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Abstract

To cope with the increasing demand of mobile devices and the limited capacity of
cellular networks mobile connections are offloaded to WiFi. The access capacity
is further increased, by aggregating bandwidth of WiFi access links. To analyse
the performance of aggregated access links we model the most simple case of two
cooperating systems interchanging capacities using an offloading scheme. The
resulting analytic model is computed by means of a two-dimensional birth and
death process. It can be used to seamlessly evaluate the performance of systems
between partitioning and complete sharing. This allows to optimize the setting
of thresholds dependent on the load of the cooperating system. Furthermore
the benefit of aggregating bandwidth in different scenarios with homogeneous
and heterogeneous workloads is quantified and the performance of more than
two cooperating systems is evaluated by simulation.
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1. Introduction

According to [1], in 2014, mobile networks carried nearly 30 exabytes of
traffic, which is expected to increase nearly 10-fold towards 2019. To handle
the growth and reduce the load on the mobile networks, offloading to WiFi has
come to the center of industry thinking [2]. In 2014, 46% of total mobile data
traffic was offloaded onto the fixed network through WiFi or femtocells, and it
is forecast that, by 2016, there will be more traffic offloaded than remaining on
cellular networks.
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In contrast to strict offloading, in which the Internet access link is switched
completely (e.g., from cellular to WiFi), current concepts (e.g., BeWifi2) also
consider multiple connections to the Internet, thereby sharing and aggregating
available backhaul access link capacities. The problem arises what sharing policy
to apply for which system characteristics. In the case of BeWifi, which considers
access link sharing among neighboring users, each user should only share his
access link when having spare capacity in order to avoid negatively affecting
his own Internet connections. Therefore, two thresholds were introduced, i) a
support threshold until which utilization a user will offer bandwidth to other
users, and ii) an offloading threshold indicating from which utilization a user
can offload to supporting neighbors.

In this work, we model and evaluate the performance of such a system using
basic Markov chain methodology from queuing theory. In particular, we consider
a scenario with two access links and investigate the impact of the thresholds on
the bandwidth aggregation. Partitioned access links and completely shared ac-
cess links will be used as reference systems. We provide analytic and simulative
results for the probability of available bandwidth excess, the utilization of each
access link, and the received bandwidth for each user.

We show that the Markov model can be used to seamlessly evaluate the
performance of systems between partitioning and complete sharing dependent
on the threshold settings. We find that a system can receive less bandwidth and
higher blocking probabilities than with partitioning if the cooperating system is
highly loaded. However, a highly loaded system can benefit from offloading to
a cooperating system by receiving considerably more bandwidth than its own
capacity. Simulation with different service time distributions shows that the
Markov model also holds in more general conditions.

The paper is structured as follows. Section 2 summarizes offloading and
bandwidth sharing systems and technologies. In Section 3, the model of a
bandwidth aggregation system is described in detail. Results of the performance
evaluation are reported in Section 4, while Section 5 lays out the conclusions
derived from the entire study.

2. Background and Related Work

The principle of sharing or offloading between multiple Internet access links
is already widely used by commercial services as well as research work. WiFi-
sharing communities like Fon3, Karma4, WeFi5, and Boingo6 offer access to an
alternative Internet link (WiFi instead of mobile), which provides a faster access
bandwidth and reduces the load on stressed mobile networks. With respect to
this so called WiFi offloading, the research community investigated incentives

2http://www.bewifi.es/
3http://www.fon.com
4https://yourkarma.com/
5http://wefi.com/
6http://www.boingo.com/
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and algorithms for access sharing [3], and ubiquitous WiFi access architectures
for deployment in metropolitan areas [4, 5]. Moreover, [6, 7, 8] describe systems
for trust-based WiFi password sharing via an online social network (OSN) app.
WiFi sharing is not a legal vacuum and a first exemplary overview on Swiss
and French rights and obligations was given in [9] but must be treated with
caution due to international differences and interim law revisions. The opposite
concept to Wifi offloading, i.e., WiFi onloading, is presented in [10]. The idea
is to utilize different peaks in mobile and fixed networks to onload data to the
mobile network to support applications on short time scales (e.g., prebuffering
of videos, asymmetric data uploads).

An access link sharing concept, which goes beyond pure offloading, is BeWifi,
which was developed by Telefonica [11] and builds on previous works about
backhaul capacity aggregation [12, 13]. BeWifi uses modified access points,
which act as normal access points until their clients saturate more than 80%
of the backhaul capacity. Then, the access point will scan for close access
points, which will provide additional bandwidth if their utilization is below
70%. Backhaul capacity and utilization are announced by each access point
via beacon frames. Instead of introducing a secondary WiFi radio, BeWifi uses
time-division multiple access (TDMA) and the 802.11 network allocation vector
(NAV) to connect to neighboring access points for bandwidth aggregation in a
round robin fashion with a weighted proportional fairness schedule.

From a technical perspective, bandwidth sharing and offloading are enabled
by implementing handovers and/or multipath connections, which are well cov-
ered in research. [14, 15, 16] show the feasibility of multipath TCP for han-
dovers between mobile and WiFi networks in the current Internet and [17] de-
scribes available features for mobile traffic offloading. Futhermore, [18] gives an
overview on approaches that enable mobility and multihoming. In [19] a col-
laborative token bucket algorithm, which implements an effective distribution
of the transmission rates is analyzed to evaluate the performance of wireless
ad-hoc and mesh networks.

Theoretically, bandwidth sharing between WiFi access points can be con-
sidered as load sharing among systems. Generally load sharing systems can be
classified in partitioning, partial sharing and compelte sharing systems. Parti-
tioning systems work completeley independent from each other. Each system
has its own queue and buffer space and processes only requests arriving at its
queue. Complete sharing systems have a shared queue and buffer space. When
processed, a request in the shared queue is assigned to the system which is
currently least loaded. Partial sharing systems have their own queues, but may
offload requests to other systems if they are overloaded, or process requests from
other overloaded systems. Different partial sharing or complete sharing models
have been investigated in literature. In [20] the bandwidth usage by different
services in a broadband system in complete sharing and partial sharing mode
with trunk reservation is investigated. Multidimensional Markov chains are used
in [21, 22, 23] to evaluate the performance of cellular network systems with dif-
ferent service categories. The blocking probablity of a complete sharing system
has been approximated in [24]. This approximation is used in [25] to evaluate
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the performance of mobile networks with code division multiplexing supporting
elastic services. However, none of the models can be used to seamlessly evaluate
the performance of systems between partitioning and complete sharing. In this
work a model based on a two dimensional Markov chain with thresholds is devel-
oped that allows to study the transition of blocking probabilities of partitioned,
partial sharing and complete sharing systems.

3. Model and Analysis

In the following, we first describe the system model and the considered sce-
nario in detail covering the notation used for parameters throughout this work.
Finally, we present analytic approaches that are used to derive the resulting
performance metrics like blocking probability and link utilization.

3.1. General Model

In our scenario, we look at loaded access links on a short time scale. The
throughput of each Internet connection is limited by a bottleneck (either on
application side, on server side, or in the core Internet), such that the capacity
of an access link cannot be fully utilized by a single connection. This means,
each Internet connection will utilize a certain share of the access link bandwidth.
The available capacity of a link c is divided into a number n of small atomic
bandwidth fractions of equal size. This means, c = n · ξ with ξ resembling the
granularity of bandwidth allocation. For example, a c = 10 Mbps link can be
modeled as n = 20 bandwidth fractions of ξ = 500 kbps each, or also as n = 100
bandwidth fractions of ξ = 100 kbps each. For the remainder of this paper, we
will consider ξ as a global constant in the given scenario and model different
capacities ci by assigning different ni to the links.

We model an access link as a multi-server blocking system and each avail-
able bandwidth fraction of the link as a server in the corresponding system.
For mathematical tractability, the overall model of an access link will be an
M/M/n loss system [26] and its utilization variations will be modeled as a sta-
tionary process of singular and independent arrivals of traffic, i.e., bandwidth
fraction requests. Thus, the number of occupied bandwidth fractions on each
Internet link X is a random variable modeled by a birth-death-process, in which
bandwidth fractions are requested with Poisson arrivals at rate λ and occupied
for an negative-exponentially distributed service time with globally normalized
rate µ = 1. Consequently, ρ = λ

n·µ = λ
n represents the load on the link. The

state probability in the considered M/M/n queue is x(k) = P (X = k), i.e., the
probability that k bandwidth fractions are occupied.

Following the approach of BeWifi (see Section 2), two thresholds are in-
troduced, which define the bandwidth aggregation/offloading policy. First, we
use a support threshold α, which indicates at which percentage of utilization
(i.e., number of own occupied bandwidth fractions) the system will stop offering
bandwidth fractions to other systems. Second, we use an offloading threshold β
with α ≤ β. If the percentage of utilization is at the offloading threshold β or
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higher, the system will try to use bandwidth of other systems. Thus, a system
can be in one of the following three macro states:

1. support (0 ≤ X < bα · nc):
low utilization and offering bandwidth

2. normal (bα · nc ≤ X < bβ · nc):
normal operation

3. offloading (bβ · nc ≤ X ≤ n):
high utilization and offloading to other systems

By applying these offloading thresholds, different Internet access links will
collaborate and share traffic. More details on the bandwidth aggregation and
its model are presented in the following section.

3.2. Bandwidth Aggregation Scenario with Two Access Links

1

2

1

2

1

2

offloaded
traffic

locally served traffic

support

normal

offloading

support threshold

offloading threshold

link capacity
(number of servers)

1

2

1

2

traffic
arrival rate

normalized
service rate

link 1 link 2

⋮ ⋮⋮ ⋮

⋮

⋮

blocking probability
blocked traffic

Figure 1: System model.

In this work, we consider a scenario with two different Internet access links.
Figure 1 shows a schematic view of the model as described above and highlights
the most important system characteristics. In the case of two links, the actual
system state can be described by two random variables X1 and X2, which rep-
resent the number of occupied bandwidth fractions in the respective access link.
As the model components comprise the memoryless property, a two-dimensional
Markov process can be analyzed using standard techniques of queueing theory.

With the state probabilities

x(i, j) = P (X1 = i,X2 = j), 0 ≤ i ≤ n1, 0 ≤ j ≤ n2, (1)

5



⋯

support2

offloading2

su
p
p
o
rt

1

o
ff
lo
a
d
in
g
1

0,0 0,1 0, ��0, ����0, ����

1,0 1,1 1, ��1, ����1, ����

�	�	 , 0 �	�	 , 1 �	�	 , ��
�	�	 ,

����

�	�	 ,

����

�	�	 , 0 �	�	 , 1 �	�	 , ��
�	�	 ,

����

�	�	 ,

����

�	, 0 �	, 1 �	, ���	, �����	, ����


 ���� 
 ( ���� + 1)
 ���� 
 ( ���� + 1)
 ��





2


�	�	 


( �	�	 + 1)


�	�	 


( �	�	 + 1)


�	


�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� �� �� ��

�	 + �� �� �� �� ���	 + �� �	 + ��

�	 + �� �� �� �� ���	 + �� �	 + ��

�	

�	

�	

�	

�	

�	

�	

�	

�	

�	

�	

�	

�	

�	

�	

�	

�	

�	 +��

�	

�	

�	

�	

�	 +��

�	 +��

�	 +��

�	

�	

�	

�	

�	 +��

�	 +��

2



 ���� 
 ( ���� + 1)
 ���� 
 ( ���� + 1)
 ��
2



 ���� 
 ( ���� + 1)
 ���� 
 ( ���� + 1)
 ��
2



 ���� 
 ( ���� + 1)
 ���� 
 ( ���� + 1)
 ��
2



 ���� 
 ( ���� + 1)
 ���� 
 ( ���� + 1)
 ��
2





2


�	�	 


( �	�	 + 1)


�	�	 


( �	�	 + 1)


�	





2


�	�	 


( �	�	 + 1)


�	�	 


( �	�	 + 1)


�	





2


�	�	 


( �	�	 + 1)


�	�	 


( �	�	 + 1)


�	





2


�	�	 


( �	�	 + 1)


�	�	 


( �	�	 + 1)


�	


⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

Figure 2: The state transition diagram.

i.e., the probability that i bandwidth fractions are occupied in system 1 and j
bandwidth fractions are occupied in system 2, the two-dimensional state tran-
sition diagram, presented in Figure 2, can be arranged. Two major areas are
visible. In the upper left part and the lower right part (white background),
each system operates independently in such way that all arriving requests are
served locally by this system. In the top-right and bottom-left parts (shaded
in gray), one of the links is in offloading state and the other link is in support
state. In these cases, all traffic arriving at the offloading link will be served
by the supporting link. Thus, blocking only occurs when the other link cannot
help, i.e., in states {(n1, j) : bα2n2c ≤ j ≤ n2} and {(i, n2) : bα1n1c ≤ i ≤ n1}.

3.3. Model Limitations

The model has limitations. A critical part of the model are the negative
exponential service times, which may in reality be more deterministic, since the
link throughput has low variations. However, as will be shown in section 4.3
the model also provides good approximations for the received bandwidth and
blocking probability for different service time distributions. There are different
effects in real systems, which are not considered in the model. For example
signalling among the cooperating access points is necessary to report the current
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load and the offloading state. The messages exchanged produce a signalling
overhead which can limit the performance of the system. Interference can limit
the capacity of the wireless links, which is not considered in our model. Finally,
switching to another access link might add delays when setting up the connection
and redirecting the traffic. This delay can also slightly decrease the effective
throughput of the system. As these effects have only marginal impact on the
system performance they are neglected in the model. The aim of the model is
to evaluate the performance of bandwidth aggregation systems and to identify
critical parameters.

3.4. Analysis

In order to evaluate our model and to compare it with reference systems,
we analyze related systems from literature. To investigate the performance
gain of bandwidth aggregation, we further analyze the bandwidth received by
cooperating systems.

3.4.1. Reference Systems

As references for the bandwidth aggregation gain of two Internet access
links, both partitioned systems (i.e., without offloading) and a complete sharing
system (i.e., economies of scale) are considered, although it has to be noted
that in many practical cases complete sharing is physically not possible. We
investigate the blocking probability pbi of each system i, which relates to the
probability that the available bandwidth of the access link i is exceeded. Thus,
in our scenario, blocking means that a bandwidth request of an application
cannot be entirely satisfied because the link is fully utilized. In practice, if TCP
is used on the access link, the Internet connections throttle themselves and share
the link equally. Depending on the used application and its characteristics, the
application performance can then suffer, which can result in user dissatisfaction.
Moreover, the received bandwidth of each access link is important.

For completely partitioned systems, two different M/M/ni loss systems with
arrival rates λi, i = {1, 2}, the received bandwidths E0[X1] and E0[X2] can be
computed individually for each access link by Little’s Theorem as

E0[Xi] =
λi
µ
· (1− pbi), (2)

in which we use the rate of accepted arrivals λi · (1 − pbi) and the globally
normalized service rate µ = 1, and pbi follows from the Erlang-B formula [26]

pbi =

(
λi
µ )ni

ni!∑ni
k=0

(
λi
µ )k

k!

. (3)

The performance Es[X] of a complete sharing system, i.e., a single M/M/n
loss system with n = n1 + n2 servers and an arrival rate of λ = λ1 + λ2, can be
computed by the same formulae.
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3.4.2. Modeled Bandwidth Aggregation System

For our modeled bandwidth aggregation system with two Internet access
links, we consider the blocking probability pbi of each system i and the total
blocking probability pb, which is calculated by the sum of blocking probabili-
ties of each system weighted by the probability that a request arrives at each
respective system.

pb1 =

n2∑
k=bα2·n2c

x(n1, k), pb2 =

n1∑
k=bα1·n1c

x(k, n2) (4)

pb =
λ1

λ1 + λ2
· pb1 +

λ2

λ1 + λ2
· pb2 (5)

Since requests can be offloaded from system 1 to system 2 in states (n1, k)
for k < bα2 ·n2c, the requests are not blocked and the state probabilites are not
added to the blocking probability pb1 . The same holds for states (k, n2) with
k < bα1 · n1c and pb2 .

An approximation p̃b of the blocking probability pb can be calculated by the
joint probability of a single system being fully occupied, while a separate single
system is above the support threshold α, i.e. could not help. If X1 and X2 are
random variables for the number of jobs in system 1 and system 2, the joint
probability is

p̃b = P (X1 = n1, X2 ≥ α · n2) = P (X1 = n1) · P (X2 ≥ α · n2) . (6)

Moreover, we analyze the mean total number of occupied bandwidth frac-
tions E[X], which corresponds to the mean of total aggregated bandwidth.
Following the same argumentation as above, E[X] can be computed by Little’s
Theorem as

E[X] =
λ1 + λ2

µ
· (1− pb) =

λ1

µ
· (1− pb1) +

λ2

µ
· (1− pb2) . (7)

Finally, we take a look at the received bandwidth at each access link E[XAi ].
Thereby, XAi is a random variable for the number of bandwidth fractions (in
all systems), which are occupied by arrivals from system i. It is obvious that
E[XAi ] = E[Xi] = E0[Xi] for the partitioned system. In case of offloading,
E[XAi ] can be calculated from the mean total number of occupied bandwidth
fractions by taking into account the share of accepted requests from each system.

E[XAi ] =
λi(1− pbi)

λ1(1− pb1) + λ2(1− pb2)
· E[X] =

λi
µ
· (1− pbi) (8)

Nevertheless, it is the goal of bandwidth aggregation to cooperate in order
to use spare capacity on access links to increase the received bandwidth where
needed. Therefore, we can quantify the percentage of bandwidth gain for each
system as

ωi =
E[XAi ]− E0[Xi]

E0[Xi]
. (9)
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Figure 3: Blocking probability of two systems with equal load.

3.5. Simulation Description

In order to validate the analytic model and to assess the system performance
in more general cases, we use a discrete event-based simulation. The simulation
is implemented using arrival and departure events. Each of the m systems has
an arrival process with rate according to its load.

The average service time of bandwidth fractions is one and the service time
distribution can be specified. The simulation state holds the requests being
processed and the number of occupied bandwidth fractions for each system.
Offloading decisions are made according to the available bandwidth fractions in
the systems.

4. Numerical Examples

Using the model we aim to calculate numerical examples to evaluate the
performance of the system in different scenarios. As parameters we study the
load on the reference system ρ1 and the load on the cooperating system ρ2. We
consider the blocking probability of the reference system pb1 and the normalized
received bandwidth of the reference system E[XA1 ]/n1. To validate our model
and to get a first assessment, we analyse the performance of systems with equal
thresholds and compare the analytic results with the results obtained from sim-
ulation and those of simple reference systems. We consider the symmetric case
with even load ρ1 = ρ2 to investigate the impact of the offloading thresholds
and to optimize them. We then consider the asymmetric case to analyse the
performance of systems with imbalanced load. We conduct parameter studies
to find system configurations where one of the systems can highly benefit from
offloading, e.g. by being prioritized. Finally we run simulations with differ-
ent service time distributions to assess the system performance in more general
cases.

Figure 3 shows the blocking probability dependent on the system load of two
server groups with equal arrival processes. In this case the blocking probability
is equal for both systems. Both systems have n = 20 bandwidth fractions, and
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the thresholds are set to α = 40% and β = 80%. The black line shows the result
based on the analytic model for a composite system as described in Section 3.4.
The markers show the mean of 8 simulation runs with 95% confidence intervals.
The blocking probability increases with the load on the system as expected.
The results of the simulation match the analytical model with high confidence.

For comparison the analytic result for the approximation p̃b, for partitioning
and for complete sharing, i.e., with combined arrival process and bandwidth
fractions, is plotted. The latter equals a system with a single server group,
double arrival rate and double number of bandwidth fractions. Compared to
partitioning the composite system performs slightly better for low loads. For
low system loads the probability is high, that one of the two systems has less
than α · n active jobs and can help if the other system is in an offloading state.
The load is taken from the highly loaded system and the blocking probability
is decreased. This effect is negated for higher loads on the system, since the
probability to be in a support state, with less than α · n jobs, diminishes. If
the systems cannot help each other, their performance equals partitioning the
systems.

To investigate the potential of the system, it is compared to a complete
sharing system. The red dash dotted line shows the result of a system with
double arrival rate and n′ = 2 · n = 40 combined bandwidth fractions. The
blocking probability is reduced by a magnitude. This effect is also known as the
economy of scale.

4.1. Offloading Thresholds

In the following we investigate the setting of the thresholds α and β to
optimize the performance of the system. Therefore we analyse the symmetric
case with ρ1 = ρ2 and vary the thresholds α and β. The number of bandwidth
fractions per system is again set to n = 20.

Figure 4a shows the blocking probability of the reference system pb1 depen-
dent on the load ρ1 for different support thresholds α. The offloading threshold
β is constant at 80% of the system capacity. For α = 5% a system only helps if
it is empty and is not processing jobs. The systems work almost isolated from
each other and thus the performance is equal to the performance of a single
system. By increasing the support threshold α the systems can offer more help
when one of the systems is overloaded and decrease the blocking probability.
The support threshold α determines the amount of jobs that can be offloaded.

Figure 4b shows the blocking probability of the reference system pb1 depen-
dent on the load ρ1 for different offloading thresholds β. The support threshold
α is constant at 70% of the system capacity. The offloading threshold β is in-
creased from 75% to 95%. Increasing the offloading threshold has almost no
impact on the blocking probability. The effect on the blocking probability is
small, since the threshold β just shifts the point of time at which the system
starts offloading. The amount of jobs that can be offloaded is not dependent on
β. The reason for the slight increase of the blocking probability with β is that
there are less chances to find the cooperating system in support state when β
is high.
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Figure 4: Blocking probability pb1 dependent on thresholds (a) α, (b) β and (c) α and β, and
(d) bandwidth gain ω1.

We have seen that the performance of the system depends on the amount of
jobs that can be offloaded, so the support threshold α needs to be set as high
as possible. Theoretically, the support threshold could be set to the offloading
threshold α = β, so that a system would switch directly from support to offload-
ing mode. However, in practice this may lead to problems, since the systems
could switch unnecessarily frequently among the modes. This is especially the
case if mode switches result in a high signalling overhead or imply expensive
context switches. Therefore, a gap is left among the thresholds. Hence, in order
to prevent frequent mode switches, we set β − α to 10%. In order to maximize
the available bandwidth we can increase the support threshold α. Figure 4c
shows the blocking probability of the reference system pb1 dependent on the
load ρ1 with fixed gap β − α for increasing support thresholds α from 5% to
85%. The blocking probability decreases with increasing α, since more band-
width fractions are shared among the systems. However, the performance of
the system can also drop if the support threshold α is to high, which can be
seen in Figure 4d. Figure 4d shows the bandwidth gain ω1, c.f. Equ. 8, of the
reference system for an equally loaded cooperating system with ρ2 = ρ1 and
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an overloaded cooperating system with ρ2 = 2. If the cooperating system is
equally loaded the bandwidth gain is always positive. If the cooperating system
is overloaded, the bandwidth gain is negative, if the reference system is under-
utilized. In this case an increasing α has a negative effect on the bandwidth
gain, because less bandwidth fractions are left for arrivals in the own system.
To prevent the system from being overloaded, we leave 30% of the capacity as
buffer for peak periods and set the support threshold α to 70%. Hence, we set
the default values of the support threshold α and the offloading threshold β to
70% and 80% respectively.

4.2. Imbalanced System Load

The composite system can benefit if the load is heterogeneously distributed
among the systems, such that a system which is currently busy can offload to an
idle system. To investigate the performance in heterogeneous load conditions we
calculate the blocking probability pb1 of the reference system dependent on its
load ρ1 and the load on the cooperating system ρ2. Figure 5 shows the blocking
probability of the reference system for different loads on the cooperating system.

If the load on the cooperating system is low the blocking probability of the
reference system is decreased. That confirms that the system can benefit from
a heterogeneous load distribution. If the cooperating system is under high load
(ρ2 = 0.7) the blocking probability is even increased compared to partitioning
if the load on the reference system is low. This depends on the fact that the
traffic that is offloaded to the reference system produces a slightly higher load
and increases the blocking probability.

To prevent a system from being congested from an overloaded cooperating
system it can be prioritized. One possibility of prioritizing is to decrease the
offloading threshold α, so that it still can get support from other systems, but
shares less bandwidth fractions to help. Figure 6 shows the blocking probability
for three cases. The solid lines show the blocking probability if reference and
cooperating system have equal support threshold α1 = α2. The dashed lines
show the case where the reference system is altruistic and does not change
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its threshold, but interacts with an egoistic cooperating system with support
threshold α2 = 5%. The dash-dotted line shows the egoistic case where the
reference system decreased its support threshold to α1 = 5%. The altruistic
system suffers from an egoistic cooperating system by receiving higher blocking
probabilities. Compared to that, the blocking probability of an egoistic system
is only reduced slightly. The gain of the egoistic system decreases with the load
of the cooperating system. Hence, prioritizing is only viable if the cooperating
system is highly loaded.

The performance of the system accelerates compared to partitioning if the
load on one system exceeds its capacity. The system can then allocate avail-
able resources of neighbouring systems and receive a higher bandwidth than
its capacity. Figure 7 shows the normalized received bandwidth dependent on
the load of reference and cooperating system. For ρ1 < 1 the reference system
receives only slightly more bandwidth than an isolated system, if the load on
the cooperating system is low. If the load on the cooperating system is high the
reference system receives even less bandwidth than an isolated system. If the
reference system is highly loaded it can benefit a lot from an underutilized coop-
erating system. If the load on the cooperating system is ρ2 = 0.5 the reference
system receives 20% more bandwidth if its load is ρ1 = 1.5.

4.3. Simulation with General Service Times

To assess the system performance in more general cases we run simulations
with different service time distributions. Figure 8 shows the blocking probability
of the reference system dependent on the load of the systems. The mean values
with 95% confidence intervals of 8 simulation runs are plotted for the service
time distributions Deterministic and Hyper-exponential. The service times in
the Deterministic process are constant. In the Hyper-exponential process we
use two branches with probabilities 10% and 90%. For constant service times
the blocking probability does not differ from the analytic model for high sys-
tem loads. The blocking probability differs slightly from the analytic model
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Figure 9: Received bandwidth and bandwidth gain dependent on number of cooperating
systems m for ρ∗ = 0.7

for Deterministic service times in low system loads, showing higher blocking
probabilities if the load on the cooperating system is high. The reason for
this has to be investigated and is part of future work. In case of the Hyper-
exponential distribution the service times are highly variant. Here the system
which is highly loaded benefits from lower blocking probabilities compared to
the analytic model.

In Figure 7, which shows the available bandwidth of the reference system de-
pendent on the load, simulation results are plotted for Deterministic distributed
and highly variant Hyper-exponential distributed service times. For Determin-
istic service times the analytic model fits the simulation results. If the service
times are highly variant the reference system receives only slightly more band-
width than in the model if it is overloaded. Hence, considering the available
bandwidth the analytic model can be used to assess the system performance
with general service time distributions.

4.4. Simulation with m Systems

In order to assess the potential of bandwidth aggregation of more than 2
systems, we evaluate the performance of m = 4 and m = 8 systems by the im-
plemented simulation. We study the load of the reference system ρ1 and set the
load of the other m−1 systems to the same value ρ∗, i.e., ρi = ρ∗,∀i ∈ 2, . . . ,m.
As performance metric we consider the normalized received bandwidth of the
reference system E[XA1

]/n1 and the bandwidth gain of the reference system
ω1, c.f. Equ. 8. We first investigate the impact of the number of cooperating
systems m for a fixed load ρ∗ = 0.7, then we investigate the impact of ρ∗.

Figure 9a shows the normalized received bandwidth of the reference system
E[XA1

]/n1 dependent on the number of cooperating systems m for ρ∗ = 0.7.
The analytic model for m = 2 fits exactly with the simulation results. The
received bandwidth increases with the number of cooperating systems m. This
behaviour is expected, since the amount of spare bandwidth increases with the
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Figure 10: Received bandwidth and bandwidth gain dependent on throughput of cooperating
systems ρ∗ for m = 8

number of cooperating systems. The reference system profits from offloading by
receiving more bandwidth. For a load of more than 100% the received bandwidth
exceeds its throughput n1. This is also reflected by the bandwidth gain of the
reference system ω1, which is depicted in Figure 9b. The bandwidth gain is
close to zero, if ρ1 is lower than one. If the reference system is overloaded the
bandwidth gain increases. Especially if the number of cooperating systems is
high, an overloaded system gains a lot of bandwidth.

In the following we investigate how the load on the cooperating systems ρ∗

affects the throughput of the reference system for m = 8 cooperating systems.
Figure 10a shows the normalized received bandwidth of the reference system
dependent on the throughput of the cooperating systems ρ∗ for m = 8 coop-
erating systems. In case of ρ∗ = 0.3 a lot of spare bandwidth is available for
offloading. If the reference system is overloaded it can use the spare bandwidth
and receives almost 400% of its throughput if it load is 400%. If the load ρ∗

on the cooperating systems is higher, less bandwidth is available, which limits
the received bandwidth. Still, the received bandwidth is above partitioning al-
though the cooperating systems are overloaded with ρ∗ = 1.1, if the reference
system is even more overloaded. This can also be seen in the bandwidth gain ω1

depicted in Figure 10b, which is positive if the reference system is overloaded
with ρ1 > 1. The bandwidth gain is only marginally negative, if the load on
reference system is low, which is manageable in off-peak periods. In busy pe-
riods the reference system benefits a lot by gaining more than 2.5 times more
bandwidth if ρ∗ = 0.3.

5. Conclusion

To cope with the increasing demand of traffic carried by mobile networks,
offloading to WiFi networks is considered to ease cellular networks. Recent
concepts consider aggregating backhaul access link capacities to increase the
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available bandwidth for customers. In this work a Markov chain is developed
to analyse the performance of a system with two access links that share their
bandwidth. In parameter studies we investigate the impact of thresholds that
decide when a system offloads to a helping system or share bandwidth to support
depending on its load. Our results show that cooperating systems benefit from
aggregating bandwidth and can get close to the performance of complete sharing
if thresholds are set accordingly. The received bandwidth of a system can exceed
its capacity significantly if the cooperating system is underutilized. This effect
is multiplied if a high number of cooperating systems is available. Part of future
work is to extend the analytic model for more than two cooperating systems.
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