
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT - SPECIAL ISSUE ON EFFICIENT MANAGEMENT OF SDN AND NFV-BASED SYSTEMS 1

Heuristic Approaches to the Controller Placement
Problem in Large Scale SDN Networks

Stanislav Lange∗, Steffen Gebert∗, Thomas Zinner∗, Phuoc Tran-Gia∗, David Hock†, Michael Jarschel‡, and
Marco Hoffmann‡

∗University of Würzburg, Institute of Computer Science, Chair of Communication Networks, Würzburg, Germany
{stanislav.lange, steffen.gebert, zinner, trangia}@informatik.uni-wuerzburg.de

†Infosim GmbH & Co. KG, Würzburg, Germany
david.hock@infosim.net
‡Nokia, Munich, Germany

{michael.jarschel, marco.hoffmann}@nsn.com

Abstract—Software Defined Networking (SDN) marks a
paradigm shift towards an externalized and logically centralized
network control plane. A particularly important task in SDN
architectures is that of controller placement, i.e., the positioning
of a limited number of resources within a network in order
to meet various requirements. These requirements range from
latency constraints to failure tolerance and load balancing. In
most scenarios, at least some of these objectives are competing,
thus no single best placement is available and decision makers
need to find a balanced trade-off. This work presents POCO, a
framework for Pareto-based Optimal COntroller placement that
provides operators with Pareto optimal placements with respect
to different performance metrics. In its default configuration,
POCO performs an exhaustive evaluation of all possible place-
ments. While this is practically feasible for small and medium
sized networks, realistic time and resource constraints call for
an alternative in the context of large scale networks or dynamic
networks whose properties change over time. For these scenarios,
the POCO toolset is extended by a heuristic approach that is less
accurate, but yields faster computation times. An evaluation of
this heuristic is performed on a collection of real world network
topologies from the Internet Topology Zoo. Utilizing a measure
for quantifying the error introduced by the heuristic approach
allows an analysis of the resulting trade-off between time and
accuracy. Additionally, the proposed methods can be extended to
solve similar virtual functions placement problems which appear
in the context of Network Functions Virtualization (NFV).

Index Terms—SDN, NFV, Controller Placement, POCO, Open-
Flow, Resilience, Failure Tolerance, Latency, Multiobjective Op-
timization, Simulated Annealing.

I. INTRODUCTION

W ITH the introduction of Software Defined Network-
ing (SDN), a paradigm shift in communication net-

works has been set in motion. This shift is directed towards a
logically centralized architecture which separates control and
data plane, and thus allows moving control plane functions
from network devices to dedicated controller instances running
in software. Currently, OpenFlow [1] constitutes the most
popular SDN-enabling communications protocol between con-
trol and data plane, thus allowing communication over the
southbound API [2]. In the OpenFlow architecture, a logically
centralized controller manages switches by providing them
with rules that dictate their packet handling behavior. In
order to cover aspects like scalability and resilience, concepts

like HyperFlow [3] allow partitioning of OpenFlow networks
into multiple domains that are each handled by individual
controllers.

This work discusses key issues arising in architectures with
an externalized control plane and presents mechanisms for
overcoming them. The first relevant aspect is the number
of SDN controllers required for a reliable and resilient net-
work operation. Second, the position of each controller in
the network affects competing objectives like inter-controller
latency, switch-controller latency, and resilience. Thus, finding
a controller placement featuring an adequate trade-off between
the goals that are relevant for a particular use case is crucial for
an efficient operation. Furthermore, in order to cope with large
scale networks and dynamically changing network conditions
like traffic patterns or bandwidth demands [4], a computation-
ally fast approach for the aforementioned placement problem
is required.

In [5], the SDN controller placement problem is addressed
for the first time. The basic case of optimizing the latency
from nodes to their assigned controller is traced back to
to the facility location problem, which is known to be NP-
hard. Instead of resorting to approximations, the authors argue
that an exhaustive evaluation of the entire solution space is
practically feasible for realistic networks. Thus, there is a
guarantee for finding optima with respect to the latency. These
optima are used to derive guidelines for dimensioning of the
control plane. For example, most of the investigated topologies
require only one controller to comply with realistic latency
constraints. In our previous work, the controller placement
analysis is extended with various resilience aspects that are
particularly important in SDN scenarios [6]. Further investi-
gations in [6] cover additional objectives like load balancing
among controllers and inter-controller latencies in order to
gain insights into the trade-offs between different placement
choices as the different objectives are usually competing. This
functionality is bundled in POCO, a Matlab-based framework
capable of computing resilient Pareto-based Optimal COn-
troller placements. Its efficient CPU and RAM utilization
allows for an exhaustive evaluation of the entire solution space
of small and medium sized networks within seconds, even in
the presence of resilience considerations. On the one hand,

c ©
2
0
1
5

IE
E

E
.

P
er

so
n

a
l

u
se

o
f

th
is

m
a
te

ri
a
l

is
p

er
m

it
te

d
.

P
er

m
is

si
o
n

fr
o
m

IE
E

E
m

u
st

b
e

o
b

ta
in

ed
fo

r
a
ll

o
th

er
u

se
s,

in
a
n
y

cu
rr

en
t

o
r

fu
tu

re
m

ed
ia

,
in

cl
u

d
in

g
re

p
ri

n
ti

n
g
/
re

p
u

b
li
sh

in
g

th
is

m
a
te

ri
a
l

fo
r

a
d

v
er

ti
si

n
g

o
r

p
ro

m
o
ti

o
n

a
l

p
u

rp
o
se

s,
cr

ea
ti

n
g

n
ew

co
ll
ec

ti
v
e

w
o
rk

s,
fo

r
re

sa
le

o
r

re
d

is
tr

ib
u

ti
o
n

to
se

rv
er

s
o
r

li
st

s,
o
r

re
u

se
o
f

a
n
y

co
p
y
ri

g
h
te

d
co

m
p

o
n

en
t

o
f

th
is

w
o
rk

in
o
th

er

w
o
rk

s.
T

h
e

d
efi

n
it

iv
e

v
er

si
o
n

o
f

th
is

p
a
p

er
h

a
s

b
ee

n
p

u
b

li
sh

ed
in

to
b

e
p

u
b

li
sh

ed
in

:
IE

E
E

T
ra

n
sa

ct
io

n
s

o
n

N
et

w
o
rk

a
n

d
S

er
v
ic

e
M

a
n

a
g
em

en
t

2
0
1
5
,

1
0
.1

1
0
9
\/

tn
sm

.2
0
1
5
.2

4
0
2
4
3
2
.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT - SPECIAL ISSUE ON EFFICIENT MANAGEMENT OF SDN AND NFV-BASED SYSTEMS 2

this eliminates the necessity to impose constraints on objective
values a priori which might result in excluding feasible alterna-
tives or even a problem instance without admissible solutions.
On the other hand, the multiobjective approach allows for
a clearer illustration of the trade-offs between competing
criteria. Additionally, the decision maker’s preferences with
respect to the different objectives usually depend on available
alternatives [7]. This, in turn, decreases the feasibility of
transformations to single objective optimization problems, e.g.,
via a weighted combination of individual objectives.

In the context of large scale WANs, operators face various
challenges like dynamically changing network conditions that
affect the network’s overall performance. These changes not
only appear on a regular and predictable basis as in the case
of day and night cycles, but also on shorter time scales, e.g.,
hourly. In order to adapt to these dynamics and assure a
smooth operation, placements which take into account the
current network situation need to be calculated. The faster
this calculation can be performed, the faster a switch to
another placement can be triggered. As demonstrated in [8],
POCO is already capable of providing an exhaustive evaluation
of placements within seconds for small and medium sized
instances. However, an exhaustive evaluation of large scale
networks has time requirements in the order of magnitude of
tens of minutes, which might not be sufficient to cope with the
described dynamics. This work explores heuristic approaches
to the multiobjective controller placement problem. While
such approaches do not guarantee to find optimal solutions,
they are capable of yielding results significantly faster than
their exhaustive counterpart.

Building on the insights gained from exhaustive evaluations
of medium sized real world network topologies, the POCO
framework is extended with a heuristic approach from the do-
main of multiobjective combinatorial optimization (MOCO),
namely Pareto Simulated Annealing (PSA) [9]. With this
mechanism, POCO is able to handle huge network instances
without sacrificing much accuracy. Several measures of accu-
racy from the MOCO domain are investigated and the time-
accuracy trade-off of the heuristic approach is quantified for
numerous realistic network topologies for which the actual
optima are available from the exhaustive evaluation. These
results are used to infer guidelines regarding the parameter
choice in the context of huge problem instances where ref-
erence values are not available. Further improvements to the
POCO framework include an extended filtering mechanism
as well as the possibility to visualize up to four dimensions
of the solution space, thus allowing for an analysis of the
interrelations between up to four different objectives.

This work is structured as follows. Section II provides an
overview of the SDN scenario discussed in this article as well
as an outlook regarding possible extensions towards the related
NFV functions placement problem. Then, a formal definition
of relevant metrics and the resulting optimization problem
are presented. The POCO framework and extensions to its
functionality are outlined in Section III. Section IV presents
the Pareto Simulated Annealing algorithm, its adaptation to
the controller placement problem, and details of the evaluation
scheme employed in this work. Evaluation results are shown

in Section V. Section VI covers relevant related work on the
mathematical background of the presented problem as well as
work related to the controller placement problem in particular.
Finally, Section VII concludes the paper.

II. SCENARIOS AND PROBLEM STATEMENT

This section first introduces the most important aspects of
SDN as well as scenarios in which the presented optimization
approach is useful. After a brief overview of possible applica-
tions in the related field of NFV functions placement, a formal
problem definition is given alongside necessary notation.

A. SDN, NFV, and Scenarios

The key principle of SDN consists of the separation of
data plane and control plane. The design of the externalized
control plane can be performed in various ways. On the
one hand, there is a choice between controller architectures,
e.g., featuring a single, centralized controller, multiple equally
important controllers responsible for partitions of the net-
work [10], or a set of distributed controllers arranged in a
hierarchy [11]. On the other hand, purely software-based or
hardware solutions for the control plane allow trade-offs be-
tween flexibility, performance, and cost aspects. Furthermore,
connections involving controllers may be realized inband or
outband, i.e., either sharing the same physical links as data
plane traffic or utilizing dedicated lines.

Typically, core networks contain pre-configured primary and
backup paths for the aggregated traffic between different nodes
in the network. Thus, there is no need for communication
with the SDN controllers regarding each individual TCP flow
but only in case of certain occasions like outages or traffic
management actions. In such environments, a single controller
can be sufficient for a viable network operation. Nonetheless,
growing network sizes and the importance of resilience against
failures increase the amount of required controllers. Moreover,
network functions that are deployed on the SDN control plane
further raise its load, leading to even higher numbers of
required controllers. For the remainder of this paper, it is
assumed that all sites possess the capability to run a software-
based SDN controller. Furthermore, communication with SDN
controllers is assumed to happen inband, i.e., via the same
physical links as regular traffic.

Similar to the controller placement problem in the SDN
domain, technologies like Network Functions Virtualiza-
tion (NFV) [12] call for appropriate algorithms that can tackle
challenges beyond the single criterion placement problems as
discussed in [13]. These problems might introduce additional
complexity due to possible interdependencies between the
network functions as in the case of function chaining and
potential new constraints regarding additional aspects like
security. While previous work illustrates how POCO can be
extended to work in an NFV functions placement setting [14],
this work focuses on the SDN controller placement problem
and investigates strategies for dealing with huge problem
instances.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT - SPECIAL ISSUE ON EFFICIENT MANAGEMENT OF SDN AND NFV-BASED SYSTEMS 3

B. (Resilient) Controller Placement Problem

While minimizing latencies between each node and its
assigned controller constitutes a crucial aspect of the controller
placement problem, there are numerous other, possibly com-
peting, objectives that require consideration. In the following,
objectives that are covered in this work are presented along
with examples that motivate their necessity in different use
cases. The Internet2 OS3E network is used as example topol-
ogy and the best placement with respect to maximum node
to controller latency for k = 5 controllers as shown in the
work of Heller et al. [5] acts as reference. Figure 1 displays
this placement’s performance when evaluated with respect
to different objective measures and different conditions, e.g.,
latencies and load balance in the presence of node or controller
failures. In contrast to the work of Zhang et al. [15], this work
assumes that the node to controller assignment can change
when failures occur.

Figure 1a illustrates the latency between each node and its
assigned controller when multiple controllers stop working.
Each node’s color indicates its latency to the closest func-
tioning controller. The color is normalized with the graph’s
diameter with green representing a latency of zero, yellow
representing a latency that corresponds to 50% of the graph’s
diameter, and red indicating a latency of 100%. While the
distributed controller structure asserts low latencies in the
failure-free case [5], the illustrated failure scenario highlights
the fact that in the presence of failures, the position of each
controller matters. The only controller that is not affected
by the failure is located at the edge of the network and
thus, control traffic of many nodes needs to traverse almost
the entire network. In order to better cope with scenarios of
this kind, the optimization mechanism for resilient controller
placements should consider failure scenarios. Depending on
the specific use case, average and maximum latencies might
be useful measures.

In addition to controller failures caused by software issues,
physical network elements may also suffer from hardware
problems and stop working. This type of failure has more
severe consequences as it induces changes in the topology,
which in turn results in changes of shortest paths. Thus, node
to controller assignments tend to change and in extreme cases,
the network graph can even become disconnected. While the
nodes in each connected component are still fully operational,
not being able to connect to any controller in the connected
component prohibits any functionality beyond forwarding ac-
cording to previously installed rules. Figure 1b displays the
case of two network nodes failing at the same time, which
results in both of the aforementioned phenomena. First, the
graph is decomposed into two disjoint components. Second,
the right part of the graph does not contain a controller. Thus,
nodes in this part of the graph lose access to any functionality
realized by the controller. These nodes are represented by
question mark icons ? .

Assuming that nodes connect to their nearest controller,
certain placements tend to result in imbalanced assignments,
i.e., some controllers provide instructions for significantly
more nodes than others. Consequently, environments with a

high intensity or frequency of control plane communication
can run into problems, like increased delays, due to queueing
at controller instances. Figure 1c illustrates the imbalance
aspect of the latency-optimal placement. Each node is colored
and shaped according to the controller it is assigned to. While
the blue controller is responsible for ten network elements,
the green and red controllers need to manage just four nodes,
i.e., less than half as many. Additionally, our previous investi-
gations show [16] that for some controller implementations,
the number and order of connected switches might cause
unfairness with respect to aspects like the switches’ flow setup
times. Thus, load balancing should be a part of the decision
criteria when choosing a controller placement for various types
of SDN and NFV setups. Additionally, the link assignment task
presented in [10] corresponds to minimizing the imbalance,
further supporting the relevance of this aspect.

Previously discussed scenarios, especially those involving
failure tolerance, indicate the need for a distributed control
plane. However, such an architecture also requires various
forms of state synchronization between the individual con-
trollers. This ensures proper functionality in case of outages
and allows making decisions that are not limited to a local
view on a part of the network. Therefore, another goal of the
controller placement task is to maintain a small inter-controller
latency in order to minimize synchronization times. A visual-
ization of this measure is provided in Figure 1d, where each
controller is colored according to the distance to the controller
that is farthest away from it. Like in Figure 1a, the distances
are normalized with respect to the graph’s diameter. For most
controllers, the shown placement results in high maximum
latencies to other controllers which might be not acceptable
for certain use cases. Therefore, inter-controller latency is
part of POCO’s set of analyzed objectives. Additionally, the
pair of inter-controller latency and node to controller latency
constitutes a set of competing objectives. While a tight cluster
of controllers results in low inter-controller latencies and high
node to controller latencies, a spatially widespread distribution
of controllers leads to the opposite. Such relationships between
objectives are the motivation for the analysis of Pareto optimal
placements in POCO, which allows decision makers to express
their preferences after inspecting possible placements.

Furthermore, the set of objectives taken into account is
not restricted to those presented in this section and can be
extended according to use case specific requirements. These
also include management aspects which could be introduced
as separate constraints. For example, metrics like the expected
service quality provided by a network in the context of a given
placement could be added into the evaluation and decision
process.

C. Notation

Formally speaking, the controller placement problem is a
multiobjective combinatorial optimization (MOCO) problem.
The network is represented as a graph G = (V,E) with
node set V containing n nodes which are connected by
edges from the set E. Additionally, shortest path latencies
between each pair of nodes are stored in a distance matrix

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT - SPECIAL ISSUE ON EFFICIENT MANAGEMENT OF SDN AND NFV-BASED SYSTEMS 4

(a) Latencies when controllers fail

?

?

? ?

? ?
?

?

(b) Isolated nodes (c) Controller load imbalance (d) Inter-controller latency

? Controller−less nodesBroken nodesBroken controllersNodesControllers

Fig. 1: Assessing the quality of controller placements with different objective measures

D, where di,j denotes the latency from node i to node j.
Latencies in D are normalized with the graph’s diameter,
i.e., di,j ∈ [0, 1]. Given the desired number of controllers
k, there is a finite set of

(
n
k

)
possible placements, hence

the term combinatorial optimization. The goal of the MOCO
task is to find controller placements from the set of size k
placements Pk =

{
P ∈ 2V

∣∣ |P| = k
}

that are Pareto optimal
with respect to various objective functions fi (i ∈ {1, . . . , J}).
These were discussed informally in the previous section and
are presented in detail in the following. A placement x is
considered Pareto optimal, if and only if there is no placement
y such that ∀i fi(y) ≤ fi(x) and fi(y) < fi(x) for at least one
i. The set of all Pareto optimal solutions is referred to as Pareto
frontier.

While POCO performs an exhaustive evaluation of all
(
n
k

)

possible placements for small and medium sized networks,
a heuristic approach is suggested in case of instances that
are too huge to be fully evaluated in a practical time frame.
While an exhaustive evaluation of the former is performed
in a matter of seconds using POCO, the size of the search
space grows very quickly. Thus, when increasing the desired
number of controllers beyond 7, an exhaustive evaluation of
a network with 50 nodes can take between several minutes
and hours on a machine with an Intel Core i7 4770 CPU at
3.40 GHz and 16 GB of RAM. Although such proportions
may not be realistic in the context of SDN-based networks,
NFV scenarios might require higher numbers of functions that
need to be distributed in the network. In order to quantify the
loss of accuracy caused by switching to the heuristic approach,
different measures for the difference between the actual and
the estimated Pareto frontier have been adopted from [9]. In
the following, R denotes the original Pareto frontier which
is used as reference, and M represents the estimate provided
by the heuristic approach. Before the distance between Pareto
frontiers is defined, a distance metric for two placements
is introduced. According to Equation 1, c(x, y) defines the
distance between two placements as the maximum weighted
difference between individual objective values achieved by the
placements. The weight wj corresponds to objective fj’s range
and is used for normalization, i.e., c(x, y) ∈ [0, 1]. Adding
zero to the argument of the maximum asserts that no negative
distance is returned. With this distance metric, it is possible to
define measures for the distance between two Pareto frontiers,
of which one is known to be better than the other and is
therefore used as reference. The first metric, δ1, is shown

in Equation 2 and measures the average distance between
each element in R and its closest element from M . While
δ1 measures the average difference and may hide outliers,
δ2 considers the maximum distance between each element
from R and its closest element in M . Its formal definition
is provided in Equation 3 and allows for a worst case analysis
of the estimate M .

c(x, y) = max
j=1,...,j

{0, wj(fj(x)− fj(y))} (1)

δ1(R,M) =
1

|R|
∑

y∈R

{
min
x∈M
{c(x, y)}

}
(2)

δ2(R,M) = max
y∈R

{
min
x∈M
{c(x, y)}

}
(3)

As motivated in Section II-B, numerous competing objective
functions need to be considered when evaluating a given
controller placement. This section provides formal definitions
of the objective functions that are available in the POCO
framework. First, the node to controller latency provides
information on the connectivity between each node and its
assigned controller. Similar to δ1 and δ2, latency measures
can be analyzed either by calculating the average across all
latencies in the examined placement or by taking the maximum
value for a worst case analysis. For a placement P ∈ 2V and
distance matrix D, the maximum node to controller latency
πmax latency can be defined according to Equation 4. In an
analogous fashion, the average node to controller latency
πavg latency is determined as per Equation 5.

πmax latency(P) = max
v∈V

min
p∈P

dv,p (4)

πavg latency(P) =
1

|V |
∑

v∈V

(
min
p∈P

dv,p

)
(5)

When resilience with respect to controller outages is part
of the analysis, additional calculations are necessary. Let
C = 2P \ {∅} denote all alternative placements that result from
the failure of up to k−1 controllers. Then, πmax latency

C denotes
the maximum node to controller latency which, in addition
to the failure free case, also accounts for any failure scenario
that spares at least one controller. Equation 6 shows the formal
definition of πmax latency

C as well as the average-based πavg latency
C .

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT - SPECIAL ISSUE ON EFFICIENT MANAGEMENT OF SDN AND NFV-BASED SYSTEMS 5

πmax latency
C (P) = max

P∈C
max
v∈V

min
p∈P

dv,p

πavg latency
C (P) =

1

|C|
∑

P∈C

(
1

|V |
∑

v∈V

(
min
p∈P

dv,p

)) (6)

With the above definition of the node to controller latency,
the definition of inter-controller latency follows by means
of analogy. For a given placement P and any pair of con-
trollers p1, p2 in this placement, the inter-controller latency
πcontroller-latency(P) can be defined either with respect to the
maximum or with respect to the average latency between
p1 and p2. A formal representation of these relationships is
presented in Equation 7.

πmax controller-latency(P) = max
p1,p2∈P

dp1,p2

πavg controller-latency(P) =
1(|P|
2

)
∑

p1,p2∈P
dp1,p2

(7)

While metrics regarding latency strive for short communi-
cation paths, controller load balance considerations also need
to be taken into account when a reliable network operation is
desired. In order to comply with the problem definition and
previous metrics, the imbalance metric is introduced rather
than a balance metric so that the goal is to minimize the
metric’s value. For each placement P and controller p, the
total number of nodes that are assigned to p when each
node connects to its closest controller is defined as np. The
imbalance metric πimbalance captures the difference in np for
the two controllers with the lowest and highest amount of
assigned nodes, respectively. Additionally, imbalance in the
presence of failures can be quantified by analyzing imbalance
in assignments that result from different failure scenarios. In
these cases, nsp indicates the number of nodes assigned to
controller p when failure scenario s occurs. Equation 8 defines
both imbalance metrics. The indices ∅ and X denote the failure
free case and the set of considered failure scenarios, respec-
tively. Furthermore, the imbalance metrics can be normalized
by division with |V | as this is the maximum amount of nodes
that can be assigned to a single controller in the worst case.

πimbalance
∅ (P) = max

p∈P
n∅p −min

p∈P
n∅p

πimbalance
X (P) = max

s∈X

(
max
p∈P

nsp −min
p∈P

nsp

) (8)

Finally, node and link failures can lead to a decomposition
of the network graph, thus isolating nodes from all controllers.
As discussed in Section II-B, nodes that are not connected to
a controller have very limited functionality and are therefore
undesired. Hence, πcontroller-less

X (P) computes the maximum
amount of such nodes for any failure scenario specified
in X . The calculation of this metric is performed using a
connectivity matrix Es whose entries esi,j are equal to 0, if

and only if node i can reach node j in failure scenario s
and 1 otherwise. As controller outages that spare at least one
controller do not affect the amount of controller-less nodes,
only node and link failures are considered for πcontroller-less.
These scenarios are summarized in the set N , finally yielding
Equation 9.

πcontroller-less
N (P) = max

s∈N

∑

v∈V
min
p∈P

esv,p (9)

III. POCO’S USER INTERFACE

POCO does not only evaluate the possible placements for a
given topology and number of controllers but is also capable of
providing a visualization of the corresponding solution space
in a graphical user interface. The motivation behind is to give
also novice users an easy access to the implemented mecha-
nisms for calculating and evaluating controller placements.

A. Introduction to the POCO GUI

The POCO GUI is, as POCO itself, implemented in Matlab
and available as open source software [17], [18]. Users can
choose between metrics for investigation and are presented
with a plot displaying the performance of all possible place-
ments with regard to the chosen metrics. Each placement is
represented as a point in the plot whose x and y-axes denote its
metric value. Additionally, points located on the Pareto frontier
with respect to these metrics are highlighted and connected
with line segments. Figure 2 shows an example session of
the POCO GUI featuring the Internet2 OS3E topology with
k = 4 controllers. The top half shows the topology including
the currently selected placement by highlighting controllers
with double circles. The color of each node, based on a
traffic light color scheme, denotes the latency to the node’s
controller, which is selected based on the lowest distance.
Additionally, the implications of a failed node (#16) and a
failed controller (#4) for this particular placement are illus-
trated. Further information can be added to the representation
of the placement. Check boxes on the right hand side allow
enhancing the graphic with information regarding the number
of controller-less nodes or different latency measures as well
as applying a vertex coloring to visualize node to controller
assignments for imbalance analyses. In the bottom part of
the interface, the Pareto frontier of all possible placements
with respect to the maximum node to controller (x-axis)
and controller to controller latencies (y-axis) is displayed.
By clicking on any point in the Pareto plot, the detailed
visualization at the top is updated according to the selected
placement corresponding to the clicked point. This allows
the decision maker to interactively explore the search space
according to her/his preferences and current use case.

B. Improvements to the POCO GUI

In order to allow an even more in-depth analysis of the set
of placements, POCO’s GUI [18] is extended with options
to display up to four dimensions of the solution space. This
is achieved by applying different transformations to the size
and color of the points presented at the bottom of Figure 2.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT - SPECIAL ISSUE ON EFFICIENT MANAGEMENT OF SDN AND NFV-BASED SYSTEMS 6

Fig. 2: POCO GUI displaying current placement with the latency to the controller at the top and the whole solution space of
all possible placements at the bottom

First, the set of Pareto optimal placements with regard to
the four chosen metrics are calculated. Then, minimum and
maximum values for the two additional metrics are computed.
Using the traffic light color scheme as in Figure 1 and 2,
the points’ colors and sizes are adapted so that they reflect the
placements’ performance with regard to the additional metrics.
Figure 3 illustrates this new, four dimensional visualization
of the scenario discussed in the previous figure. While the
maximum node to controller latency πmax latency and maximum
inter-controller latency πmax controller-latency remain on the x
and y-axes, the imbalance of number of assigned nodes per
controller πimbalance and the average node to controller latency
πavg latency are included via the size and color of the points. This
perspective shows further trade-offs and interdependencies
between metrics, and thus allows the decision maker to make
a well-founded choice reflecting her/his preferences for a
particular use case.

Fig. 3: Visualization of the 4-dimensional Pareto frontier in
the POCO software

Through the new functionality “Edit Pareto Range”, a multi-
step filtering of the results can be achieved. After investigating

the Pareto frontier for a certain combination of metrics and
the performance of all placements, the user can filter out
placements that exceed a certain threshold. These placements
are then removed from the stored result set of placements so
that switching to a view showing a different combination of
metrics will not display these placements again. In this next
step, the user can further reduce the number of Pareto optimal
results, in order to finally set a trade-off and choose between
only a little number of Pareto optimal results that fits best for
the objectives important for the particular use case.

Using this improved mechanism, it is possible for a network
engineer to set thresholds for metrics after investigating the
whole solution space instead of having to define upper bounds
before starting the computation.

IV. METHODOLOGY

Besides improvements to the user interface of POCO,
including the four dimensional visualization of the Pareto
results, the main contribution of this work is the analysis of
the trade-off between accuracy and cost with respect to time
and memory resources when employing heuristic methods or
performing an exhaustive evaluation to solve the controller
placement problem. In order to incorporate the heuristic mech-
anisms into the POCO framework, guidelines for deciding
whether to use an exhaustive evaluation or switch to a heuristic
approach are derived. Furthermore, the influence of different
parameters of heuristic algorithms is investigated in order
to infer viable parameter values for different use cases and
requirements. The heuristic algorithm proposed in this work
is based on Pareto Simulated Annealing [9] and analyzes are
performed on numerous realistic network topologies from the
Internet Topology Zoo [19].

After an overview of the Pareto Simulated Annealing algo-
rithm, the evaluation procedure used in this work is described.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT - SPECIAL ISSUE ON EFFICIENT MANAGEMENT OF SDN AND NFV-BASED SYSTEMS 7

A. Pareto Simulated Annealing

In its default configuration, POCO performs an exhaustive
evaluation of all possible placements for a given network
topology and desired number of controllers in order to find
the Pareto optimal placements with respect to the metrics
defined in the previous section. Although this guarantees
finding all Pareto optima, the time and memory requirements
of an exhaustive evaluation increase with the size of the search
space which is proportional to

(
n
k

)
, the number of possible

placements of size k in a network consisting of n nodes. Even
for relatively small n, this number rises drastically when the
number of controllers, k, approaches n

2 , e.g.,
(
34
4

)
= 46.376

while
(
34
12

)
= 548.354.040. When performing just a single

network planning task before deployment, an exhaustive eval-
uation also for bigger instances is justified even if it requires
a high computational effort and a large amount of time.
However, in the context of a dynamic and flexible network
that needs to adapt to changes in the environment and usage
patterns, time is a limiting factor. Scenarios of up to 50% of
the nodes running an SDN controller are certainly not realistic.
However, in the field of NFV, use cases where a function
is running at half of the nodes are likely to appear. Such
computations are still in scope of the presented algorithms
as well as the POCO software.

In order to provide viable solutions while meeting given
time constraints, a heuristic approach is integrated into POCO.
Such mechanisms explore only a subset of the search space
and return the Pareto frontier of this subset. The exploration
techniques as well as the number of visited solutions are the
key influence factors for algorithms from this family.

In the context of finding the global optimum of a function
that has a large domain, i.e., the optimization problem has
a large search space, simulated annealing [20] is a popular
heuristic approach. Simulated annealing is a Monte Carlo
method and has two distinctive properties. First, during the
exploration of the search space, moves to solutions worse
than the current one are permitted in order to avoid getting
stuck in a local optimum. This is achieved by incorporating a
control parameter that is referred to as temperature, which de-
termines the probability of accepting such moves. Second, the
probability of moving to a worse solution gradually decreases
with the number of iterations. Additionally, the acceptance
probability depends on the difference between the objective
values of the current and the proposed solution. The rationale
behind this behavior is that accepting rather bad solutions at
the beginning allows for a broader coverage of the search space
while the lower acceptance probability at the end helps with
convergence. However, simulated annealing does not support
optimization problems with multiple objectives.

While there are many different options in the domain of
multiobjective combinatorial optimization (MOCO), POCO
was extended with Pareto simulated annealing (PSA), a
MOCO algorithm inspired by simulated annealing. This de-
cision is based on multiple criteria. First, PSA lends itself
to an efficient implementation in Matlab and provides a
Pareto frontier of explored solutions as its output. Second,
PSA incorporates mechanisms that assert that the resulting

output has a high degree of dispersion, i.e., that Pareto optima
with respect to different objectives are found. This aspect
of PSA is similar to the notion of recall in the domain
of information retrieval. Recall is used to quantify the ratio
between the amount of documents relevant to a given query
that are returned by a search algorithm and the total amount of
relevant documents. Third, PSA is an anytime algorithm and
can thus provide a set of solutions at any time. Due to this
property, it is not necessary to find algorithm parameters that
fit with particular time constraints. Instead, it is possible to
just run the algorithm and stop it when results are needed.
Finally, a heuristic approach based on simulated annealing
has been successfully applied to a related single objective
problem [4], demonstrating its feasibility in the controller
placement context.

The PSA procedure used in this work is based on the
algorithm presented in [9]. Algorithm 1 outlines the structure
of the developed approach. The input consists of two parts. On
the one hand, there is problem specific data like the topology
graph G and the desired number of controllers k. On the other
hand, there are parameters for the PSA mechanism. These
include the number of placements to evaluate during each
iteration s, the number of iterations per temperature level m,
as well as T0 and ρ which control the annealing schedule,
i.e., the initial temperature and the rate of temperature de-
crease. Initially, a set S of s random placements of size k is
generated. For each combination of placement and objective,
random weights Λ are assigned. Later, these weights will help
achieving the dispersion property discussed in the previous
paragraph. During the whole procedure, the Pareto frontier
of all visited placements M , as well as the corresponding
placements are updated.

Algorithm 1 Pareto Simulated Annealing
1: input: G = (V,E), k, s, m, T0, ρ
2: n = |V |
3: S = generateRandomPlacements(n, s, k)
4: Λ = generateRandomWeights(S)
5: M = paretoFrontier(evaluateP lacements(S))
6: T = T0
7: while T > 1 do
8: Y = drawNeighbors

(
S, n,

⌈
kT
2T0

⌉)

9: updateParetoFrontier(M,Y)
10: Λ = updateWeights(S)
11: S := accept y ∈ Y with probability P (S, Y, T,Λ)
12: if m iterations were performed at T then
13: T = Tρ
14: end if
15: end while
16: return M and corresponding placements

Starting with temperature T0, the algorithm decreases the
current temperature T by a factor of ρ after each m itera-
tions until T falls below 1. Thus, following Equation 10, a
total of

⌈
− log T0

log ρ

⌉
temperature levels are traversed. In each

iteration, alternative placements that are “close” to those in
S are generated. As usual in the Monte Carlo context, these

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT - SPECIAL ISSUE ON EFFICIENT MANAGEMENT OF SDN AND NFV-BASED SYSTEMS 8

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

πimbalance

πm
ax

 c
on

tr
ol

le
r−

la
te

nc
y

original
heuristic

(a) First iteration

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

πimbalance

πm
ax

 c
on

tr
ol

le
r−

la
te

nc
y

original
heuristic

(b) 10%

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

πimbalance

πm
ax

 c
on

tr
ol

le
r−

la
te

nc
y

original
heuristic

(c) 50%

0 0.2 0.4 0.6
0

0.2

0.4

0.6

πimbalance

πm
ax

 c
on

tr
ol

le
r−

la
te

nc
y

original
heuristic

(d) 100%

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

Algorithm Progress [%]

δ

δ

1

δ
2

Fig. 4: Development of the Pareto frontier estimate and corresponding δ1 and δ2 values during a single PSA run

placements are referred to as the neighbors of S and are stored
in the variable Y . It is possible to define different neighbor
relations between placements. One common way to define
neighborhood is to allow replacement of at most one element,
i.e., two placements are considered neighbors if they share
all but one controller location. However, experiments with
different definitions of neighborhood suggest using another
method in the presented use case. Depending on the current
temperature, placements are allowed to differ in up to

⌈
k
2

⌉

elements to be considered neighbors. This ensures further
dispersion at the beginning of the procedure and thus results
in a broader coverage of the search space. At higher temper-
atures, the number of replaced controller locations decreases
in order to favor convergence. After generation, the proposed
neighboring placements are integrated into M immediately.
Then, the weight matrix Λ is recalculated according to [9].
The iteration ends with an update of S. In this step, an element
of S is replaced with its corresponding neighbor from Y
with probability P (S, Y, T,Λ). While this probability equals
1 for placements that constitute an improvement over their
predecessor, it decreases for placements that are worse. The
decrease in probability depends on the amount of deterioration
as well as on the current temperature T and the weight
matrix Λ. At last, the Pareto frontier M and the corresponding
placements are returned.

T0ρ
i ≤ 1

ρi ≤ 1

T0
i log ρ ≤ − log T0

i ≤ − log T0
log ρ

(10)

Figure 4 illustrates the described mechanisms by pro-
viding different views on a single PSA run. The particu-
lar scenario consists of finding a good placement of size
k = 6 for the Internet2 OS3E network topology which

contains n = 34 nodes. The input parameters for the
PSA algorithm are m = 90, s = 10, T0 = 50, ρ = 0.9, result-
ing in

⌈
− log 50

log 0.9

⌉
= 38 temperature levels in which up to

90 · 10 = 900 distinct placements are evaluated. Thus, PSA
explores only 38·900

(34
6)

= 2.5% of the search space. Before
launching the PSA algorithm, POCO performs an exhaustive
evaluation in order to provide reference data. During the run,
the current Pareto frontier of the PSA routine is periodically
compared to the reference by means of the distance measures
δ1 and δ2. Additionally, the development of the approximated
Pareto frontier is visualized by taking snapshots of the two-
dimensional Pareto frontier with respect to a subset of two
metrics. These snapshots are presented at the top of Figure 4.
Each of the four plots displays the original Pareto frontier with
respect to πimbalance on the x-axis and πmax controller-latency on
the y-axis alongside the set of Pareto optimal points explored
by the PSA algorithm. To provide a better distinction, the
actual Pareto frontier is connected with line segments. Plot
captions provide the relative progress of the PSA algorithm.
While at the beginning, the heuristic solutions are clustered
at a πimbalance value of around 0.25, the dispersion mecha-
nism manages to explore a wide range of different solutions
quickly. Thus, already at 10% of the algorithm’s runtime,
many different combinations of metric values are available.
With increasing progress, the margin between the two frontiers
narrows and finer trade-offs become visible as more solutions
become available. In some instances, the exact Pareto optimal
placements are identified. In contrast to the limited view on
just two metrics displayed at the top, the bottom part of the
figure shows how the values of δ1 for the average distance
and δ2 for the maximum distance between the elements of the
Pareto frontiers with respect to all considered metrics develop.
The x-axis shows the percental algorithm progress while the
logarithmically scaled y-axis denotes the δ values. Two phases
can be identified in this plot. First, the segment from 0 to 5%,
in which a rapid decrease of both metrics can be observed.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT - SPECIAL ISSUE ON EFFICIENT MANAGEMENT OF SDN AND NFV-BASED SYSTEMS 9

As already mentioned, this is due to the quick exploration of
the solution space when the temperature setting in the PSA
routine is still high. The second phase is characterized by a
slow but steady decrease of δ1 and a stepwise decrease of δ2.
The jagged shape of the curve displaying the development of
δ2 can be explained by the fact that δ2 considers only the
maximum distance between any point of the reference set and
its closest counterpart in the approximation. Thus, not every
improvement in the approximation is immediately reflected by
δ2. As soon as the solution that causes the maximum value is
replaced with a better alternative, δ2 represents the next worst
placement. In contrast to this behavior, every improvement is
covered by the average distance δ1, leading to a smooth curve.
At the end of the run, values of δ1 and δ2 reach 1.5% and 5.5%,
respectively.

B. Evaluation Methods

In order to analyze the performance of the implemented
PSA approach, various evaluation schemes are carried out.
Special focus lies on quantifying the trade-off between the
time saved when using the heuristic approach and the loss in
terms of accuracy that is entailed. For this purpose, numerous
network topologies from the Internet Topology Zoo are first
evaluated in an exhaustive fashion using the POCO framework.
Results from these evaluations serve as reference for the
accuracy assessment of the heuristic. By varying the input
parameters of the PSA algorithm as well as by investigating
its behavior in the context of different topologies and numbers
of controllers, practical guidelines are derived. These allow
operators to express their specific needs in terms of accuracy
requirements and time constraints.

The evaluation works as follows. Initially, combinations of
network sizes and numbers of controllers are determined that
can be handled by POCO’s routine for exhaustive evaluation
without exceeding the RAM of the used machine. The mo-
tivation for choosing these scenarios is twofold. First, the
described combinations pose the highest time and memory
requirements to POCO while avoiding distortive performance
degradation due to issues like swapping. Second, resulting
computation times that are beyond multiple minutes exceed
many practical constraints, especially when aiming for dy-
namic controller placement. Thus, these scenarios represent
use cases in which decision makers need to resort to heuristic
approaches in order to comply with time and resource con-
straints.

Afterwards, parameters for the PSA algorithm are deter-
mined for different target specifications regarding accuracy
and reliability. These specifications are represented by triples
consisting of the reference metric δ ∈ {δ1, δ2} as defined in
Section II-C, a threshold τ for δ, and fmin, the desired fraction
of instances in which δ is below τ . Given such a specification,
parameters for the PSA procedure are calculated as follows.
Starting with the lowest amount of iterations for the PSA
routine, i.e., setting m = s = 1, PSA is applied to the problem
instance 40 times. For each repetition, the difference between
the Pareto frontier returned by the heuristic and the actual
Pareto frontier obtained via exhaustive evaluation is computed

with respect to the metric δ. If the percentage of instances
in which δ does not exceed τ is beyond fmin, the current
parameters of the PSA algorithm are returned. Otherwise,
the search for parameters continues in a fashion similar to
binary search, i.e., increasing m and s until the constraints
are met and consequently decreasing them in order to obtain
the smallest viable values.

In addition to finding the minimal parameter values for a
given specification, performance statistics are recorded. On the
one hand, the time consumption of the exhaustive evaluation
is compared with that of PSA. For this, the Matlab function
timeit1 is applied to both computation procedures, yielding
times tPOCO and tPSA, respectively. However, absolute times are
specific to the used hardware and are thus difficult to interpret.
This issue is tackled by combining both values into a ratio
trel = tPSA

tPOCO which denotes the speed achieved by PSA relative
to the exhaustive approach. On the other hand, the fraction
of the search space that is explored by the PSA algorithm
is recorded in order to investigate possible relationships be-
tween this fraction and the achieved performance. Especially
when deciding upon parameters for network configurations
for which no reference values are available, this can provide
reasonable settings for PSA. As described in the previous
section, PSA goes through

⌈
− log T0

log ρ

⌉
temperature levels. With

m iterations per temperature level and s proposed neighbors
in each iteration, up to m · s ·

⌈
− log T0

log ρ

⌉
distinct elements of

the search space are visited. This number is denoted as bPSA

and is referred to as budget. In an analogous fashion to the
runtime analysis, bPOCO =

(
n
k

)
refers to the budget requirement

of POCO and brel = bPSA

bPOCO describes the relative budget.
For all considered scenarios, the parameter k which in-

dicates the desired number of controllers to be placed is
assumed to be known beforehand. This assumption simplifies
the problem by reducing the size of the search space from∑n
k=1

(
n
k

)
, where all possible numbers of controllers k are

considered, to
(
n
k

)
. However, the presented evaluation scheme

focuses on the relationship between the size of the search
space and the resulting performance. In the future, algorithms
for estimating feasible values of k could be analyzed and
incorporated into the framework. The field of machine learning
offers approaches like the x-means algorithm [21] for the
related problem of determining the number of clusters which
is a required input for the k-means clustering algorithm.

All evaluations are carried out with the same set of ob-
jectives, namely node to controller latency, inter-controller
latency, and controller load imbalance. This setup results in
a total of five objectives as average and maximum values are
optimized for the latency measures. Due to the fact that each
considered placement is evaluated with respect to each of the
chosen objectives, the number of objectives as well as their
individual complexity affect the total runtime of the exhaustive
and the heuristic method. However, the dependency on the
number of objectives is relative because both methods use
the same subroutines for evaluating placements and are thus
equally affected by changes in the number and complexity of

1http://www.mathworks.com/help/matlab/ref/timeit.html

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT - SPECIAL ISSUE ON EFFICIENT MANAGEMENT OF SDN AND NFV-BASED SYSTEMS 10

objectives.

V. RESULTS

Based on the evaluation technique introduced in Sec-
tion IV-B, computations with different specifications are per-
formed. On the one hand, the general performance of the PSA
heuristic is analyzed. On the other hand, trade-offs between
the invested computational effort and the resulting accuracy
are investigated. Beyond that, guidelines regarding the choice
of algorithms and input parameters for the PSA algorithm are
derived from the analysis of real world datasets. Finally, a
comparison of the absolute time consumption of the exhaustive
and the heuristic approach is presented. This demonstrates
the feasibility of the heuristic approach in the presence of
large problem instances and dynamic environments where
recalculations of controller locations need to be performed on
a regular basis.

0.00

0.02

0.04

0.06

2 × 10+6 4 × 10+6 7.7 × 10+6 1.4 × 10+7 2.8 × 10+7 5.3 × 10+7 1 × 10+8

Size of Search Space

R
el

at
iv

e
B

ud
ge

t

 τ = 0.01, fmin = 70
 τ = 0.01, fmin = 80
 τ = 0.02, fmin = 70
 τ = 0.02, fmin = 80

Fig. 5: Size of search space and corresponding relative budget
required in order to achieve various performance levels

When facing an instance of the controller placement prob-
lem whose search space is too huge to analyze in an exhaustive
fashion while meeting time and resource constraints, the
heuristic approach presented in this work can be applied.
While the input parameters of the PSA algorithm allow calcu-
lating an upper bound for the amount of analyzed placements,
the absence of reference data in such cases prohibits making
a statement about the resulting accuracy. In order to provide
practical guidelines for the parameter choice, the relationship
between performance constraints in terms of accuracy and
the required relative budget brel is investigated. Therefor, an
evaluation involving more than 60 graphs from the Internet
Topology Zoo is performed. For each graph, four different
numbers of controllers are tested and range from 5 to 15,
depending on the graph’s size. With graph sizes ranging
from 25 to 50 nodes, these scenarios feature search spaces
containing between one and 100 million different placements.

Figure 5 illustrates results from this evaluation. The data
is grouped into logarithmically spaced bins according to the
size of the search space in each scenario. Labels on the x-
axis indicate the bins’ thresholds, e.g., the first bin contains
all scenarios for which

(
n
k

)
< 2 × 106 holds. The y-axis

displays brel, the relative budget required for achieving the

performance goals set by the specification. While the bars’
height denotes the mean value of brel in the performed eval-
uations, whiskers represent 95% confidence intervals and bar
colors show different accuracy specifications. The investigated
specifications use δ1 as performance measure and feature
combinations of accuracy thresholds τ ∈ {0.01, 0.02} and
fractions fmin ∈ {70, 80}. There are three main observations.
First, in the context of increasingly large search spaces, the
required relative budget brel decreases. This behavior demon-
strates the efficiency of the PSA mechanism. While the size of
the search space,

(
n
k

)
, grows extremely fast with n and k, the

algorithm’s search strategy finds feasible solutions early on.
Second, when facing rather small search spaces containing
around 4 million or less options, the required brel values in
order to obtain good results express a high degree of variation
as indicated by the increased width of confidence intervals
in this range. For such sizes of the search space, POCO’s
exhaustive evaluation is usually sufficiently fast, and thus is
a viable alternative to the heuristic approach. Third, for each
bin, two groups of bars can be identified. The two groups
correspond to the two values of τ , with brel values for τ = 0.01
being higher than those for τ = 0.02. This observation
confirms the intuition that increased accuracy demands require
a higher search budget. On average, the budget requirements
for τ = 0.01 are 5.6 times higher than for τ = 0.02. The used
values of fmin on the other hand do not have a significant
influence on the relative budget brel. While the mean values of
brel corresponding to fmin = 70 are strictly smaller than those
corresponding to fmin = 80, their confidence intervals overlap,
thus prohibiting a statistically significant statement.

0.00

0.25

0.50

0.75

1.00

1 × 10−5 1 × 10−4 1 × 10−3 1 × 10−2 1 × 10−1 1

Relative Budget

F
ra

ct
io

n
of

 S
ce

na
rio

s

τ = 0.01, fmin = 80
τ = 0.02, fmin = 80

Fig. 6: Distribution of relative budget required in order to
achieve various performance levels

In order to provide a size independent view on the eval-
uation data, Figure 6 presents the empirical cumulative dis-
tribution function (CDF) of brel values for different accuracy
specifications. The x-axis is logarithmically scaled and shows
the relative budget required for meeting specific performance
constraints. On the y-axis, the fraction of cases in which the
required budget is smaller than or equal to a particular value
is displayed. As in the previous figure, different specifications
are represented by different line colors. In order to improve
readability, the curves for specifications with fmin = 70 are
omitted as they overlap with those that display values for
fmin = 80. Again, a gap between the curves corresponding to

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT - SPECIAL ISSUE ON EFFICIENT MANAGEMENT OF SDN AND NFV-BASED SYSTEMS 11

different values of τ can be identified. Furthermore, the CDF
representation allows for more generic recommendations with
respect to the choice of parameters for the PSA algorithm.
In particular, the graph shows that a relative budget of 1%
is sufficient in over 90% of tested cases when the threshold
for δ1 equals 0.02. Increasing the accuracy demand by setting
τ = 0.01 raises the 90% quantile to a budget of 10%. However,
even in the second case, a budget of 1% suffices in 80% of
instances.

0.0

0.1

0.2

0.3

2 × 10+6 4 × 10+6 7.7 × 10+6 1.4 × 10+7 2.8 × 10+7 5.3 × 10+7 1 × 10+8

Size of Search Space

R
el

at
iv

e
T

im
e

C
on

su
m

pt
io

n τ = 0.01, fmin = 70
 τ = 0.01, fmin = 80
 τ = 0.02, fmin = 70
 τ = 0.02, fmin = 80

Fig. 7: Size of search space and corresponding relative time
required in order to achieve various performance levels

As described in Section IV-B, not only the budget of the
PSA algorithm is measured but also its relative time demand in
comparison to the exhaustive evaluation. Using the scenarios
described at the beginning of this section, Figure 7 presents
resulting trel values for different sizes of the search space. The
size thresholds of logarithmically scaled bins are displayed
on the x-axis, while the y-axis shows corresponding values
of trel = tPSA

tPOCO , the relative time consumption of the PSA
algorithm compared to POCO’s exhaustive evaluation. Bars’
heights indicate the average value per bin and whiskers mark
the respective 95% confidence intervals. The different accuracy
specifications for δ1 are represented by the bars’ colors. With
increasing size of the search space, the relative time require-
ment of the heuristic approach decreases steadily, dropping
below 10% for sizes beyond 4 million in the case of τ = 0.02
and for sizes beyond 7.7 million in the case of τ = 0.01,
respectively. Additionally, the confidence intervals become
narrower, indicating an increase in reliability. In contrast to
the budget analysis, the trel values provide a straightforward
assessment of the time-accuracy trade-off offered by the PSA
heuristic. For example, PSA can deliver a set of placements
more than 50 times faster than the default exhaustive evalu-
ation when the scenario’s search space contains 14 million
placements or more and an average deviation of 2% with
regards to accuracy is tolerable.

Consolidating the different size levels and calculating prob-
abilities of observed trel values yields Figure 8, showing CDF
curves for different specifications. The latter are denoted by
different colors, while x and y-axes provide trel values and
corresponding cumulative probabilities, respectively. While
the trel differences between consecutive 10% quantiles are

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Relative Time Consumption

F
ra

ct
io

n
of

 S
ce

na
rio

s

 τ = 0.01, fmin = 80
 τ = 0.02, fmin = 80

Fig. 8: Distribution of relative time required in order to achieve
various performance levels

rather small until 80%, they increase significantly beyond that
threshold. This can be explained by the fact that the CDF also
takes into account the evaluation data obtained from instances
whose search space is rather small while PSA exerts its speed
advantage in the context of huge search spaces. Nonetheless,
the 80% quantiles for τ = 0.01 and τ = 0.02 with trel values
of roughly 15% and 5% indicate a potential speedup by a
factor larger than 6 and 20 when incorporating PSA rather
than an exhaustive evaluation.

10

1000

2 × 10+6 4 × 10+6 7.7 × 10+6 1.4 × 10+7 2.8 × 10+7 5.3 × 10+7 1 × 10+8

Size of Search Space

T
im

e
C

on
su

m
pt

io
n

[s
ec

]

Exhaustive
PSA

Fig. 9: Size of search space and corresponding absolute
runtime requirements for an exhaustive evaluation and the
proposed PSA heuristic with τ = 0.02

While considering the relative time consumption of the
heuristic approach provides a hardware independent com-
parison, absolute times allow reasoning about the practical
feasibility of the mechanism in the context of a particular
hardware configuration and use case. Hence, Figure 9 presents
the absolute time consumption of the exhaustive and the
heuristic approach when applied to the problem instances
discussed in this section. In the case of the PSA algorithm, an
accuracy demand of τ = 0.02 is set. All measurements were
performed on an Intel Core i7 4770 CPU at 3.40 GHz and 16
GB of RAM running Windows 7 and Matlab version R2014a.
Again, the x-axis provides the thresholds of logarithmically
scaled bins indicating the size of the investigated search space.
The y-axis displays the absolute time consumption of the

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT - SPECIAL ISSUE ON EFFICIENT MANAGEMENT OF SDN AND NFV-BASED SYSTEMS 12

two mechanisms and is logarithmically scaled as well. While
differently colored bars correspond to different algorithms,
bars’ whiskers and heights indicate 95% confidence intervals
and mean values, respectively.

In accordance with previous observations, an exhaustive
evaluation can be completed nearly as fast as the heuristic
approach in the context of small problem instances. On av-
erage, the exhaustive approach finished in less than a minute
for problem instances with a search space size of up to four
million elements. However, its runtime increases dramatically
for scenarios that feature a larger search space. For the largest
instances, the exhaustive evaluation takes nearly half an hour
while PSA delivers a solution within less than an average of
30 seconds. In general, using PSA is one to two orders of
magnitude faster than performing an exhaustive evaluation.

Additionally, the growth of the time consumption in the
context of PSA is slower. While it remains relatively constant
at around 5 seconds for the first five sizes, it rises to 15 and
25 seconds for the last two bins, respectively. Thus, even large
instances can be handled on a scale of seconds. This behavior
highlights the practical feasibility of the PSA approach for
dynamic environments where frequent changes require fast
reaction times in order to adapt to the new situation quickly.
Even though it is not the main focus of this work, the fast
computation times allow for an automated approach to the
dynamic controller placement problem. This could be achieved
by summarizing an operator’s preferences with respect to the
objectives into a single score beforehand and choosing the
highest scored placement from the Pareto frontier returned by
the PSA routine.

VI. RELATED WORK

This section gives an overview on related work. First, related
work on the underlying mathematical problem is provided,
followed by related work on the controller placement in SDN
networks particularly regarding resilience and fault-tolerance.
Finally, work related to the different optimization algorithms
addressed in this paper is given.

A. Facility Location Problem

As already mentioned and indicated by Heller et al. [5],
the topic of general controller placement is well explored.
In particular, the very basic version of controller placement
according to the latency of nodes to their controller is also
well discussed in the context of choosing the best location
for plants, warehouses, or any other facilities in a given
network topology. The problem is therefore also known as
plant, facility, or warehouse location problem and it is a typical
example for a Mixed Integer Linear Program provided, e.g.,
with the IBM ILOG CPLEX [22] software. If the objective
is to minimize πmax latency, the problem is called k-centers
problem, if the objective is πavg latency, it is called k-median or
k-mean problem. Further references to this general problem
are provided in Heller’s work [5]. Overviews on different
aspects of the facility location problem and on different
methodological approaches are also given in [23] in general
and in [24] with the focus on “uncertainty” regarding, e.g.,

uncertain traffic demands or latencies. These works however
have a rather general and theoretical focus. They do not
address the particular issues of controller placement in SDN
networks with respect to multiple criteria and a focus on
resilience. The following overview on related work focuses on
variants of the controller placement problem which are closely
related to the problems discussed in this paper.

A variant of the problem similar to the node to controller
balancing discussed here has been introduced by Archer et
al. [25] as load-balanced facility problem. The objective is
similar to πimbalance. However, the authors address this problem
in a different context concerning particular questions arising
in the area of computer graphics. Furthermore, they provide
only approximations to the problem regarding their particular
optimization goals. In the context of load balancing, also the
term capacitated and uncapacitated facility problem can be
found, see, e.g., [26] and contained references. The capacitated
version assumes that the maximum number of nodes that can
be assigned to a single controller is limited.

Different authors, among others Khuller et al. [27] and
Chaudhuri et al. [28], look at variants called fault tolerant
or p-neighbor k-center problems. These variants are similar to
what is called “controller failure resilient placements” here.
The works focus only on the theoretical methodology of the
problem and provide approximation algorithms.

B. Controller Placement in SDN Networks

Recently, apart of Heller et al. mentioned before [5], more
and more authors have addressed facility location in the con-
text of controller placement in SDN networks. Bari et al. [4]
address dynamic controller provisioning, i.e., controller place-
ments changing over time depending on the current number of
flows in the network. They propose an Integer Linear Program
formulation of their “Dynamic Controller Provisioning Prob-
lem” as well as two different heuristic algorithms to solve it
for larger problem instances. The authors focus their metrics
on flow setup time and minimal communication overhead
regarding state synchronization. Controller or network failure
issues or a combination of multiple criteria such as, e.g.,
πimbalance or πmax latency are not addressed by their work. Zhang
et al. [15] address a resilient optimization of the controller
placement problem considering the outage of nodes, links,
or connections between nodes and controllers. They do not
reassign nodes to new controllers if the connection to the
original controller fails, but assume these nodes are controller-
less and thus not able to communicate with other nodes
anymore. They propose a placement heuristic and simulation
with the objective of minimizing the amount of lost node to
node routes due to link and node failures and controller-less
nodes.

The works of Hu et al. [29], [30] go in a similar direction.
They introduce and compare different heuristic approaches to
increase the resilience of software defined networks against
connection failures between nodes and controllers. Ros et
al. [31] again consider something similar and aim at maximiz-
ing the reliability of the controller placement. They heuristi-
cally search for the minimum number of controllers assigned

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT - SPECIAL ISSUE ON EFFICIENT MANAGEMENT OF SDN AND NFV-BASED SYSTEMS 13

to each node and the controllers’ placement to reach a certain
reliability threshold as, e.g., “five nines”. All these works [15],
[29], [30] focus only on resilience against network failures and
do not consider any additional metrics such as πimbalance or
πmax latency. In particular, the trade-off between their metrics
and other objectives, such as πmax latency, is not addressed.
Furthermore, compared to the evaluation of the entire solution
space, no guarantee for the optimality of the presented results
can be given.

C. Multi-criteria Optimization Algorithms

For a given combination of objectives, there are various
approaches for multi criteria facility location in literature, e.g.,
[32]–[37] and references within. However, most of these works
investigate optimization approaches for specific predefined sets
of objectives rather than providing generic heuristics. Algo-
rithms dealing with the aforementioned capacitated facility
location problem, for example, consider the equivalent of the
πavg latency and πimbalance metrics used in this work. Metaheuris-
tics like the presented Pareto Simulated Annealing (PSA)
[9] mechanism, on the other hand allow adding arbitrary
objectives into the evaluation and are not limited with respect
to the number of objectives that are taken into account during
optimization. The only requirement is a function that maps
elements of the search space to their performance regarding
a particular objective. While techniques from the domain of
evolutionary algorithms [7], [38] or genetic algorithms [39] in
particular are also capable of performing multiobjective opti-
mization, these algorithms often are at risk of getting stuck in
local Pareto optima. PSA reduces this risk by accepting some
worse solutions but still achieves convergence by employing
a time dependent acceptance probability.

VII. CONCLUSION

Designing the control plane of an SDN-based network poses
several challenges to decision makers. Even when the required
number of elements in the externalized control plane is known,
their locations influence many crucial performance aspects
of the resulting system. This work addresses the controller
placement problem with respect to various important metrics.
These include latencies, both from nodes to controllers as well
as among controllers, resilience against node and link failures,
and load balancing in the control plane. However, several of
these metrics compete with each other, thus confronting the
decision maker with trade-offs between them. Algorithms for
exact and heuristic analyses of the resulting solution space
are developed and implemented in the Matlab based POCO
framework for Pareto-based Optimal COntroller placement.
This article shows that the benefits of incorporating heuristic
approaches are twofold. First, they allow analyzing problem
instances that are too large to evaluate in an exhaustive
fashion. Second, in the presence of time constraints in highly
dynamic environments, heuristic algorithms allow for a trade-
off between time and accuracy. The trade-off is analyzed
in detail via an evaluation featuring numerous real world
topologies. Depending on the user’s requirements with regards
to accuracy, speedups beyond a factor of 20 are possible.

Furthermore, large problem instances that cannot be computed
because of the enormous memory requirements can now be
evaluated by applying the heuristics.

Additionally, the POCO tool, which is available as open
source software2, provides an interactive GUI that displays a
visualization of the resulting Pareto frontier with respect to up
to four different metrics. Thus, decision makers can explore
the solution space, perform what-if analyses, and finally accept
the trade-off that suits their current preferences the most.

Finally, the scope of the presented mechanisms is not limited
to the problem of SDN controller placement. By defining
appropriate objective functions, i.e., mappings from place-
ments to numerical scores, these techniques can be extended in
order to tackle similar problems like the functions placement
problem which appears in the context of Network Functions
Virtualization.

ACKNOWLEDGMENTS

This work has been performed in the framework of the
CELTIC EUREKA project SASER-SIEGFRIED (Project ID
CPP2011/2-5), and it is partly funded by the BMBF (Project
ID 16BP12308). The authors alone are responsible for the
content of the paper.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM CCR, 2008.

[2] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer,
“Interfaces, Attributes, and Use Cases: A Compass for SDN,” IEEE
Communications Magazine, 2014.

[3] A. Tootoonchian and Y. Ganjali, “HyperFlow: a Distributed Control
Plane for OpenFlow,” in INM/WREN’10, Berkeley, CA, USA, 2010.

[4] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic Controller Provisioning in
Software Defined Networks,” in International Conference on Network
and Services Management (CNSM), Zürich, Switzerland, 2013.

[5] B. Heller, R. Sherwood, and N. McKeown, “The Controller Placement
Problem,” in HotSDN ’12, New York, NY, USA, 2012.

[6] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-
Gia, “Pareto-Optimal Resilient Controller Placement in SDN-based Core
Networks,” in 25th International Teletraffic Congress (ITC), 2013.

[7] J. Branke, K. Deb, K. Miettinen, and R. Slowinski, Multiobjective
optimization: Interactive and evolutionary approaches. Springer, 2008.

[8] D. Hock, M. Hartmann, S. Gebert, T. Zinner, and P. Tran-Gia, “POCO-
PLC: Enabling Dynamic Pareto-Optimal Resilient Controller Placement
in SDN Networks,” INFOCOM, Toronto, Canada, 2014.

[9] P. Czyzżak and A. Jaszkiewicz, “Pareto simulated annealing - a meta-
heuristic technique for multiple-objective combinatorial optimization,”
Journal of Multi-Criteria Decision Analysis, 1998.

[10] S. Schmid and J. Suomela, “Exploiting locality in distributed SDN
control,” in Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking, 2013.

[11] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proceedings of the
first workshop on Hot topics in software defined networks, 2012.

[12] Network Functions Virtualisation - Introductory White Paper. [Online].
Available: http://portal.etsi.org/NFV/NFV White Paper.pdf

[13] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, and K. Hoffmann,
“Applying NFV and SDN to LTE mobile core gateways, the functions
placement problem,” in Proceedings of the 4th workshop on All things
cellular, 2014.

[14] S. Gebert, D. Hock, T. Zinner, P. Tran-Gia, M. Hoffmann, M. Jarschel,
E.-D. Schmidt, R.-P. Braun, C. Banse, and A. Koepsel, “Demonstrating
the Optimal Placement of Virtualized Cellular Network Functions in
Case of Large Crowd Events,” in ACM SIGCOMM, Chicago, USA, 2014.

2POCO is available at http://www3.informatik.uni-wuerzburg.de/poco

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT - SPECIAL ISSUE ON EFFICIENT MANAGEMENT OF SDN AND NFV-BASED SYSTEMS 14

[15] Y. Zhang, N. Beheshti, and M. Tatipamula, “On Resilience of Split-
Architecture Networks,” in GLOBECOM 2011, 2011.

[16] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, “A Flexible
OpenFlow-Controller Benchmark,” in European Workshop on Software
Defined Networks (EWSDN), Darmstadt, Germany, Oct. 2012.

[17] “POCO: A Framework for the Computation of Pareto-based Optimal
Controller-Placements,” http://www3.informatik.uni-wuerzburg.de/poco.

[18] D. Hock, S. Gebert, M. Hartmann, T. Zinner, and P. Tran-Gia, “POCO-
Framework for Pareto-Optimal Resilient Controller Placement in SDN-
based Core Networks,” in NOMS 2014, Krakow, Poland, May 2014.

[19] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” IEEE JSAC, vol. 29, no. 9, 2011.

[20] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
Simmulated Annealing,” Science, 1983.

[21] D. Pelleg, A. W. Moore et al., “X-means: Extending K-means with
Efficient Estimation of the Number of Clusters.” in ICML, 2000.

[22] CPLEX, ILOG, Inc., http://www.cplex.com/.
[23] Z. Drezner, Facility Location: A Survey of Applications and Methods.

Springer Verlag, 1995.
[24] S. H. Owen and M. S. Daskin, “Strategic Facility Location: A Review,”

European Journal of Operational Research, vol. 111, no. 3, pp. 423 –
447, 1998.

[25] A. Archer and S. Krishnan, “Importance Sampling via Load-Balanced
Facility Location,” in IPCO’08, Bertinoro, Italy, 2008.

[26] F. J. F. Silva and D. S. de la Figuera, “A Capacitated Facility Location
Problem with Constrained Backlogging Probabilities,” IJPR, vol. 45,
no. 21, 2007.

[27] S. Khuller, R. Pless, and Y. Sussmann, “Fault Tolerant K-center Prob-
lems,” Theoretical Computer Science, vol. 1203, 1997.

[28] S. Chaudhuri, N. Garg, and R. Ravi, “The p-Neighbor k-Center Prob-
lem,” IPL, vol. 65, no. 3, 1998.

[29] Y. nan Hu, W. dong Wang, X. yang Gong, X. rong Que, and S. duan
Cheng, “On the Placement of Controllers in Software-Defined Net-
works,” JCUPT, vol. 19 Supplement 2, 2012.

[30] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan, “Reliability-
aware Controller Placement for Software-Defined Networks,” in
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), Ghent, Belgium, 2013.

[31] F. J. Ros and P. M. Ruiz, “Five Nines of Southbound Reliability in
Software-Defined Networks,” in Proceedings of the Third Workshop on
Hot Topics in Software Defined Networking, 2014.

[32] U. Bhattacharya, J. R. Rao, and R. N. Tiwari, “Fuzzy Multi-Criteria
Facility Location Problem,” Fuzzy Sets Syst., vol. 51, no. 3, pp. 277–
287, Nov. 1992.

[33] M. Ehrgott, Multicriteria Optimization. Springer, 2005.
[34] I. Harris, C. Mumford, and M. Naim, “The Multi-Objective Uncapac-

itated Facility Location Problem for Green Logistics,” in Evolutionary
Computation, 2009. CEC ’09. IEEE Congress on, 2009, pp. 2732–2739.

[35] A. Lancinskas and J. Zilinskas, “Solution of Multi-Objective Competi-
tive Facility Location Problems Using Parallel NSGA-II on Large Scale
Computing Systems,” in Applied Parallel and Scientific Computing.
Springer, 2013, pp. 422–433.

[36] T. Xifeng, Z. Ji, and X. Peng, “A Multi-Objective Optimization Model
for Sustainable Logistics Facility Location,” Transportation Research
Part D: Transport and Environment, vol. 22, pp. 45–48, 2013.

[37] S. H. A. Rahmati, V. Hajipour, and S. T. A. Niaki, “A Soft-Computing
Pareto-based Meta-Heuristic Algorithm for a Multi-Objective Multi-
Server Facility Location Problem,” Applied Soft Computing, 2013.

[38] A. Abraham and L. Jain, Evolutionary multiobjective optimization.
Springer, 2005.

[39] L. Davis et al., Handbook of genetic algorithms. Van Nostrand Reinhold
New York, 1991.

Stanislav Lange studied computer science at the
University of Würzburg, Germany, where he re-
ceived his MSc degree in 2014. Currently, he is
a researcher in the “Next Generation Networks”
research group at the Chair of Communication Net-
works in Würzburg and is pursuing his PhD. His
research is focused on software defined networking,
performance analysis, system modeling, as well as
multiobjective optimization.

Steffen Gebert studied computer science at the Uni-
versity of Würzburg, Germany, where he received
his diploma degree in 2011. Currently, he is a re-
searcher in the “Next Generation Networks” research
group at the Chair of Communication Networks in
Würzburg and is pursuing his PhD. He is interested
in advantages and disadvantages brought by software
defined networks and virtualized network functions
- be it from a performance perspective, as well as
from management of orchestration.

Thomas Zinner studied computer science at the
University of Würzburg, Germany. He finished his
PhD on performance modeling of QoE-aware mul-
tipath video transmission in the future Internet in
2012. He is heading now the “Next Generation
Networks” research group at the Chair of Commu-
nication Networks in Würzburg. His main research
interests cover video streaming, QoE-aware net-
working, SDN and NFV, as well as the performance
assessment of these technologies and architetures.

Phuoc Tran-Gia is professor and director of the
Chair of Communication Networks, University of
Würzburg, Germany. He is also Member of the
Advisory Board of Infosim (Germany) specialized
in IP network management products and services.
Prof. Tran-Gia is also cofounder and board member
of Weblabcenter Inc. (Dallas, Texas), specialized in
Crowdsourcing technologies. Previously he was at
academia in Stuttgart, Siegen (Germany) as well
as at industries at Alcatel (SEL) and IBM Zurich
Research Laboratory. He is active in several EU

framework projects and COST actions. His research activities focus on
performance analysis of the following major topics: Future Internet &
Smartphone Applications; QoE Modeling & Resource Management; Software
Defined Networking & Cloud Networks; Network Dynamics & Control;
Crowdsourcing. He has published more than 100 research papers in major
conferences and journals and received the Fred W. Ellersick Prize 2013 (IEEE
Communications Society).

David Hock is a senior consultant for research and
development at Infosim GmbH & Co. KG and is co-
ordinating the research activities in the area of Soft-
ware Defined Networking. Before he was working as
a research assistant at the Chair of Communication
Networks at the Institute of Computer Science in
Würzburg where he finished his Dr. rer. nat. degree
in 2014. His current main research interests are in
the integration of Software Defined Networking and
Network Management.

Michael Jarschel is working as a research engineer
in the area of Software Defined Networking at Nokia
in Munich, Germany. He finished his Ph.D. thesis,
titled “An Assessment of Applications and Perfor-
mance Analysis of Software Defined Networking”,
at the University of Würzburg in 2014. His main
research interests are in the applicability of SDN and
NFV concepts to next generation mobile networks.

Marco Hoffmann studied computer science and
received the Dr rer. nat. degree from TUM in 2005.
In 2004 he joined the Research and Development
Department of Siemens. Currently he is Technol-
ogy Manager for software defined networking and
virtualization and Project Manager for international
projects in the Research division of NOKIA. He
was consortium leader and board member of sev-
eral national and international research projects and
member of company internal and nation-wide Future
Internet strategy teams.

