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Abstract: This paper presents a new method for the estimation and charac-

terization of the expected teletraffic in mobile communication networks. The

method considers the teletraffic from the network viewpoint. The traffic es-

timation is based on the geographic traffic model, which obeys the geograph-

ical and demographical factors for the demand for mobile communication

services. For the spatial teletraffic characterization, a novel representation

technique is introduced which uses the notion of discrete demand nodes. We

show how the information in geographical information systems can be used

to estimate the teletraffic demand in an early phase of the network design

process. Additionally, we outline how the discrete demand node representa-

tion facilitates the application of demand-based, automatic mobile network

design algorithms.
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1 Introduction

The design of future generation wireless communication networks is facing

three major challenges. First, there is a tremendous increase in the demand

for mobile communication services. Second, due to deregulation acts, the

competition between the mobile service providers is increased and the cus-

tomers can switch almost instantaneously to the most economical provider.

And third, new multiplexing and access technologies like Space Division Mul-

tiple Access (SDMA), Code Division Multiple Access (CDMA) or Wireless

Local Loop (WLL), require new network planning methods in order to obtain

an efficient, economic and optimal wireless network configuration.

The primary task of mobile system planning is to locate and configure trans-

mission facilities, i.e. base stations or switching centers, in the service area

of the network and to interconnect these node in an optimal way. To achieve

an efficient configuration of these spatial-extended systems, new teletraffic

models are required to evaluate their spatial performance, cf. Wirth [24]. Es-

pecially, the design of mobile networks has to be based on the analysis of the

distribution of the expected spatial teletraffic demand in the complete ser-

vice area. However, most of the traffic models applied so far for the demand

estimation characterize the traffic only in a single cell, e.g. Hong and Rap-

paport [10]. Other traffic models, like the highway Poisson-Arrival-Location

Model (PALM) proposed by Leung et al. [13], give deep theoretical insights,

but they are too complex for practical use in mobile system engineering.

Hence, the demand-based design of mobile communication systems requires

an efficient traffic estimation and characterization procedure which is at the
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same time both accurate and simple to use. Such a method will be intro-

duced in the following presentation.

The paper is organized as follows. In Section 2 we first introduce a new

demand-based and integrated mobile network planning approach. In Sec-

tion 3 we provide first an overview on traffic source models which are used so

far in mobile network design. In the second part we define a spatial traffic es-

timation model which takes into account the geographical and demographical

factors for the expected teletraffic in a service region. Subsequently, we intro-

duce the demand node concept, which is a novel and efficient technique for

the representation of the spatial distribution of the teletraffic using discrete

points. Section 4 outlines a traffic characterization procedure which is capa-

ble to derive a demand node distribution from publicly available geographical

data. To generate the demand nodes, we present a recursive partitional clus-

tering algorithm. Section 5 demonstrates how the demand node concept can

be applied for locating base stations. Section 6 summarizes the presentation.

2 Demand-based systematic mobile network

planning

The major drawback of commonly used, conventional mobile network plan-

ning methods is their focus on Radio Frequency (RF) aspects. Their main

objective is to provide a sufficient radio signal coverage throughout the com-

plete service area, cf. Gamst et al. [6]. However, economical aspects of system

deployment and operation are either not effectively addressed or considered
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Figure 1: Integrated planning approach

only in a very late stage of the design process. The handling of this issue

remains usually to the expertise of the network design engineer.

The demand-based and integrated approach overcomes this disadvantage by

regarding the spatial teletraffic demand distribution in the service as a ma-

jor input factor among the design constraints. The new approach is depicted

in Figure 1. The main cellular design constraints are organized into four

equally and parallel considered basic modules, cf. Tutschku et al. [22]: Radio

Transmission, Mobile Subscriber, System Architecture, and Resource Man-

agement. This structured set of input parameters is used by the integrated

concept for the synthesis of a cellular configuration. The system configura-

tion is generated by the Automatic Network Design Sequence.

In contrast to the conventional design method, the new approach starts with

the analysis of the expected teletraffic demand within the considered cover-
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age area, cf. Section 5. Due to the equal and parallel contribution of all basic

modules, the new concept is capable to obey the interactions and depen-

dencies between the design objectives. Hence, the capacity and teletraffic

engineering objectives can be addressed early and in an appropriate way.

Moreover, the new approach is able to find trade-offs between contrary ob-

jectives, like high user coverage and equipment minimization. It is capable to

achieve comprehensive optimized wireless network configurations. Addition-

ally, the approach constitutes a forward-engineering technique and facilitates

the application of automatic network design algorithms.

3 Traffic estimation

In mobile communication networks the teletraffic originating from the service

area of the system can be described mainly by two traffic models which differ

by their view of the network. a) The traffic source model, which is also often

referred to as the mobility model, describes the system as seen by the mobile

unit. The traffic scenario is represented as a population of individual traffic

sources performing a random walk through the service area and randomly

generating demand for resources, i.e. the radio channels. An overview on

these models is provided in Section 3.1. b) In contrast, the network traffic

model of a mobile communication system describes the traffic as observed

from the non-moving network elements, e.g. base stations or switches. This

model characterizes the spatial and time-dependent distribution of the tele-

traffic. The traffic intensity λ is in general measured in call attempts per time

unit and space unit ([calls/(sec·km2)]). Taking additionally the mean call du-

5



ration E[B] into account, the offered traffic is a = λ ·E[B] (in [Erlang/km2]).

This measure represents the amount of offered traffic in a defined area.

Both traffic models are used in mobile communication system design. Par-

ticularly the latter model is of principal interest when determining the lo-

cation of the main facilities in a mobile network, i.e. the base stations and

the switching centers. These components should be located close to the ex-

pected traffic in order to increase the system efficiency. Therefore, we focus

in Section 3.2 in greater detail on this type of models.

3.1 Traffic source models

Due to their capability to describe the user behavior in detail, traffic source

models are usually applied for the characterization of the traffic in an in-

dividual cell of a mobile network. Using these models, local performance

measures like new call blocking probability or handover blocking probability

can be derived from the mobility pattern. Additionally, these models can

be used to calculate the subjective Quality-of-Service values for individual

users.

Overview on traffic source models

A widely used single cell model was first introduced by Hong and Rappa-

port [10]. Their model assumes a uniformly distributed mobile user density

and a non-directed uniform velocity distribution of the mobiles. Under this

premise, performance values like the mean channel holding time and the av-

erage call origination rate in a cell can be computed.
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A more accurate modeling of the calling behavior of users in a single cell was

proposed by Tran-Gia and Mandjes [19]. The model considers a base station

with a finite customer population and repeated attempts. The appealing

characteristic of the model is the assumption of a small, finite users popula-

tion. This is the typical case in real networks, cp. Section 4. However, the

model is limited to a single cell and does not consider the spatial variation

of the teletraffic within the service area.

El-Dolil et al. [4] characterized the mobile phone traffic on vehicular high-

ways by assuming a one-dimensional mobility pattern. They derive the per-

formance values by applying a stationary flow model for the vehicular traffic.

An extended one-dimensional highway model with a non-uniform density dis-

tribution, denoted as the highway PALM model, was investigated by Leung

et al. [13]. For the traffic characterization, fluid flow models with time-

nonhomogeneous and time-homogeneous traffic have been used, as well as an

approximative stochastic traffic model.

A limited directed two-dimensional mobility model was investigated by Fos-

chini et al. [5]. The model assumes a spatially homogeneous distribution of

the demand and an isotropic mobility structure. Chlebus [2] investigated

a mobility model with a homogeneous demand distribution but assumes a

non-uniform velocity distribution. The traffic orientation is non-directed and

uniformly distributed.

The application of these traffic source models in real network planning cases

is strongly limited. Some models, like the highway PALM model give a deep

insight on the impact of the terminal mobility on the cellular system perfor-
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mance, however they are rather complex to be applied in real network design.

Other models, like the one suggested by Hong and Rappaport [10], due to

their simplification assumptions, can only be applied for the determination

of the parameters in an isolated cell.

3.2 Traffic intensity

Since the cellular network planning process requires a comprehensive view of

the expected load and since the traffic source models only focus on a single

cell, a network teletraffic model has to be specified. Therefore, we define

the traffic intensity function λ(t)(x, y). This function describes the number

of call requests seen by the fixed network elements, in a unit area element

at location (x, y) during time interval (t, t + ∆t). The coordinates (x, y) of

the area element are integer numbers. Due to the definition given above, the

traffic intensity function is a matrix of traffic values representing the demand

from area elements in the service region, cf. Figure 2(b). The traffic intensity

λ(t)(x, y) can be derived from the location probability and the call attempt

rate of the mobile units.

Under the premise that this probability p
(t)
loc(χ, ψ) is known, the average num-

ber of mobile units #mob
(t)

(x, y) in a certain area element at time t is:

#mob
(t)

(x, y) =

∫ x+∆x

x

∫ y+∆y

y

p
(t)
loc(χ, ψ)dψ, dχ . (1)

Here, p
(t)
loc(χ, ψ) is the probability that, if the system is viewed from the

outside, there is a mobile unit at location (χ, ψ). The location (χ, ψ) is a

coordinate in R2 and ∆x×∆y is the size of the unit area element.
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Using the assumption that every mobile unit has the same call attempt rate

r(t) at time t, the traffic intensity λ(t)(x, y) can be readily obtained:

λ(t)(x, y) = #mob
(t)

(x, y) r(t) . (2)

Since in real world planning cases it is almost impossible to directly calcu-

late the location probability p
(t)
loc(χ, ψ) from the mobility model, the traffic

intensity has to be derived from indirect statistical measures.

3.3 The geographic network traffic model

The offered traffic in a region can be estimated by the geographical and

demographical characteristics of the service area. Such a demand model

relates factors like land use, population density, vehicular traffic, and income

per capita with the calling behavior of the mobile units. The model applies

statistical assumptions on the relation of traffic and clutter type with the

estimation of the demand. In the geographic network traffic model, the

offered traffic A
(t)
geo(x, y) is the aggregation of the traffic originating from

these various factors:

A(t)
geo(x, y) =

∑

all factors i

ai · δ(t)
i (x, y), (3)

where ai = λi · E[Bi] is the traffic generated by factor i in an arbitrary area

element of unit size, measured in Erlangs per area unit, λi the number of

call attempts per time unit and space unit initiated by factor i, E[Bi] is the

mean call duration of calls of type i, and δ
(t)
i (x, y) is the assertion operator:

δ
(t)
i (x, y) =





0 : traffic factor i is not true at location (x, y)

1 : traffic factor i is true at location (x, y)
. (4)
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So far, the planning of public communication systems uses geographic traffic

models which have a large granularity. In these cases, a typical unit area size

is in the order of square kilometers, i.e. in public cellular mobile systems this

is the size of location areas, cf. Grasso et al. [8]. For the determination of

the location of transmission facilities a much smaller value is required. Their

locations have to be determined within a spatial resolution of one hundred

meters. Thus, a unit area element size in the order of 100m× 100m is here

indicated.

Traffic parameters

The values for ai, which are the traffic values originating from factor i per area

element, can be derived from measurements in an existing mobile network

and by taking advantage of the known causal connection between the traffic

and its origin. A first approach is to assume a highly non-linear relationship.

A general structure to model this behavior is to use a parametric exponential

function. In our proposed geographic model, the traffic-factor relationship is

defined to be:

ai = c · bxi (5)

where c is constant and b is the base of the exponential function.

To reduce the complexity of the parameter determination we introduce the

normalization constraint:

Atotal

Sservice area/sunit element

=
∑

all factors i

ai , (6)

where Sservice area is the size of the service area, sunit element is the size of a unit

area element, and Atotal is the total teletraffic in this region. The value of
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Atotal can be measured in an operating cellular mobile network.

The structure of the geographical traffic model given in Eqn. 3 and Eqn. 5

appears to be simple. However, due to its structure the model can be adapted

to the proper traffic parameters. This capability enables its application for

mobile system planning.

Stationary geographic traffic model

The above proposed model A
(t)
geo(x, y) includes also the temporal variation of

the traffic intensity in the service area. Since communication systems must

be configured in such a way that they can accommodate the highest expected

load, the time index t is usually dropped and the traffic models are reduced

to stationary models describing the peak traffic. The maximum load is the

value of the traffic during the busy hour, cf. Mouly and Pautet [15].

A pitfall for the network designer remains: the busy hour varies over time

within the service area. In downtown areas the highest traffic usually occurs

during business hours, whereas in suburban regions the busy hour is expected

to be in the evening. Therefore, the network engineer has to decide how to

weight the different traffic factors, i.e. how to obey the different market

shares of various user groups in the traffic model of the network.

3.4 Traffic discretization and demand nodes

The core technique of the traffic characterization proposed in this paper is

the representation of the spatial distribution of the demand for teletraffic by

discrete points, denoted as demand nodes. Demand nodes are widely used
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in economics for solving facility location problems, cf. Ghosh and McLaf-

ferty [7].

Definition: A demand node represents the center of an area that contains a

quantum of demand from teletraffic viewpoint, accounted in a fixed number

of call requests per time unit.

The notion of demand nodes introduces a discretization of the demand in

both space and demand. In consequence, the demand nodes are dense in

areas of high traffic intensity and sparse in areas of low traffic intensity. To-

gether with the time-independent geographic traffic model, the demand node

concept constitutes, in the context of cellular network design, a static popu-

lation model for the description of the subscriber distribution.

An illustration of the demand node concept is given in Figure 2: part (a)

shows publicly available map data with land use information for the area

around the city of Würzburg, Germany. The information was extracted from

ATKIS, the official topographical cartographical data base of the Bavar-

ian land survey office, cf. [1]. The depicted region has an extension of

15km × 15km. Figure 2(b) sketches the traffic intensity distribution in this

area, characterized by the traffic matrix: dark squares represent an expected

high demand for mobile service, bright values correspond to a low teletraffic

intensity. Part (d) of Figure 2 depicts a simplified result of the demand dis-

cretization. The demand nodes are dense in the city center and on highways,

whereas they are sparse in rural areas.

In principle the two-dimensional teletraffic density matrix, cf. Figure 2(b),

is sufficient to characterize the teletraffic distribution in the service area.

12



(a) Geographical and demographical
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(b) Traffic matrix
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Figure 2: Demand node concept

However, the application of the demand node representation decreases sig-

nificantly the computational requirements in network design. Due to the use

of discrete point representation, is not necessary any more in mobile sys-
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tem design to calculate the field strength at every point in the area. It is

adequate to compute the field strength values only at the location of the de-

mand nodes, cf. Section 5. Moreover, the discrete presentation can be used

to characterize the clustering effect of users in the service area. The demand

node concept enables the evaluation of the impact of this user clumping on

network performance, cf. Tran-Gia and Gerlich [18].

4 Traffic characterization

4.1 Traffic characterization procedure

Based on the estimation method introduced in the previous section, the traffic

characterization has to compute the spatial traffic intensity and its discrete

demand node representation from realistic data taken from available data

bases. In order to handle this type of data, the complete characterization

process comprises four sequential steps:
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Step 1 Traffic model definition:

Identification of traffic factors and determination of the traffic

parameters in the geographical traffic model.

Step 2 Data preprocessing:

Preprocessing of the information in the geographical and demo-

graphical data base.

Step 3 Traffic estimation:

Calculation of the spatial traffic intensity matrix of the service

region.

Step 4 Demand node generation:

Generation of the discrete demand node distribution by the ap-

plication of clustering methods.

Traffic model definition

The definition of geographical traffic model in Step 1 of the characterization

procedure is based on the arguments given in Section 3.3. A simple but

accurate spatial geographic traffic model is the base for system optimization

in the subsequent network design steps.

Data preprocessing

The data preprocessing in Step 2 is required since the data in geographical

information systems are usually not collected with respect to mobile network

15
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Figure 3: Original map information data and data preprocessing

planning. For example, ATKIS’ main objective is to maintain map informa-

tion. It uses a vector format for storing its drawing objects.

To determine the clutter type of a certain location, one has to identify the

land type of the area surrounding this point. This requires the detection of

the closed polygon describing the shape of this area. Since maps are mostly

printed on paper, the order of drawing the lines of a closed shape doesn’t

matter, see Figure 3(a). To identify closed polygons, one has to check if every

ending point of a line is a starting point of another one. If a closed polygon

has been detected, the open lines are removed from the original base and

replaced by its closed representation. Additionally, due to the map nature of

the data, two adjacent area objects can be stored by a closed and an open

polygon, see Figure 3(b). It also can happen that some data is missing, see

Figure 3(c). In this case, line closing algorithms have to applied. After the

preprocessing step only closed area objects remain in the data base and the
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traffic characterization can proceed with the demand estimation.

Traffic estimation

Step 3 of the traffic characterization process uses the geographical traffic

model defined in Step 1 for the estimation of the teletraffic demand per unit

area element. The computed traffic values are stored in the traffic matrix.

To obtain the traffic value on a certain unit area element, the procedure

first determines the traffic factors which are valid for this element and then

computes the matrix entry by applying Eqn. 3.

4.2 Demand node generation

The generation of the demand nodes in Step 4 of the characterization process

is performed by a clustering method. Clustering algorithms are distinguished

into two classes, cf. Jain and Dubes [11]: a) the Partitional Clustering meth-

ods, which try to construct taxonomies between the properties of the data

points, and b) the Hierarchical Clustering methods which derive the cluster

centers by the agglomeration of input values.

The algorithm proposed for the demand generation is a recursive partitional

clustering method. It is based on the idea to divide the service area until the

teletraffic of every tessellation piece is below a threshold θ. Thus, the algo-

rithm constructs a sequence of bisections of the service region. The demand

node location is the center of gravity of the traffic weight of the tessellation

pieces.

The demand node generation algorithm is shown in Algorithm 1. The func-
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Algorithm 1 (Generate Demand Nodes)

variables:

dnode set global variable for the set of generated demand nodes

orient orientation of partitioning line

θ traffic quantization value

algorithm:

1 proc gen dnodes(area, θ, orient = 0) ≡

2 begin

3 if (traffic(area) < θ)

4 then dnode set← center traffic(area);

5 return;

6 else orient← (orient + 90o) mod 180o; /* turn partitioning line */

7 al = left area(area, orient);

8 ar = right area(area, orient);

9 gen dnodes(al, θ, orient); /* do the recursion */

10 gen dnodes(ar, θ, orient);

11 fi

12 end

Algorithm 1: Demand node generation

tion left area() divides the area into two rectangles with the same teletraffic

and returns the left part of the bisection. The function right area() returns

the right piece. In every recursion step, the orientation of the partitioning

line is turned by 90o. The recursion stops, if every rectangle represents a

traffic amount less than the minimal quantization value θ. The function

traffic() evaluates the amount of expected teletraffic demand in the area.

An example for the bisection sequence of the algorithm is shown in Fig-

18



ure 2(c). The numbers next to the partitioning lines indicate the recursion

depth. To make the example more vivid, not every partition line is depicted

in the example. The upper left quadrant of the Figure 2(c) only shows the

lines until the recursion depth 3, the lower left part only the lines until depth

4, the lower right quarter the lines until depth 5 and the upper right quadrant

lines until depth 6.

The partitional clustering algorithm of Algorithm 1 is a fast but simple clus-

tering method. However, its accuracy depends strongly on the quantization

value θ, which gives only an upper bound for the traffic represented by a single

demand node. Moreover, since the algorithm constructs a sequence of right-

angled bisections, the shape of the tessellation pieces is always rectangular.

To overcome these drawbacks, we investigate also hierarchical agglomerative

clustering algorithms. These methods are able to obtain tessellation pieces

of arbitrary shape and of a predefined traffic value.

5 Automatic cellular network design

5.1 The ICEPT planning tool

To prove the capability of the demand estimation and to show the feasibility

of the integrated and systematic design concept, ICEPT (Integrated Cellular

network Planning Tool) - a prototype of a planning tool for cellular mo-

bile networks was implemented at the University of Würzburg, cf. Tutschku

et al. [23]. The tools’ core components are the automatic network design algo-

rithm SCBPA (Set Cover Base Station Positioning Algorithm), cf. Tutschku [20],
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and the traffic characterization procedure as described in Section 4.

The SCBPA algorithm is a Greedy heuristic which selects the optimal set of

base stations that maximizes the proportion of covered traffic, i.e. the ratio

of the demand nodes which measure a path loss on the forward/reverse link

above the threshold of the link budget.

In the ICEPT prototype, the design constraints and objectives are imple-

mented as exchangeable modules. These modules are indicated in Figure 4

by the names of the design aspects, like Radio Wave Propagation. ICEPT

uses as radio wave propagation models the common Hata model, cf. Hata [9],

and the COST231 model, cf. Stüber [17].

Network Design Sequence

The network design sequence of ICEPT is depicted in Figure 4. In contrast

to the conventional cellular design method, the demand-based approach of

ICEPT starts with the traffic estimation. Therefore, the tool generates at

first the demand node distribution of the planning region. Afterwards, it

computes the coverage areas for all potential transmitter locations and con-

figurations. In the next step, ICEPT checks whether the traffic and hardware

constraints are obeyed at these potential sites or not. Invalid configurations

are removed and are not considered in the optimization step. After complet-

ing the verification, the SCBPA algorithm generates the cellular configuration

by selecting a subset of transmitter configurations from the potential set that

maximizes the coverage. The SCBPA algorithm considers during the selec-

tion of the transmitters not only the demand coverage, it also minimizes the
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Figure 4: ICEPT’s network design sequence

carrier-to-interference (C/I) ratios, cf. Tutschku [21]. Subsequently, the tool

computes the carrier separation constraints and constructs a frequency allo-

cation plan. If the frequency allocation plan is valid, ICEPT verifies again

C/I values of the configuration. In case the C/I constraints are not obeyed,

the separation constraints have to be increased. If the C/I specifications are

met, the network design stops with the output of the cellular radio network

configuration.

5.2 Planning result

ICEPT was tested on the topography around the city center of Würzburg.

The task was to find the optimal locations of nine transmitters in this terrain.
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Figure 5: ICEPT planning result: base station locations

The result of the algorithm is depicted in Figure 5. The base station locations

are marked by a diamond-shaped symbol (�). The lines indicate the convex

hull around the set of demand nodes which are supplied by the base station.

The SCBPA algorithm was able to obtain a 75% coverage of the teletraffic

of the investigated area. The total computing time for the configuration,

including the traffic characterization, was about 4min on a SUN Ultra 1/170.

6 Conclusion

This paper presented a new model for the characterization of the expected

spatial demand distribution in mobile communication systems. The pro-
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posed method considers the teletraffic from the viewpoint of the network.

Its traffic estimation is based on the geographic traffic model, which obeys

the geographical and demographical factors in the service area for the tele-

traffic demand estimation. The characterization of the spatial distribution is

facilitated by the application of discrete points, denoted as demand nodes.

We demonstrated how the demand node pattern can be derived from the

information in geographical data bases. Additionally it was outlined how the

demand node representation enables the application of demand-based auto-

matic mobile network design algorithms.

However, since in practical cellular system design often only rather insuffi-

cient geographical and demographical information is available, it would be of

great interest to generate demand node patterns artificially by the applica-

tion of spatial point processes, like the processes described by Latouche and

Ramaswami [12], Stoyan and Stoyan [16], and Cressie [3]. Furthermore, these

reference processes could be used to evaluate different planning scenarios.

Future applications of the demand node concept are not limited solely to

mobile communication systems. The concept can also be used in other net-

work planning scenarios where transmission facilities have to be deployed in

a service area, like in wireless access networks, wireline data networks, or

ADSL (Asymmetric Digital Subscriber Line) systems, cf. Maxwell [14]. The

demand node concept facilitates a revenue-based system design.

The traffic characterization procedure introduced in Section 4 will soon be

available as CUTE (CUstomer Traffic Estimation tool),
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http://www.infosim-usa.com/CUTE/
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