaptive video quality changes, and video rebuffering43

events.44

The idea behind the dataset is on synchronous measurements at the network, transport, and application layer in strictly45

controlled environments. The main goal of the measurement setup is to ensure to replicate real world circumstances as closely46

as possible for a mobile user. This allows for the comparison between network and application information. The measurement47

environment follows the guidelines of the DASH Industry Forum25 to enable controlled measurements so that throughput,48

packet error rate, and streaming quality can be controlled during the measurements. Thus, the mobile use can be documented as49

comprehensively as possible with a focus on application-layer and quality indicators, in addition to the technical network and50

streaming parameters.51

Related Work52

Datasets regarding applications of video streaming as well as adjacent areas have been published in recent years. To integrate53

this work in the broad landscape of related work, the following section and Table 1 provides an overview of selected works.54

In general, datasets exist for audiovisual and subjective measurements and studies uploaded at the Qualinet database26. The55

datasets include, among others, DASH, H264 and H265, mobile video quality, or QoE datasets. For video streaming only, and in56

particular, several datasets already exist for the YouTube platform dealing with watch histories27, video application information,57

key-frame distribution and object names for search engines28. For viewing activity, in particular, Lall et al. published a dataset58

recently for Netflix29. It includes 1060 users and more than 1.7M watched episodes and movies. However, none of these works59

take the video itself into consideration.60

This is done for example by Zabrovskiy et al. in 2018 for DASH videos30. The authors present a dataset with multi codec61

DASH videos for ten different videos, 19 bitrates and four codecs. Other works and datasets focus on video segmentation62

information31, 32. Furthermore, Wang et al. studies YouTube’s user generated content for video compression research and63

published a dataset for that purpose in 201933. In addition, real streaming data and video meta-data is discussed by Baccour et64

al. for Facebook Live34. The authors published a data overview of Facebook live videos, viewers, and broadcasters of more65

than 1.5M live streams. For YouTube streaming in particular, datasets exist for very specific metrics like the initial delay35 or66

aggregated application and network data to be used in machine learning and for quality prediction36.67

Back in 2011, Rao et al. published an initial mobile web browser and native app dataset for YouTube16 and Alcock and68

Nelson studied the application flow control in YouTube video streams13. These works were extended in 2015 with a raw69

network trace dataset of measurements with the mobile YouTube app in 201522.70

More recently, Karagkioules et al. published a small dataset with application and network data for the native YouTube app71

with three different videos and eight different bandwidth and quality settings in 201821. However, because of the small video72

and network setting diversity, the usability for streaming quality prediction or streaming modeling is limited. Thus, in general,73

recent and sufficiently large raw full packet trace information or minimally processed data is missing to date.74

In contrast, in the dataset presented in this work, the full network packet trace containing network and transport layer75

information is available together with all application data, and thus, the complete streaming behavior. In total 246 different76

videos are included with 171 different individual bandwidth limitations and more than 1,000 h of total video playtime. In77

particular, the large number of different videos and bandwidth limitations is, to the best of our knowledge, not available so far78

in literature.79

The importance of datasets is increasing in many application areas. In recent years, gaming is also becoming more and more80

relevant in the context of multimedia and video data transmission. Barman et al. published an initial dataset with uncompressed81

video data to study gaming video quality in 201837. This work has recently been extended by Zhao et al.39. In their work, the82

authors provide a test dataset of gaming video content together with a performance analysis of existing coding tools. Besides83

gaming, 360◦ video is one hot topic in recent multimedia data transmission research. There, several works with interesting84

datasets study content and sensor data40, head movement41, and head together with eye movement42 to optimize 360◦ videos or85

reduce traffic requirements based on different metrics. In addition, Nguyen and Yan presented a saliency dataset for 360◦ videos86

in 201938. The goal of their dataset is to give other researchers the opportunity to create attention models, head movement87

predictions, or video tile preparations for 360◦ videos based on 24 videos and more than 50,000 saliency maps.88
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reference video
measure-
ments

application data data focus dataset size

Barman ’1837 7 Gaming uncompressed
video data

research on gaming video quality
assessment

24 videos,
30 s each

Nguyen ’1938 7 360◦ video saliency dataset for
360◦ videos

attention models, head movement
prediction and video tile prepara-
tion for 360◦ videos

24 videos, 50,654
saliency maps

Lall ’2129 7 Netflix viewing activity
data

group users based on activity
level, get watch patterns, user
preferences etc.

1,060 users,
1.7 M episodes
and movies

Zabrovskiy ’1830 7 DASH
videos

multi codec DASH
(AVC, HEVC, VP9,
AV1)

videos encoded in different for-
mats for streaming experiments

10 videos,
19 bitrates,
4 codecs

Baccour ’2034 3 Facebook
Live

video & metadata data overview of facebook live
videos, viewers, broadcasters

1.5 M live streams

Sengupta ’1522 3 YouTube
native app

network traffic Smartphone app traffic traces col-
lected using tcpdump

3 GB trace

Karagkioules ’1821 3 YouTube
native app

application &
network

provide test cases for YouTube’s
adaptive streaming logic

374 h, 3 videos

This work 3 YouTube
native app

application &
network & transport

raw data for model creation, ma-
chine learning, quality prediction

1,081.18 h,
246 videos

Table 1. Overview of selected related datasets

Methods89

The procedure for creating our dataset is based on the design and deployment of a testbed and the definition of the used90

measurement procedure. In addition, post-processing steps to enrich the dataset with additional streaming information is91

presented in this section. Both, the raw data and the post-processed information is included in the published dataset.92

Testbed Description93

To ensure that real-world scenarios are replicated as precisely as possible, a client-server-based measurement setup was94

developed to record both network and application data. The full setup is presented in Figure 1.95

The management server is an entity that validates and organizes measurements and does not take an active part in the96

measurement process. Instead, its responsibilities include the validation, post-processing, and storage of data. Examples for97

validation steps are scans for empty or erroneous files, the correct enforcement of bandwidth limitations, and extensive logging98

of events occurring during the measurement process.99

The measurement control unit is responsible for the actual measurement process and is connected to the management100

server. It is equipped with a sufficiently powerful processor, an i7-4770 processor with 8 x 3.40 GHz and 16 GB RAM to avoid101

bottlenecks during the actual measurements. It is connected to the Internet via the German national research and education102

network (Deutsches Forschungsnetz) via fixed connection to guarantee that measurements are not impacted by physical103

bandwidth limitations. To control uplink and downlink bandwidths, the state-of-the-art Linux command line tool tc43 is used for104

traffic shaping and control in the Linux kernel. To perform actions, such as starting measurements or logging application data,105

the measurement control unit is connected to the measurement device, a smartphone, via the Android Debug Bridge (adb)44.106

This way can be used to directly connect to Android devices via USB and does not interfere with measurements. Finally, the107

measurement control unit provides a wireless connection with variable and controlled QoS parameters for the measurement108

device itself. The interface of the wireless access point is the monitoring point for the complete network traffic containing109

network and transport layer data. All upstream and downstream traffic is captured using tcpdump45 within the Linux kernel110

ringbuffer between the wireless network interface and the connected device. Data is stored locally on the measurement control111

unit before it is offloaded to the management server for further processing.112

The measurement device is connected to the Internet via the provided 2.4 GHz WiFi access point. To exclude unintended113
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management
server Automated 

Measurement

Tablet

measurement
control unit

Android Debug
Bridge (adb) 
connection

WiFi 
connection

Internet

measurement
device

tc traffic
control

tcpdump
network logging

stats-for-
nerds

logging

post-processing
measurement
validation and

storage

Figure 1. Testbed Overview

bottlenecks at the smartphone, for the measurement setup, a clean, new Google Pixel XL with Android SDK version 28 released114

in 2020 is used. The display resolution of 2560 x 1440 pixel (equal to the 1440p resolution of YouTube) does not limit the video115

playback, and the 2.15 GHz and 1.6 GHz quad-core Qualcomm Snapdragon 821 processor and 4 GB RAM are sufficient for116

the playback of videos. Please note that playback related decisions are triggered by the YouTube app and not by the phone.117

Thus, it is not expected to achieve other results with other Android-based smartphones if the available resources are sufficient.118

An in-depth study of the performance with Apple’s iOS is subject of future work. However, we expect no large differences.119

Furthermore, no additional applications are running at the smartphone and the battery is kept at sufficient health during all120

measurements. The chosen app and OS version is available in the dataset. During a measurement run, a video is played and121

relevant application layer metrics are logged directly by the device. To achieve this, a specially developed wrapper app has122

been developed to monitor the native Android YouTube app exactly as it is distributed through Google Play Store. The source123

code of our tool is freely available on Github24. Seufert et al.17 have published a detailed description of this wrapper app and124

the measurement process used in this work.125

Measurement Description126

The steps of a single measurement run are defined as follows. Every measurement is started by the measurement unit. In a first127

step it checks for available connections to the management server, the Internet, and the measurement device via adb. Upon128

success, a WiFi access point is opened to provide Internet connectivity to the measurement device. Subsequently, the network129

scenario is defined. Either no bandwidth limitation can be set for the complete measurement, which results in approximately130

400 Mbit/s downlink bandwidth (and thus no impairment when streaming videos between 144p and 1080p) or a predefined131

bandwidth setting schedule can be used. In the latter case, bandwidth limitations are planned for the complete measurement by132

dynamically applying different limits based on either synthetic traffic limitations or real-world bandwidth measurements of 3G133

and 4G mobile networks. Afterwards, prior to the actual playback of the desired video, a setup video (ID FiO0iLzTyVg) is134

played for 10 s. This is done to ensure that all network, transport, and application data of the desired video can be logged and135

the bandwidth setting is applied correctly. During this setup video, the player can adapt the requested playback quality towards136

the initial bandwidth setting. This avoids unwanted playback behavior that is not a result of the defined scenario but of the137

switch to the initial bandwidth limitation. Afterwards, a YouTube video is selected for the measurement based on a predefined138

list of video URLs.139

Beginning with the measurement start, after connectivity to all components has been established, all network and transport140

data transmitted and received at the WiFi access point is logged. This includes especially the uplink and downlink video data141

from the measurement device. Furthermore, as already mentioned during the testbed description, the application data is logged142

directly at the measurement device by parsing and storing the stats-for-nerds data provided by the native YouTube app once a143
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second. In these stats-for-nerds information, the complete application behavior like buffer filling status, played video, or the144

number of already played frames is logged. This data is transmitted immediately to the measurement control unit and written to145

a file via the USB-connection to not interfere with the WiFi connection used for the measurement. After video playback is146

finished, all network, transport, and application data points are sent from the measurement control unit to the management147

server for validation and further post-processing steps. The network and transport data include the timestamp, the source and148

destination IP address, source and destination port as well as packet lengths for all TCP and UDP packets observed during the149

measurement period. The application data include a timestamp, the currently played out video and audio quality, the frames per150

second, buffer status information, the number of dropped and already played out frames as well as the video ID. Additional151

information include the current App version, OS version, number of connections, and the battery status during the measurement.152

An overview of all logged network and application layer metrics is summarized in Table 2.

Application data
Parameter Explanation Example log

timestamp timestamp of logged information 2020-02-13 22:39:23.001
fmt video stream format code46 247 (equal to 720p)
fps frames per second 25
afmt audio format code 140 for 128k m4a audio
bh current buffer filling level in milliseconds 39939 for 39.939 s
droppedFrames number dropped frames 0 (equal to no dropped frames)
playedFrames number played out frames 1258
videoid current played video ID 6fd2kLmSDQ
cbrver YouTube app version 14.46.52
cver YouTube app version 14.46.52
cosver OS version of smartphone 9
conn number of parallel open connections 3
bat current battery filling status 1.000:1 (equal to full battery)

Network data
Parameter Explanation Example log

timestamp epoch timestamp of packet arrival 1581633565.013519
ipSrc source IP address 10.10.0.140 (device IP in own network)
ipDst destination IP address 74.125.13.143 (Google server IP)
tcpPortSource TCP source port 443 (as HTTPS port)
tcpPortDst TCP destination port 37475
udpPortSrc UDP source port 443 (only available if UDP traffic)
udpPortDst UDP destination port 48372 (only available if UDP traffic)
tcpLen TCP segment length in Byte 1358 (payload length in Byte)
udpLen UDP packet length in Byte 1358 (payload length in Byte)
payloadProtocolNumber used transmission protocol (TCP or UDP) 6 (for TCP), 17 (for UDP)

Table 2. Measured parameter overview

153

Data Post-processing154

The post-processing of the data presented in this work is done by three major steps according to the overview in Figure 2.155

All files that are added to the dataset in each specific step are highlighted in the figure. After the measurement is completed,156

erroneous, invalid, or partly missing measurement data is discarded in the first post-processing step to ensure a complete, high157

quality dataset. The remaining application, network, and transport measurements, enriched with information regarding the158

bandwidth settings during the measurements are included in the dataset.159
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Second, to simplify a streaming behavior study, flows related to YouTube streaming are identified based on their IP-addresses.160

Application data is cleaned by removing advertising data points related to the playback of commercials. This cleaned data is161

the second part of the dataset.162

In the last post-processing step, data is processed to further simplify usage and extend the usage potential. In this last163

step, streaming phases are defined describing the current player health which means whether the video player receives enough164

video data to fill or keep the current playback buffer health or if the buffer fill level is declining. This additional information is165

included in the third part of the dataset. To receive a more general idea about the post-processing in this work, these three steps166

are explained in detail in the following.167

Automated 
Measurement

Tablet

Measurement
§ stats_for_nerds.csv for all 

application data

§ Raw network trace as .pcap

Post-processing Step 1
§ Delete empty and incomplete 

measurements

§ Verify bandwidth settings, log 
bw_settings.csv

§ Timestamp verification

§ Remove encrypted payload
§ Log all_network_traffic.csv as 

all captured network data

Post-processing Step 2
§ Video data extraction and value 

cleaning in application file, log 
application_data.csv

§ Video data extraction in 
network data, log 
video_traffic.csv

Post-processing Step 3
§ Add quality change, stalling, and 

video phase information
§ Extend application_data.csv

Usable for
- Streaming models
- Quality prediction
- Streaming behavior studies

Figure 2. Step by step post-processing after measurement

Post-processing Step 1: Data Integrity Check and Data Cleaning168

In the data integrity and cleaning step, all invalid measurements are discarded. Therefore, the following tests are performed.169

Empty or Incomplete Measurements First, all measurements where either the raw network file or the application stats-for-170

nerds file does not contain data are deleted. This may occur if the YouTube app was not opened correctly during measurement171

pre-start. Furthermore, inconsistent measurement runs for which network traffic is measured longer than application data or172

vice versa are deleted. This occurs if the tcpdump capture crashes or if the application data logging is faulty.173

Correct Bandwidth Setting In this step, it is determined whether the bandwidth was set correctly. Therefore, bandwidth174

limit changes logged during the measurement process by the testbed are compared with the predefined bandwidth setting.175

Furthermore, all network data are analyzed to determine if the network throughput exceeded the possible bandwidth limitation.176

All error-prone measurements are discarded. For the remaining measurements, the bandwidth information is logged with the177

timestamp and the set bandwidth limitation in the bw_settings.csv.178

Timestamp Verification The timestamps of all measurements are checked for plausibility. Since both sources, network and179

application data, contain timestamps which are supposed to give a complete view together for the measurement duration, the180

overlay of the timestamps is validated. There is no exact congruence because the network layer first establishes a connection181

and starts downloading video data before the application logs are filled. Similarly, no more data is downloaded at the end of the182

video when the rest of the content is already in the buffer, but the application logs still show video playback.183

Encrypted Payload Removal Since the raw network data from the packet capture file contains the encrypted payload from184

which no further information can be extracted this data is further processed. By means of tshark47, relevant network and185

transport layer traffic information listed in Table 2 is extracted and included as all_network_traffic.csv in the dataset. All raw186

application data presented in Table 2 is received after this step with a 1 s to 3 s granularity, depending on the current player status187

or on player issues. Player issues can occur if not enough data is downloaded because of, for example, very little bandwidth188

during measurements. Then, the player crashes or error-prone values are displayed and logged. All application data is included189

in the dataset as stats_for_nerds.csv.190
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Post-processing Step 2: YouTube Streaming Data Extraction191

In the second post-processing step, relevant video streaming data is separated from cross-traffic. Furthermore, error-prone192

values in the application stats-for-nerds file are cleaned.193

Application Data Video Extraction The video data extraction is simple for the application data since the video ID is available194

for each measurement point. Thus, only the application information for the measured video ID is kept while other video IDs,195

especially the setup video described earlier as well as advertising played during the measurement process is excluded. Since196

this dataset presents YouTube streaming data, all measurement runs where the correct video is never played because of too long197

advertising are discarded.198

Value Cleaning: Buffer Health In this step, all values in the stats-for-nerds logs are checked for valid ranges. During this199

process, negative buffer health values are found frequently in the proximity of a video quality change. Via manual validation200

in the application, this inconsistency is confirmed to be a logging issue of the YouTube application itself. If the quality of201

a video changes, the buffer health level may change suddenly since the adaptive streaming algorithm switches the input for202

its buffer health prediction from the buffered content in the previous quality to the buffered content in the upcoming quality.203

This can lead to very low or even negative buffer health values in the logs. However, these negative values occur regardless204

of changing to a higher or lower video quality. For example, the playback may be uninterrupted, and quality changes to a205

higher level. The negative buffer health values occur when the client decides to request a new quality, but neither has the client206

changed to the new quality nor downloaded enough content in this quality to allow for a quality change without playback207

interruption. After this step, all valid data points from the stats-for-nerds files without advertising and setup video are added as208

application_data.csv to the dataset.209

Network Data Video Extraction For the network and transport data, there are two possible ways of separating video data210

from cross-traffic. For many measurement runs, it is possible to extract the video flows by following IP-port-tuples based on the211

DNS resolution for googlevideo.com36. These flows are identified as video flows and separated from other traffic. However,212

to filter not only cross traffic, but also the traffic of the setup video at the beginning of each measurement run and specific213

advertisements, another approach is used in addition. Firstly, from the application data information the start and end time of the214

correct video is determined for each measurement run. Next, from the network data, all flows which are active within that215

time window are considered candidates for the video stream. Candidate flows are marked and listed with the complete traffic216

in descending order by traffic volume. Afterwards, the candidate flows are added as streaming flows to the dataset until the217

traffic volume accumulates at least 90 % of the total traffic during the video stream. This is valid since video flows are identified218

as dominant flows in YouTube streaming measurements48. With this method, cross-traffic like loading of video comments or219

video recommendations, transmission of DNS requests, and other background processes are excluded. Furthermore, including220

only the largest flow would not be sufficient because YouTube may change the connection to a different server during a video221

stream in case of, for example, data transmission issues, quality changes, or video rebuffering. The remaining traffic is added as222

video_traffic.csv to the dataset.223

Post-processing Step 3: Dataset Extension224

In the third and final post-processing step, the dataset is extended by critical quality metrics during video streaming that are225

not included so far: quality changes and stallings (i.e., video rebuffering events)49. Please note, information about the start up226

delay and an explanation of the calculation procedure with our dataset is already published in the work35 and thus not included227

here. Furthermore, the streaming phase indication is introduced that describes whether the player is currently in good condition228

and receives enough data to constantly keep the buffer filled or not. Therefore, the application_data.csv file is enriched with229

additional information. The stalling column indicates that the playback of the stream is interrupted because of a buffer underrun.230

Since playback is never paused during the measurements, this information is achieved by comparing consecutive playedFrames231

values. If no frames are played out between two log entries, the stream is assumed to stall.232

The columns qc and qcTo are added to list all quality changes. If the fmt value in the application data log changes from the233

current to the next timestamp, the video quality changed. Then, the qc value is set to 1 and the qcTo value is set to the target234

video quality code.235

Moreover, we provide an estimate about the current video phase based on a video phase detection algorithm. Each video is236

in one of four phases during an ongoing streaming session: filling if the available playback time in the buffer is filling, steady237

if the buffer level remains constant, depletion if it decreases or stalling if no frames can be played out because of a buffer238

underrun.239

All values in the first and last 5 s are assigned as filling and depletion respectively, since in the beginning and the end of240

playback the video is always in these phases. Afterwards, all other logs with a buffer level below 1.2 s are set to stalling. This241

shows good results in practice since the player can only play out completely downloaded video segments. For that reason, in242

most cases some playback time is left and the buffer does not drop to zero. The threshold of 1.2 s was chosen by looking at the243
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maximum buffer level during a stalling event in the data. The remaining logs are listed as steady if the buffer level does not244

change more than 0.3 s between two logged values and the overall buffer is larger than 5 s. We choose the slope boundary of245

0.3 s by looking at the occurring slopes in unlimited bandwidth scenarios where a steady phase can be determined manually.246

This ensures that small changes in the buffer health do not prevent the algorithm from detecting a steady phase and too small247

buffer levels are not set to steady since a buffer health level of less than 5 s is not enough to guarantee a smooth video playback248

experience if the bandwidth fluctuates. All other values are set to filling if the buffer level is increasing or depletion if it is249

decreasing. Please note: if the quality of a video changes, the buffer health level changes suddenly based on the pre-loaded data250

for the upcoming video quality. This can lead to small or even negative buffer health values in the logs as described in the data251

cleaning above. This is a logging inconsistency as the drop may occur before the video quality is changed for the user. To252

correct false assignments of a stalling phase in this case, it is checked whether it is possible to have played out all the pre-loaded253

data from the previously observed log value. If this is not the case, the value is set to the previously selected phase value.254

After this correction, the phase detection values are smoothed to prevent frequent jumps out of and back into steady state.255

The minimum duration of a steady phase is 15 s. If within 10 s after a steady phase another data point is labeled as steady the256

entire period is set to steady. Furthermore, the same procedure is applied for short jumps out of the stalling phase. This is257

in accordance with Gutterman et al.50. A technical description of the phase detection algorithm is out of scope at this point.258

Instead, a detailed description by a pseudocode is included in the dataset.259

Data Records260

The dataset presented in this work contains 11,142 individual video measurements. Each measurement contains five261

files as described above. The complete network trace with all network and transport layer information is available in262

the all_network_traffic.csv file in each folder, the extracted video traffic captured from the network is available in the263

video_traffic.csv. The complete application log, as it is available in the stats-for-nerds information directly from the YouTube264

app, is logged in the stats_for_nerds.csv, while the extracted video-only application data together with the extended dataset265

information as described in post-processing step 3 is available in the application_data.csv. To provide information about the266

network conditions during each measurement, the bw_setting.csv lists the network bandwidth limitation at specific timestamps267

for each measurement. If the available bandwidth is changed during the measurement, this bandwidth is kept until another268

change is performed and logged in the file. Furthermore, the data records include a pseudocode of the phase detection algorithm,269

several evaluation and visualization scripts, a large general overview csv file, and the post-processing scripts to process own270

measurements similarly to this dataset and reproduce each step for interested readers. In the following, detailed statistics about271

the data records in general are provided followed by observed details and special characteristics during different bandwidth272

limitation settings.273

Application Network Bandwidth

total measurement
runs

11,142 downloaded video payload 332.75 GB max bandwidth 400,000 kbit/s

different measured
videos

246 total video packets 372,945,168 min bandwidth 17 kbit/s

total video playtime 1,081.18 h total video flows 242,973 total bandwidth
changes

92,508

total played frames 100,543,176 TCP only traffic runs 1,288 measurements const.
bandwidths

5,181

total dropped frames 35,558 UDP only traffic runs 8,996 measurements
planned bandwidths

4,022

total quality changes 19,242 TCP & UDP runs 858 measurements real
bandwidths

1,939

total stallings 8,652

Table 3. General dataset overview

8/14

8



General Data Overview274

The general data overview is split in three main categories: application, network, and bandwidth information as summarized in275

Table 3. The total dataset of 11,142 measurement runs contains 246 different videos with a total playtime of 1081.18 h and276

more than 100 M played frames. Please find a video catalog file (video_catalog.csv) in our materials folder. This file includes277

all video IDs, duration, available resolutions per video, fps, and the video genres. The application data contain 19,242 total278

quality changes in 6,929 different measurement runs, 35,558 total dropped frames, and 8,652 total stallings in 3,734 different279

measurement runs. A total video payload of 332.75 GB is downloaded contained in close to 375 M video packets. The dataset280

contains 242,973 total video flows while 1,288 measurement runs contain only TCP traffic as transport protocol and 8,996281

contain only QUIC traffic logged as UDP in the dataset. The remaining 858 contain both, TCP and QUIC traffic.282

The complete dataset is measured with 171 different individual bandwidth limitations used in 80 different network scenarios.283

A general overview of all bandwidth scenarios is included in the bwlist.txt file in the dataset. The maximal bandwidth is284

400 Mbit/s which is the maximal possible network bandwidth in the university network in Würzburg, Germany. The minimum285

is set to 17 kbit/s from a 3G bandwidth trace. A total of 92,508 bandwidth changes measured during video playback. The286

bandwidth limitation scenarios can be split in three categories: 5,181 measurement runs are conducted with constant bandwidth287

limits during the complete measurement run, 4,022 runs have pre-planned bandwidth settings that include: incrementally288

increasing or decreasing bandwidth in predefined time intervals, abrupt bandwidth drops to trigger quality changes or stalling,289

and fluctuating bandwidth settings between specific predefined settings. The remaining 1,939 measurement runs are conducted290

with emulated real bandwidth traces received from real 3G51 or 4G52 network traces. In these measurements, we update the291

bandwidth limitation every 5 s to a new value from one network trace. We have chosen the bandwidth settings to study three292

main situations during the YouTube streaming: (1) understanding the streaming procedure in general, (2) gaining knowledge293

about scenarios with playback issues and limited bandwidth, and (3) study the streaming process under conditions as similar294

as possible to reality. For that reason, we have chosen the bandwidth settings as follows: For our first goal, we selected295

constant bandwidth settings to monitor streaming in very regular, and for high bandwidth limitations, good conditions. With296

these settings, one can understand the streaming process in general and get many baseline details for streaming that helps,297

for example, in streaming issue prediction. Furthermore, we increased the steps of bandwidth limitations for larger limits298

since more than 10 Mbit/s was usually sufficient for a good streaming experience. For lower bandwidth limitations, smaller299

changes affected the playback behavior more severe and was thus, measured in smaller steps. As a second goal, we wanted to300

generate playback issues for the app. Therefore, we tried to trigger video re-buffering events with abruptly changing bandwidth301

to achieve a better understanding of this condition. With more slowly changing bandwidth settings, we wanted to trigger302

among others, quality changes, buffer level changes, or in general changing conditions in the app. Last, the goal was to test303

the behavior in realistic conditions with the emulated 3G and 4G scenarios. This helped us to understand whether stalling or304

varying playback quality is really an issue in real networks. This understanding can help to react on decreasing buffer situations305

early and improve the buffering behavior in general to avoid stalling and increase the user perceived quality. In the following,306

one example measurement for each of the bandwidth setting options is presented with additional information. A visualization is307

presented in Figure 3. All plots are structured as follows: the left y-axis shows the throughput in kilobit per second with the set308

throughput limit during the measurement indicated by the yellow line and the actual measured data throughput in black. The309

x-axis shows the timeline from video playback start to video playback end. The right y-axis shows the buffer filling status in310

seconds with the buffer level plotted by the brown line. Additionally, different further information is added to each plot that311

will be discussed in detail in the following.312

Constant Bandwidth Limitations313

In the dataset, 5,181 video runs were measured with constant bandwidth limitations. In these scenarios, one bandwidth314

limitation is set and kept for the complete measurement run. The constant bandwidth limitations include 0.2 Mbit/s up to315

2.0 Mbit/s in steps of 0.1 Mbit/s, 2.0 Mbit/s up to 3.0 Mbit/s in steps of 0.2 Mbit/s, 3.0 up to 6.5 Mbit/s in steps of 0.5 Mbit/s,316

and 1,024 kbit/s, 7.0 Mbit/s, 8.0 Mbit/s, 9.0 Mbit/s, 25.0 Mbit/s, and 400.0 Mbit/s.317

The results of these measurements show 5,533 quality changes that is equal to 1.07 per measurement run on average318

at application layer. Since in the complete dataset 1.73 quality changes per measurement run are detected on average, the319

quality change probability is lower. Furthermore, like expected, fewer quality changes are detected with increasing bandwidth320

limitations. For all measurements with bandwidth limitations larger than 1.0 Mbit/s, only 0.677 quality changes on average321

per measurement run are detected, for measurements with more than 5.0 Mbit/s, it is only 0.210. Similar data is measured for322

stalling occurrences. A total of 1,328 stallings are measured in all constant bandwidth limitation scenarios. Thus, on average323

0.256 stallings are detected per video measurement run with constant bandwidth limitations compared to 0.776 for the complete324

dataset. With increasing bandwidth, again like expected, the average number of stallings per measurement run is decreasing325

with only 0.073 on average for measurements with more than 1.0 Mbit/s.326

For that reason, these scenarios are valuable to study and understand the general streaming behavior without the influence327

of bandwidth fluctuations. Especially the downloading and buffering behavior is included and can be studied in detail. This is328
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shown in the left subfigure of Figure 3. The figure shows an example measurement run with a constant bandwidth limitation of329

5 Mbit/s for video ID N2sCbtodGMI. The video playback starts with a fast and constant buffer filling in the first 55 s shown by330

the brown line. There, the complete throughput limit is used shown by the black line that is constantly close to the limit. This331

part is labeled with (1) in green as filling phase. In this phase, more data are downloaded than played out and the buffer level is332

increasing. Afterwards, in the steady phase (2) marked in blue, the buffer level is kept at a constant level between 120 s and333

125 s. The complete bandwidth is not required in this phase shown by the throughput spikes up to the bandwidth limit. At334

the end of the video, the buffer level is decreasing in the depletion phase (3) shown in red. In this case, the complete video is335

already downloaded and no more data is required since no download at all is detected. However, such depletion phases are also336

detected if the available bandwidth is lower than the required throughput to download the current video playback quality.337

Variable Predefined Bandwidth Settings338

To study the buffer depletion phases in more detail and especially the resulting potential quality changes or video stalling events,339

the bandwidth limit must not be kept at the same single level. Thus, 40,022 video streams are measured with 20 pre-planned,340

fluctuating bandwidth settings to trigger these scenarios.In these bandwidth scenarios, the bandwidth limit changes from for341

example 800 kbit/s, 1.0 Mbit/s, 3.0 Mbit/s or 5.0 Mbit/s down to 1.0 Mbit/s or less in several steps (please find all bandwidth342

settings as an overview in the bwlist.txt in the dataset). After the bandwidth dropped, it either keeps at a low level or it increases343

again. The resulting data from these scenarios include 10,028 total quality changes or an average of 2.493 per video and 6,689344

total stallings which is equal to 1.663 per measurement run on average. Furthermore, more than 35,000 frames are recorded as345

dropped for all measurement runs with variable predefined bandwidth settings which suggests issues during playback, buffering,346

or video download.347

The measured bandwidth changes result in download rates lower than the currently played out video bitrate and are used348

to study the buffering, and especially buffer depletion phases that lead to quality changes. Furthermore, it is possible to349

investigate stalling avoidance mechanisms of YouTube mobile streaming. An example scenario for a measurement of video ID350

2d1CVrCvdzbY is shown in the middle plot of Figure 3. In this measurement, the starting bandwidth is set to 5.0 Mbit/s for the351

first 10 s. After 10 s it changes to 3.0 Mbit/s and then it drops additional 500 kbit/s each 5 s down to 1.0 Mbit/s. This limit is352

afterwards kept until the end of the measurement.353

The influence of this behavior is visible in the buffer level progress. After a fast increase at the beginning of the measurement,354

the increase is slowed down with the bandwidth drops. At a bandwidth limit of 1.5 Mbit/s, the increase is stopped and the buffer355

starts to decrease slowly after the drop to 1.0 Mbit/s. At 100 s playtime, a drop in the downlink bandwidth is detected which356

is assumed to occur due to a quality change triggered at network layer. This quality change from 720p to 360p is afterwards357

detected at 130 s marked by the red dashed line. It is assumed that the already pre-buffered old quality is played out before the358

actual quality change is visible in the application data information. Afterwards, the buffer is filling again up to 120 s at 300 s359

measurement time. At 437 s, a large drop in the buffer filling level is detected while in addition directly afterwards, the buffer is360

filling again. We assume that this behavior is another quality change triggered at network layer. The buffer level is already361

updated to the new quality in the application file but the quality information keeps the old quality. This is changed at 460 s,362

where the actual quality change from 360p to 720p is performed shown by the green dashed line. Please note that in this case,363

at 437 s, 120 s video is pre-buffered for quality 360p. With the quality change to 720p at 460 s, only 23 s of the remaining video364

is played out and much data is discarded. Afterwards, since the bandwidth is still not sufficient to keep the buffer at a constant365

level for 720p quality, another quality change down to 360p is triggered at 534 s and again up to 720p at 555 s.366

Emulated Real Bandwidth Trace Settings367

Since a constant bandwidth limit or pre-planned fluctuating bandwidth limitations are inappropriate to study the streaming368

behavior in real mobile networks, 1,939 measurement runs are conducted with real 3G and 4G bandwidth traces. The current369

bandwidth limitation is updated according to values from real 3G and 4G traces every 5 s as trade-off between very frequent370

bandwidth changes leading to possible computational or update overhead and sufficient accuracy. Smaller values are closer to371

real bandwidth settings while larger values smooth unwanted behavior or measurement errors more. To compare the behavior372

during real bandwidth scenarios and constant bandwidth limitations for the same video at the same time, the bandwidth from373

the traces is applied at the beginning of the measurements while, for example, after 200 s, a constant bandwidth limit is set.374

During these measurements, 3,681 total quality changes or 1.898 quality changes on average per measurement run are detected.375

Thus, it is shown that real bandwidth scenarios also trigger many quality changes. However, only 635 stallings that is equal to376

0.327 stallings per measurement run are detected on average. Thus, this number is much lower compared to the predefined377

bandwidth setting and shows that the player can adapt well towards changing bandwidth settings in real mobile networks.378

An example measurement with a bandwidth setting of a real 3G trace is plotted on the right side of Figure 3. In the first379

200 s, the bandwidth is changed according to the 3G trace (1) while afterwards, 1.0 Mbit is set as bandwidth limit (2). It is380

shown that the complete bandwidth is required and used at the beginning of the stream to fill the buffer. The filling is slower381

compared to the constant bandwidth limits with 5.0 Mbit/s but works better than the filling in the variable predefined bandwidth382
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1 2 3

1 2

Figure 3. Visualization of throughput and buffer filling status for each bandwidth scenario as an example: left shows constant
bandwidth limits with different streaming phases (1 - filling phase marked in green, 2 - steady phase marked in blue, 3 -
depletion phase marked in red); middle shows variable pre-defined bandwidth setting (quality changes to lower quality marked
by red line and to higher quality in green); right shows 3G bandwidth trace for first 200 s (1) and a constant bandwidth limit
afterwards (2)

example. However, the filling speed slows down at 75 s since the bandwidth drops from 1016 kbit/s to 650 kbit/s. Furthermore,383

it is shown that the buffer was filled before the bandwidth limitation behavior changes to a constant limit.384

Technical Validation385

In order to ensure the technical validity of the collected data, the developed testbed and measurement procedure follows the386

guidelines of the DASH Industry Forum25. In doing so, we consider the recommendations for test cases for DASH-264/AVC387

HD and the recommendations for network emulation. In addition, the designed testbed relies on well-tested, peer-reviewed388

and freely available tools like the YouTube wrapper app17, which is freely available on Github24 or the state-of-the-art Linux389

command line tools tc and tcpdump to ensure consistent network emulation and data capture.390

Finally, the dataset was extensively post-processed and cleaned to ensure all included measurement repetitions contain valid391

data points. This data cleaning contains the deletion of empty or erroneous measurements, invalid logs, and advertising or other392

cross-traffic as described in the data post-processing section and visualized in Figure 2.393

Usage Notes394

The complete dataset is available as zip file at figshare23. It contains all evaluation and post-processing scripts in the materials395

folder. The actual data representations are available in the dataset folder containing consecutively numbered subfolders. Each396

subfolder includes an all_network_traffic.csv file with the complete network and transport layer traffic, a video_traffic.csv file for397

the complete network and transport layer traffic of the video only, a stats_for_nerds.csv file with the complete application traffic398

during each measurement, a application_data.csv file with all application information for the video only, and a bw_settings.csv399

file with timestamps and bandwidth limitations for bandwidth changes.400

The materials folder includes the following scripts: two evaluation scripts written in Python are added to simplify the work401

with the dataset. The get_statistics.py file reads all data and summarizes important information like video sizes, quality change402

and stalling information, buffer filling, and playtime data in the data_overview.csv file. Furthermore, the plot_data.py script403

requires the path to one measurement representation folder and whether TCP or UDP is used as transmission protocol. The404

script plots the bandwidth limit, the throughput, and the buffer filling status as shown in Figure 3. Furthermore, it is possible for405

other researchers to extend the comprehensive dataset with our publicity available wrapper App approach17. Measurement406

results can then be evaluated with our post-processing scripts according to Figure 2. The process_stats_for_nerds.py file407

receives the measured raw stats-for-nerds data and outputs a csv file for all application data in a readable format. Furthermore,408

the script pcap_extraction.py takes the raw pcap files including the complete network trace and exports a csv file with409

important information like timestamp, IP address, port, and packet payload size from the measurement. The script also410

extracts all video traffic together with its uplink requests as it is used in36. If only the video traffic should be extracted,411

the video_only_traffic.py separates video and cross-traffic. Since the dataset is extended by different streaming phases, the412

pseudocode phase_detection_complete.pdf describes the phase detection that extends the dataset together with an included413

table summarizing and explaining all relevant parameters in more detail. Please find the readme.txt in the dataset for additional414

explanation. In the following, further dataset usage possibilities are outlined to, for example, extend, understand, or verify415

related work.416

Because of the popularity in public and the large data generation in current networks, streaming studies and analysis -417

especially with YouTube streaming - are an important and hot topic in research. The broad range of research topics with418
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YouTube streaming include, among others, general network traffic and streaming studies for various applications53, 54, streaming419

traffic separation55, 56, streaming modeling and quality impairment detection56, 57, and machine learning approaches to predict420

or assess streaming quality50, 58, 59. However, most of these works have one in common: the lack of a publicly available dataset.421

With this work, we close that gap and give other researchers the opportunity to improve and extend their research. Furthermore,422

with the presented dataset and the available application information together with the network and transport layer data, it is423

possible to model streaming behavior at different layers. The dataset improves potential packet level, request based, application424

layer studies. Furthermore, it is possible to study streaming traffic generation and behavior. With these insights, predictions of425

streaming impairments based on network and application data can be made. This can be used by streaming platforms or network426

operators to optimize data transmission, resource management, or general user satisfaction because of service improvement.427

Code Availability428

The complete dataset is available as zip file at figshare23. The dataset includes all measured data and all post-processing and429

evaluation scripts. In addition, the publicly available wrapper app17 is freely available in case the dataset needs to be updated or430

expanded.431
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