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a b s t r a c t

The optimization of overlay traffic resulting from applications such as BitTorrent is a chal-
lenge addressed by several recent research initiatives. However, the assessment of such
optimization techniques and their performance in the real Internet remains difficult.
Despite a considerable set of works measuring real-life BitTorrent swarms, several charac-
teristics of those swarms relevant for the optimization of overlay traffic have not yet been
investigated. In this work, we address this lack of realistic swarm statistics by presenting
our measurement results. In particular, we provide a statistical characterization of the
swarm sizes, the distribution of peers over autonomous systems (AS’s), the fraction of
peers in the largest AS, and the size of the shared files. To this end, we consider different
types of shared content and identify particular characteristics of regional swarms. The
selection of the presented data is inspired by ongoing discussions in the IETF working
group on application layer traffic optimization (ALTO). Our study is intended to provide
input for the design and the assessment of ALTO solutions for BitTorrent, but the applica-
bility of the results is not limited to that purpose.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Overlay traffic resulting from applications such as Bit-
Torrent emerges as a high burden for network operators
today. The problem arises of how to effectively control
and manage such traffic stemming from end-to-end over-
lay applications from within the network. Recently, this
challenge is addressed by research initiatives like Smoot-
hIT [1] and P4P [2] and possible solutions such as an Oracle
[3] are proposed. Furthermore, its importance has trig-
gered standardization and the ALTO working group of the
IETF has been founded in November 2008.

Locality awareness is considered as a straightforward
solution by all current research initiatives. Traffic gener-
ated by overlay applications typically crosses borders of
network operator domains (so called autonomous systems,
AS’s) multiple times and uses a larger number of links than

required because the overlays are unaware of the underly-
ing physical network properties. In this way, it causes high
costs for the network providers and leads to an inefficient
usage of the physical network resources. At the same time,
BitTorrent might offer suboptimal performance as seen
from its users’ point of view since long distance connec-
tions are also more likely to offer less transfer capacity.
The concept of locality awareness is to optimize the traffic
flow with information about the location of a content pro-
viding peer in the underlying network. For example, any
peer might be provided with a list of peers for download
that are marked according to the position inside or outside
the AS of the requesting peer. Thus, quality of service and
network usage can be optimized at the same time, for
the benefit of the overlay application and the network
provider.

Several implementation options of locality awareness
for BitTorrent-based P2P networks have been proposed
and their performance was evaluated mostly in simulation
studies, e.g., [2,4,5], or using experiments in controlled
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environments, e.g., [2,6]. First evaluations using a uniform
distribution of peers over AS’s revealed that locality aware-
ness is able to reduce inter-domain traffic without deteri-
orating the performance for the P2P users in most
scenarios [4,5]. However, recent studies [6–9] have shown
that this is different under more realistic conditions, in
particular when some AS’s contain more peers than others.
For example, peers in AS’s with a high number of peers
experience a performance degradation when preferentially
communicating with peers in the same AS. This can be
avoided by a refinement called ‘‘partition merging strat-
egy’’ [6] of the original mechanisms. In [8] we investigated
two implementation options of locality awareness in sce-
narios based on the swarm characterizations presented
here. While one implementation improves the perfor-
mance for peers in AS’s with a high number of peers, the
other implementation decreases the performance for the
same peers. Therefore, we conclude that realistic scenarios
are required to accurately assess the performance of local-
ity awareness. Appropriate measurement results for this
purpose however are not available to the research commu-
nity up to now and we extend existing studies by providing
such data in this paper. Note that we do not investigate in
which way our results affect current proposals for locality
awareness. The reason is that the performance depends
heavily on the concrete implementation of the mecha-
nisms, i.e., the performance of similar or slightly modified
mechanisms can differ considerably in the same scenario
[6,8]. Instead, we present possible effects motivating the
relevance of the parameters we measure.

In this study we report results of our large-scale mea-
surement study of live BitTorrent swarms and derive
important characteristics relevant for traffic optimization
in overlay networks. The measurement results comprise a
comprehensive set of swarms for different types of con-
tent listed at the index servers mininova.org and pirate-
bay.org. We have measured the swarm size, swarm
dynamics in terms of number of leechers and seeders,
and the distribution of peers over AS’s per swarm. We
have also analyzed the details of individual swarms to
understand content clustering (e.g., availability of certain
content in specific regions only). The measurements have
been performed from June 2008 to May 2009 using the
PlanetLab [10] and G-Lab experimental facilities [11].
Some additional measurement results are provided in
our technical report [12]. Based on these measurements
and an additional public data set [13], we derive charac-
terizations of the swarm size, the distribution of the
peers over AS’s, the fraction of peers in the largest AS,
and the size of the shared files. In addition, we present
multivariate correlation matrices of these parameters to
show to which degree these values depend on each
other. In particular, our characterization of BitTorrent
swarms reflects that peers are not homogeneously dis-
tributed among AS’s, but most of the peers are located
in a small number of top AS’s. Furthermore, we provide
quantitative results on the skewness of the peer distribu-
tion based on the measurements.

The measurement results and the characterizations can
serve as input for the performance evaluation of locality
awareness in order to gain insights into the behavior of

proposed solutions for traffic optimization under real-
world conditions. In addition, they show the composition
of a large set of swarms observed in the Internet, which
can be used to assess the overall gain of a proposed solu-
tion if the gain achieved in some typical scenarios is
known. In particular, they show that 80% of the BitTorrent
peers are located in 20% of the swarms. Finally, a deeper
understanding about AS-level properties of real BitTorrent
swarms helps in refining current proposals and in design-
ing new mechanisms.

The remainder of this paper is organized as follows.
Related work is discussed in Section 2. We explain the
measurement setup in Section 3 and provide the measure-
ment results in Section 4. Based on these results, we pres-
ent the corresponding statistical characterizations for
BitTorrent swarms in Section 5. Finally, Section 6 summa-
rizes this work.

2. Related work

Measuring and modeling of BitTorrent swarms have re-
ceived considerable attention during the last years. In the
following, we give an overview of the most prominent
works on that topic and explain in which way our work dif-
fers from them. In addition, we present current proposals
for traffic optimization in P2P networks and corresponding
performance evaluations because they served as motiva-
tion for our choice of properties of BitTorrent swarms to
measure.

2.1. Measurements and models of BitTorrent

In [14], the authors follow the lifetime of one specific
torrent and analyze BitTorrent’s main performance indica-
tors (e.g., download times). Besides examining its down-
load performance, [15] makes a step further toward
providing measurements useful for the modeling of BitTor-
rent. The peer uptime distribution, their bandwidth distri-
bution, peer arrival process properties as well as the
distribution of seeders across time are the main quantities
[15] focuses on. In [16], the authors provide models for
several key parameters of BitTorrent networks such as
the arrival process, seeding times, and downloading fail-
ures and build a graph-based multi-torrent model. The
set of properties in the focus of our paper is not overlap-
ping with these, i.e., the information we provide is comple-
mentary to the information provided by [14–16]. In
contrast to these studies, we pay considerable attention
in this paper to the distribution of peers in BitTorrent
swarms across AS’s.

2.2. Locality awareness solutions for BitTorrent

Locality promotion has been so far suggested in the lit-
erature as the main solution class for reducing inter-do-
main traffic. It requires peers to preferentially select
neighbors from the same AS rather than those outside
the AS when forming the overlay graph. Bindal et al. [4]
and Aggarwal et al. [3] were the first to analyze how local-
ity promotion can help to reduce the generated traffic and
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improve the performance of BitTorrent and Gnutella,
respectively. They both discover significant improvements
of the application performance (i.e., reduction of download
times) and reduction of cross-ISP traffic. A complementary
implementation option to [4], which is especially useful if
the number of peers per AS is low, is presented in [5]. Both,
[4] and [5] use simulations with a uniform distribution of
peers over AS’s for the performance evaluation. P4P [2]
takes a somewhat different approach. Network operators
provide so-called iTrackers which communicate with the
application trackers, e.g. a BitTorrent tracker, exchanging
p-distance values. These values represent the application
costs of the path between two peers and can be configured
by the ISP. Consequently, the p-distance can also reflect in-
tra-AS topologies or priorities for different inter-AS links.
Choffnes and Bustamante [17] propose a method for local-
izing BitTorrent traffic without the need for an additional
infrastructure such as iTrackers or an Oracle and evaluates
this approach using a plugin called Ono for the open-
source BitTorrent client Vuze. Ono is based on the idea that
peers with a similar redirection behavior of content distri-
bution network (CDN) servers are close to each other.

2.3. Measurement-based performance evaluations of locality
awareness

Some recent works on the performance of locality
awareness solutions for BitTorrent consider also scenarios
with Internet-like distributions of peers over AS’s.
[6,7,18] crawl popular BitTorrent sites and download the
metadata in form of .torrent files. Using a set of requests
to the trackers they obtain the IP addresses of the peers
participating in the swarms and associate them with an
AS number. The measurements are used as input for the
evaluations, but only a very small subset of the measure-
ment results is presented in the papers. In [7] no measure-
ment data is presented and in [6] the authors specify
concrete values of the number of peers and AS’s per swarm
only for three reference torrents. [18] also uses the mea-
surements mainly for the evaluation, but it provides cumu-
lative distribution functions for the number of peers per
swarm, the number of peers per ISP, and the number of
swarms per ISP. Unlike these works we focus on the pre-
sentation of our measurement results. Therefore, we study
a larger set of parameters and differentiate between differ-
ent types of content. Furthermore, we provide statistical
characterizations of the measured parameters which can
serve as input for other performance evaluations.

In [6,8], uniform and Internet-like distributions of peers
over AS’s are used. Both studies show that the distribution
of peers has an important impact on the performance of
the locality awareness implementations for BitTorrent. In
particular, with Internet-like peer distributions some of
the peers can experience performance degradations in
terms of reduced download speeds. To mitigate these neg-
ative effects, the original implementations need to be re-
fined. Blond et al. [6] use a ‘‘partition merging strategy’’
and Lehrieder et al. [9] propose to group AS’s with a small
number of peers for that purpose. From this we derive two
conclusions. First, small modifications or refinements of
the implementations may change the behavior of the sys-

tem considerably. Second, realistic scenarios are required
in order to provide meaningful performance evaluation re-
sults. For that purpose, we present the results of our mea-
surement study in this paper which can help to design new
implementations or evaluation scenarios for locality
awareness.

The work with the closest relation to ours is [19]. Wang
et al. studied around 70,000 BitTorrent swarms from the
btmon.org-BitTorrent site for 6 months in 2008, using
200 PlanetLab nodes with a customized BitTorrent client
to retrieve the swarms’ peer IP addresses. These IP ad-
dresses were run against the whois-service to resolve the
IPs’ autonomous systems. The paper mainly concentrates
on swarms distributing video files, stating that video files
show the highest regional (AS) interest, e.g., Chinese mov-
ies are mostly watched in China. The authors analyze the
distribution of peers to AS’s and conclude that in small
swarms the application of locality awareness mechanisms
is not useful, because the top AS of the swarm holds a large
fraction of the whole swarm and the traffic is already nat-
urally localized. On the other hand in large swarms the
authors found no AS holding more than 6% of the whole
swarm population, which makes the application of locality
enhancements more favourable. Furthermore, they find
that for large swarms the relation between ordered AS’s
of a swarm and the AS-fraction of a swarm (i.e., x-largest
AS of a swarm – #peers in AS/#peers in swarm) follows
the Mandelbrot–Zipf distribution. Eventually, the paper ar-
gues that AS’s have a stationary property of forming a lar-
ger cluster within a swarm, and give a probabilistic
approach how to predict the peers’ membership in a large
cluster. Peers in large clusters should apply locality aware
neighbor selection, peers not in a large cluster should stay
with the standard random neighbor selection. In contrast
to this paper, we consider more media types in our mea-
surement and not only the AS affiliation of the peers but
also the country where the peers are located. We also cover
more swarms from different torrent index servers. This al-
lows us to generalize the results and to identify subgroups
with special characteristics. Thus, we also provide a more
diverse view on regional content, which is mentioned in
[19] but not considered in detail. Especially, we show that
the share of peers in one AS can be larger for regional con-
tent (as also mentioned in [6]) and provide a quantitative
evaluation of how the distribution of peers over AS’s of
those swarms differs from the rest.

3. Measurement setup

The measurement setup described in this section aims
at gathering data about live BitTorrent swarms from which
we want to derive characterizations of the parameters rel-
evant to locality awareness. First, we outline the BitTorrent
protocol itself before introducing our measurement
methodology.

3.1. The BitTorrent protocol

BitTorrent’s objective is to disseminate one large file to a
large number of users in an efficient way. For each file an
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overlay network called swarm is created. According to the
original BitTorrent specification, each overlay network con-
sists of two different kinds of peers, the seeders and the lee-
chers, and a so-called tracker. A seeder is a peer in the swarm
that holds the complete file and uploads to others altruisti-
cally, whereas a leecher is still downloading the file.

For each swarm, a centralized component, the so-called
BitTorrent tracker, stores information about the file itself
and all peers in the swarm. This information includes the
file size, the number of seeders and leechers, as well as
the IP addresses of the peers. A peer joining the network
asks the tracker for a list of active peers in the overlay.
The tracker then returns (a) the number of seeders S and
leechers L and (b) a random subset of k peers, i.e., k differ-
ent IPs, to the requesting peer. Most trackers return k = 50
peers per default.

In order to avoid congestion at the tracker, the request
rate of an individual peer is limited. The default value in
the original BitTorrent tracker implementation from Cohen
allows a single request every 5 min. However, in the Inter-
net, various tracker implementations exist and in our mea-
surements we have been able to contact various trackers
every 10 s if necessary.

For searching files to download through the BitTorrent
protocol, there are several websites that list indexes and
directories of .torrent files. Such a website is referred
to as a torrent index. A torrent index maintains a list of
.torrent files containing metadata about the files to be
shared and about the tracker, as well as additional infor-
mation about the popularity of a file (in terms of number
of seeders and leechers) or the date when the file was
published.

3.2. Conducted measurements

To gain a more diverse view on the characteristics of
existing swarm types than in the known work, we chose
specific sets of swarms to measure. These are defined by
a number of selection criteria which serve to define a num-
ber of swarm classes. In contrast to [19], we do not only
analyze swarms found on one index and only distributing
videos. Instead, we expand the insights gained from
observing these swarms to other classes of swarms as well.
According to a certain selection criterion and the desired
type of content, the .torrent files are downloaded from
a torrent index. As selection criteria, we consider (a) all
available torrents, (b) the most popular torrents in terms
of number of peers in the swarm, and (c) the most recent
files which have been published in the last 24 h. As type
of content, we distinguish between (1) music files, (2) TV
series, (3) movies, (4) so-called ‘‘regional’’ movies which
are in a certain language (German, Spanish, French, Italian,
Dutch), and (5) all media independent of the type of con-
tent. These types are based on the user classifications at
the torrent index servers. The considered torrent index serv-
ers cover the currently most popular ones in the Internet,
(i) PirateBay, (ii) Mininova, and (iii) Demonoid. Here, the
criteria (a) (3) and (a)(4) correspond to the class of swarms
evaluated in [19]. Thus, we additionally consider other
content types and indexes as well as specific subsets of
swarms.

Table 1 summarizes the measurement experiments
conducted over the period from June 2008 to May 2009.
Each measurement experiment is assigned a unique iden-
tifier ID. which is used when describing the measurement
results. In particular, we measure in each experiment the
swarm size, the swarm dynamics, and the distribution of
peers over AS’s (’peer-dist.’). In order to measure the total
number N of peers in a swarm and their corresponding
AS’s, we contacted the tracker and requested a list of peers.
As a result, the number of seeders S and leechers L, and a
set of k different IP addresses of peers are returned.

Since a tracker typically returns k = 50 IP addresses for a
single request, we used a large number of machines with
BitTorrent clients running on each of them. They contact
the tracker simultaneously in order to get the IP addresses
from all peers in the swarm at a single time instant, i.e., a
snapshot of the swarm. In particular, several requests are
sent within 5 min from all 219 nodes in PlanetLab [10]
and 153 nodes in G-Lab [11], respectively, until N = S + L
different IP addresses are obtained. Then, the IP addresses
are mapped to the origin AS using the RIPE database [20].
This measurement method is referred to as distributed
monitoring in the remainder of the paper. However, for
measuring the swarm size only, it is sufficient to monitor
the tracker (denoted as ‘tracker monitored’ in Table 1 for
setups Pop. and 24 h.) or to parse the website of the torrent
index (‘website parsed’), as done in experiment TV. Addi-
tionally, we consider a publicly available data set from
Khirman [13] with measurement results of the swarm
sizes of torrents on different torrent index servers (KPi.,
KDe., and KMi.). With all three methodologies (‘website
parsed’, ‘tracker monitored’, and ‘distributed monitoring’)
we can measure the swarm size. The distribution of peers
over AS’s can only be measured in those experiments
where we used distributed monitoring of the tracker (cf.
columns ‘methodology’ and ‘observed’ in Table 1) which
is an extension of the method ‘tracker monitored’.

To study the time dynamics of a swarm, several samples
of the swarm size and the distribution of peers over AS’s
are captured over a longer period of time which is denoted
as ‘‘xx samples every yy hours’’ instead of ‘‘snapshot’’ in the
column ‘‘measurement per swarm’’ in Table 1. In that case,
for example the average swarm size over this period of
time is given, which may result in a decimal number, while
a snapshot of a swarm always returns an integer value.

The different data sets describe the BitTorrent swarms
under considerations with a different level of detail (Table
1). For example, the distribution of peers over AS’s is only
studied for the experiments performed in April 2009, i.e.,
Grp., Mov., Mus., Reg. and Ele. The reason is that we
started with a rather basic methodology (’website parsed’)
in June 2008 and improved it during the course of this
work. Therefore, we are not able to present the distribution
of peers over AS’s for the experiments TV., Pop., and 24 h.,
and this information is also not contained in the data sets
KPi., KDe., and KMi. which we took from [13]. Further-
more, data about the change in the number of peers over
time is only available for the experiments TV., Grp., and
Ele. This is partially owed to feasibility reasons, in partic-
ular for the Mov. and Mus. experiments the number of
swarms was to high to take hundreds of samples of the
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swarm via distributed monitoring. While one needs to be
aware of the aforementioned issues when interpreting
the data, we suppose that their impact on the presented re-
sults is small and that the measurements remain compara-
ble. For example, we will show for the Mov. and Mus. data
sets that the IP addresses obtained via distributed monitor-
ing are in good accordance with the number of peers ob-
tained by tracker monitoring (cf. Fig. 1).

Some BitTorrent swarms exist without a tracker and are
therefore called tracker-less. In these swarms the peers ex-
change the addresses of other peers in the swarm among
each other using the peer exchange (PEX) protocol [21].
Since it is not possible to monitor those torrents with the
aforementioned methodology, tracker-less torrents are
not considered in this study.

3.3. Distributed monitoring of a tracker

The distributed monitoring of a BitTorrent tracker for
obtaining the distribution of peers over AS’s relies on exper-
imental facilities, like PlanetLab [10] or G-Lab [11], with a
large number of nodes. They are controlled by a central unit
C which is located at the University of Wuerzburg in our
measurements. C has established connections to the used
PlanetLab and G-Lab nodes X. C is responsible for the distri-
bution of the .torrent files to these monitoring nodes X,
the initialization of the monitoring on X and the collection
of the created result files from X. The monitoring on each
node itself is realized with a python script that queries a
tracker n times every t seconds. In our measurements, t is
set to 15 s to avoid overloading the tracker, while n is chosen
according to N, using the analysis described below.

In the following, we derive the number Y of required
monitoring nodes in order to obtain all IP addresses of N
peers in a swarm. Upon each request, the tracker returns
a subset of k = 50 peers which are randomly chosen from

all N peers. Denote by X the number of times the tracker
has to be contacted to get N different IP addresses. The der-
ivation of X is known as the coupon collector’s problem [22].
In [23], we derived an exact solution which is given in the
following.

Let P(j, i) denote the probability to observe j different IPs
after the ith tracker response. It is P(j, i) = 1 for j 6 k and
i > 0 since the first tracker response returns k different
IPs. It is P(j, i) = 0 for j > min(ik,N), since a maximum of ik
different IPs are retrieved after the ith tracker response
and there are only N different IPs. This allows to recursively
compute P(j, i) for all other cases according to

Pðj; iÞ ¼
Xk

m¼0

j�m

k�m

� �
�

N � jþm

m

� �
N

k

� � � Pðj�m; i� 1Þ;

ð1Þ

Table 1
Overview on conducted measurement setups.

ID Torrent
index

Selection criteria Type of
content

Meas. per swarm #Torrents Methodology Observed Meas.
date

TV. PirateBay All available TV series 96 samples over
36 h

63,867 Website parsed Swarm size June
2008

Pop. PirateBay Most popular Movies Snapshot 4463 Tracker
monitored

Swarm size March
2009

24 h. PirateBay Last 24 h All media Snapshot 1048 Tracker
monitored

Swarm size March
2009

Grp. Mininova Groups w.r.t. size &
language

Movies 440 samples over
88 h

16 Distributed
monitoring

Swarm size and
peer-dist.

April
2009

Mov. Mininova All available Movies Snapshot 126,050 Distributed
monitoring

Swarm size and
peer-dist.

April
2009

Mus. Mininova All available Music Snapshot 135,679 Distributed
monitoring

Swarm size and
peer-dist.

April
2009

Reg. PirateBay Top 30 Regional
movies

Snapshot 120 Distributed
monitoring

Swarm size and
peer-dist.

May
2009

KPi. PirateBay All available All media Snapshot 1,682,355 Data taken from
[13]

Swarm size March
2009

KDe. Demonoid Community selected
titles

All media Snapshot 11,759 Data taken from
[13]

Swarm size March
2009

KMi. Mininova Legal torrents
promotion

All media Snapshot 4514 Data taken from
[13]

Swarm size March
2009

Ele. Open movie ‘‘Elephants Dream’’ 8640 samples
over 24 h

1 Distributed
monitoring

Swarm size and
peer-dist.

April
2009

10−3 10−2 10−1 1000.97

0.975

0.98

0.985

0.99

0.995

1

percentage of missing IP addresses

C
D

F

music

movies

Fig. 1. CDF of the percentage of missing IP addresses.
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which simply considers the number of possibilities to ob-
tain k �m old and m new IPs, normalized by the number
of possibilities for k different IPs of a tracker response. As
a result, we obtain the distribution X of the number of re-
quired tracker responses to get all N IPs which is
P(X = i) = P(N, i).

An upper bound of the average number of required
tracker responses E½X� ¼

P1
i¼0iPðN; iÞ can be approximated

[22] using the harmonic number hN ¼
R 1

0
1�xN

1�x dx,

E½X� � N � hN

k
; ð2Þ

which is exact for k = 1. For example, to get a snapshot of
the distribution of peers over AS’s of a swarm with
N = 20,000 peers, around n = 20 requests have to be sent
from each of the 219 used PlanetLab nodes. This takes
n � t = 5minutes. The computation of the number of tracker
requests allows to estimate the required number of moni-
toring nodes and to adjust appropriately the parameters t
and n, if a time frame of 5 min is allowed for capturing
the snapshot.

However, it has to be noted that Eq. (2) only returns the
average number of required tracker responses. Checking
the percentage of missing IP addresses in our measure-
ments, we observed that only for a small number of
swarms some IP addresses are missing. In particular, we
checked the percentage of missing IP addresses when
observing the distribution of peers over AS’s of a swarm
Fig. 1 shows the cumulative distribution function (CDF)
of the percentage of missing IP addresses when measuring
the distribution of peers over AS’s for the movies (Mov.)
and music files (Mus.). For 97.5% of all movies (Mov.) and
more than 98.5% of all music files (Mus.), all IP addresses
in the swarm were captured. For the Reg. data set, which
contains 120 swarms, all IP addresses are available for
118 swarms and in the Grp. data set we have them for
all swarms. A reason for missing IPs is the fact that peers
may go offline during the measurement interval of 5 min.
This has no effect on the numerical values or on the
conclusions.

To conclude this section, we describe as a side note one
peculiarity we discovered during our measurement study.
In our measurements, we found one swarm (Ele.) for
which we discovered only 10% of the peers. In particular,
the tracker returned a swarm size of 400,000 peers, how-
ever, we only observed 30,000 IP addresses. We used 219
PlanetLab nodes and requested the tracker every 10 s from
each machine over 24 h. Thus, we received more than one
million tracker responses with 50 IPs. In that case, we
should observe at least around 375,000 different IPs.

There are two possible reasons for this observation. (1)
The tracker always returns the same IP addresses. This
could be the case when locality awareness mechanisms
are implemented by the tracker. However, this is not the
case here; the nodes in PlanetLab are distributed world-
wide. Thus, it seems reasonable that the random generator
or the function which returns a random subset of all peers
is wrongly implemented. (2) The tracker returns wrong
information about the number of seeders and leechers in
the swarm. Since this tracker hosts only a single file
(Ele.), we cannot check this hypothesis using other

swarms hosted at the same tracker. Still, the second expla-
nation seems more likely to be the case, but we cannot
prove it without investigating the source code of this track-
er. In both cases, the question arises how an ALTO mecha-
nism can reliably monitor swarms for badly implemented
trackers.

4. Measurement results

In this section, we describe the results from the mea-
surements. We focus on observations where previous stud-
ies provide only a general impression or where the results
for specific swarm types contradict the accepted knowl-
edge. In particular, we are interested in the characteristics
of the swarm size and its development over time. Addition-
ally, we consider the distribution of peers over AS’s and
over different countries, the clustering of peers in AS’s
and the correlation between the number of peers in an
AS and its AS degree since these parameters are assumed
to have important implications for the viability of locality
promoting mechanisms. Finally, we report our findings
on content that is popular only in specific regions of the
world and summarize our main findings as well as the lim-
itations of this study.

4.1. Population sizes in swarms

First we take a look at the size of the measured swarms.
For this purpose, we analyzed the seeder and leecher pop-
ulation of swarms for different content types, e.g., movies,
TV shows and music files, which are registered at different
BitTorrent index websites.

Fig. 2 shows the observed swarm sizes for the data sets
TV., Pop., 24 h., Mov., Mus., KPi., KDe., and KMi. The distri-
bution of the number of peers is similar for all data sets ex-
cept for the 24 h. and Pop. set. An explanation for this
divergence is the fact that these two sets feature swarms
with specific characteristics due to the popularity of the
shared content. While the Pop. set of swarms contains
swarms with highly sought content by definition, it is a
reasonable assumption that the recently added files of
the 24 h. set are also more popular than the average since
users are interested in new content which is available for
the first time.
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Fig. 2. CDF of the number of total peers in a BitTorrent swarm.

1202 T. Hoßfeld et al. / Computer Networks 55 (2011) 1197–1215



The according data for all measured data sets is given in
Table 2. It contains the statistics for the total number of ob-
served swarms, the mean value l and coefficient of varia-
tion cvar of their sizes in terms of number of peers, the
skewness, kurtosis and maximum of the swarm size distri-
bution as well as the 95th percentile q95 both as an abso-
lute value and normalized by the mean swarm size.
Finally, the fraction of swarms p80 that contain 80% of
the peers and the correlation C(S,L) between the number
of seeders and leechers in all swarms of the whole data
set is shown.

The first observation we make about these results is
that the swarm size depends on the content shared. This
is in line with the observations for video file swarms from
[19]. The swarms which distribute movies are the largest
on average whereas smaller music files are shared by less
peers on average. This can be attributed to the fact that lar-
ger files take longer to download, leading to a longer online
time of peers and therefore a higher population in the
swarm. This should be offset by the resulting additional
upload bandwidth offered to the swarm. However, it can
be shown analytically, e.g., by adapting the analysis of
[24], that download times do increase in such swarms. A
further reason for the larger swarms size could be that mo-
vie content is more popular than music.

The skewness and the kurtosis of the swarm sizes pro-
vide further insights into the distribution of the number of
peers in the different data sets. They characterize to which
degree some very large swarms are contained in the data
sets. The column q95 in Table 2 contains the 95th percen-
tile, which also characterizes the distribution of the swarm
sizes. In particular, it shows the swarm size which is
reached or exceeded by 5% of the swarms in the data set.

Regarding the different data sets, the coefficient of var-
iation of the swarm size is in the same range, with the
exception of the Khirman set of PirateBay swarms (KPi.).
This set also differs significantly in terms of skewness, kur-
tosis and maximum swarm size. Although we cannot judge
the source of this discrepancy with our data and the other
data sets from Khirman, we still observe that at least the
95th percentile normalized by the mean value is compara-
ble to the corresponding values for the other data sets.

Another general observation is that the Pareto principle
holds for most of the evaluated data sets. The p80 value, i.e.,
the fraction of top swarms that contain 80% of all peers in
all swarms of the set, is around 0.2 for all sets except the
top movies and the Khirman data for the Mininova and
Demonoid sites. This means that 80% of the peers belong

to 20% of the swarms. It is clear that the most popular con-
tent as covered by the Pop. data set do not show this Par-
eto property since the different files here are equally
popular and represent only a very specific part of the total
shared content.

Finally, there is a strong correlation C(S,L) between the
number of seeders and the number of leechers in a swarm.
This is intuitively clear since more leechers mean a larger
number of potential seeders, and swarms with only a few
seeders are normally not popular due to long download
times.

From these observations we draw some conclusions
how they could impact a locality aware mechanism. The
type of shared content has an impact on the swarm size
and therefore potentially on the effectiveness of different
locality promoting solutions. We will see in the next sec-
tions that this is also true for the topological characteristics
of a swarm, which also depend on the content shared. In
general, the swarm size distribution is heterogeneous with
a Pareto-like distribution of the total peer population on
the different swarms. Also, recently released and popular
content leads to much larger swarms in comparison.

In addition, there is a significant amount of very small
swarms containing less than 40 peers. With typical Bit-
Torrent client parameters, each peer in such a swarm will
know all other peers because it tries to have at least 40
neighbors. The result is a fully meshed swarm. Conse-
quently, accepted solutions using Biased Neighbor Selec-
tion (BNS) as introduced in [4], where peers close in the
topology are preferred as neighbors, will probably have
a low impact on these swarms since there is no choice
to be made in the neighbor selection. On the other hand,
the share of traffic that can be influenced by targeting
only the comparably few top swarms, including new
and popular content, is significant (around 80%, the corre-
sponding estimation is presented in Section 4.4). The ef-
fort to do so is possibly much lower than when trying
to cover all or at least most of the swarms because algo-
rithms do not need to cope with special characteristics of
small swarms. To optimize the monitoring of swarms in
order to find these candidate swarms, it may help to just
keep track of the seeder population since it is strongly
correlated to the number of leechers and thus the total
population of a swarm. These statements are not meant
to be true in general and for every mechanism, they
rather show examples how the data provided in this sec-
tion can be important for the assessment of locality aware
mechanisms.

Table 2
Statistics on the number of peers in a swarm.

ID Swarms l cvar Skew. Kurtosis Max. q95
q95
l p80 C(S,L)

Mov. 126,049 25.46 8.47916 51.8868 3573.01 20,079 76 2.98476 0.128672 0.8441
TV. 63,867 15.53 6.46545 29.45 1246.99 7276 45 2.8814 0.172076 0.7067
Mus. 135,679 9.76 4.24327 28.4287 1432.57 3813 32 3.2801 0.248071 0.6113
KPi. 1,682,355 11.12 13.4178 216.519 69248.6 72,988 31 2.78752 0. 177795 0.8526
KMi. 4514 6.99 3.1686 19.7756 535.817 763 19 2.71652 0.452813 0.5298
KDe. 11,759 9.73 4.64484 22.8985 663.787 1883 27 2.77568 0.3087 0.6506
Pop. 4463 691.14 2.07849 9.86953 144.064 30,691 2068 2.99218 0. 449698 0.7297
24 h. 1048 146.68 5.36564 17.2031 386.368 19,748 435 2.96556 0.118321 0.6535

T. Hoßfeld et al. / Computer Networks 55 (2011) 1197–1215 1203



4.2. Time-dynamics within a swarm

In this section, we investigate in which way the popula-
tion of a swarm varies over time. The evolution of BitTor-
rent swarm populations during the whole life time of a
swarm has already been analyzed in literature, e.g., in
[14,16]. However, we focus here on a shorter time scale
and investigate how fast the population typically grows
or diminishes during our measurement period lasting 36
hours, i.e., one day and a half. In addition, we analyze
which fraction of swarms is subject to diurnal fluctuations
and how pronounced these fluctuations are.

For this section, we focus on the data set TV. since this
contains more than 60,000 swarms and their temporal
evolution. In order to illustrate some examples, we also
consider the Grp. data set. However, this set contains only
16 swarms and is therefore less suitable for statistical anal-
ysis. For all other data sets we do not have measurements
about the temporal evolution of the swarm sizes.

4.2.1. Increasing, constant, and decreasing swarms
While it may be efficient to promote locality in a swarm

that was measured as being large at a given time instant, it
may be less efficient when the swarm shrinks quickly after
that snapshot. To gain insights into the time-dependent
behavior of swarms, we measured 96 samples of the
swarm sizes ni(s), i 2 {1,96} for every swarm s of the data
set TV. The samples were equally distributed over 36 h.
For all swarms, we calculate the average swarm size l(s),
the standard deviation r(s), and the coefficient of variation
cvar(s) of the 96 samples ni(s). In addition, we define the
span of a swarm during the measurement period as
D(s) = maxi(ni(s)) �mini(ni(s)). This metric represents the
largest variation of the swarm population we observed in
terms of peers. We call all swarms s with D(s) = 0 constant
swarms. The remaining swarms are increasing if their min-
imum value ni has a lower index i than their maximum va-
lue. Otherwise, we denote them as decreasing.

We make the following observations in the data set TV.:
All three groups (constant, increasing, and decreasing) con-
tain almost the same fraction of swarms (33.81%, 32.88%,
and 33.31%, respectively). However, the constant swarms
are all very small (cf. Fig. 3). In addition, there is no signif-
icant difference between the CDFs of the sizes of increasing
and decreasing swarms which is reasonable since the fact
that a swarm is growing or shrinking is not correlated with
its current size.

Fig. 4 shows CDFs for the span D(s) of the swarms nor-
malized by the average swarm size over the 36 h time per-
iod. We observe that for only 10% of the swarms their span
is below 60% of their average size and for 50% of the
swarms it is higher than the average swarm size. Further-
more, the span D(s) < 2 � l(s) for almost all decreasing
swarms and D(s) < 5 � l(s) for almost all increasing
swarms. This difference can be explained by flash-crowd
arrivals in some new and very popular swarms which lead
to a large increase in peer populations. In summary, we
conclude that already in a time frame of 36 h, which is
rather small compared to the lifetime of a swarm, the
swarm populations can vary heavily. It is important to
keep that in mind if parameter settings of locality aware

mechanisms need to be adjusted based on current swarm
populations.

Next, we study how the time dynamics correlate with
the swarm sizes, i.e., whether large swarms are subject to
large variations or not. To this end, we calculate the coeffi-
cient of correlation q of the average swarm size to three
values representing the variation: the span D(s), the stan-
dard deviation r(s) and the coefficient of variation c(s)
(cf. Table 3). We observe that the span D(s) and the stan-
dard deviation r(s) is strongly correlated to the average
swarm size for increasing and decreasing swarms
(q > 0.65). However, these correlations vanish if we take
the coefficient of variation c(s) instead of the standard
deviation r(s). That means that larger swarms tend to have
larger variations of the swarm population which is not very
surprising. However, the variation normalized by the
average size l(s), i.e., the relative change in the swarm
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Table 3
Coefficients of correlation q of the average swarm size l(s) and the
variation (D(s),r(s), and c(s)) for increasing and decreasing swarms.

q(l(s),D(s)) q(l(s),r(s)) q(l(s),c(s))

Increasing swarms 0.694521 0.667706 �0.038363
Decreasing swarms 0.671585 0.653354 �0.059542
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population is not correlated with swarm size. Hence, large
swarms do not grow or shrink disproportionally fast.

Finally, we illustrate the correlation between the aver-
age swarm size l(s) and the coefficient of variation c(s)
of the swarm size with a scatter plot in Fig. 5 for the
swarms of the TV. data set, sorted by swarm size. The coef-
ficient of variation c(s) for most of the swarms s is between
0 and 1, on average it is 0.2795. In addition, we observe a
set of swarms (around 1% of the measured swarms) where
c(s) is very close to 1. The reason for this band are frequent
jumps of the swarm size (reported at the PirateBay web-
site) between 0 and the actual swarm size which we attri-
bute to an error in this website. However, this should have
only a minor impact on our results since only 1% of the TV.
data set shows this behavior and the TV. data set is the only
one we measured by parsing the website (cf. Table 1). In
order to show that the peculiar shape of the scatter plot
is not owed to chance, we present a short mathematical
derivation for the theoretical minimum of the coefficient
of variation c(s). Since we capture R = 96 samples of the
size of a swarm s for the TV. experiment, the minimum
standard deviation r(s) for a given average swarm size
l(s) 2 [a;a + 1[ is obtained when we measure k times a size
of a and R � k times a size of a + 1 (for a 2 N). Thus, it is

lðsÞ ¼ kaþðR�kÞðaþ1Þ
R and rðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ka2þðR�kÞðaþ1Þ2

R � lðsÞ2
q

¼
1
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� kÞk

p
which explains the shape of the theoretical

minimum for the measurements.

4.2.2. Diurnal fluctuations
Now we take a closer look at the fluctuations. The evo-

lution of the size of four example swarms, which are taken
from the set summarized in Table 5, is depicted in Fig. 6.
The selection of these swarms allows us to show principal
differences between swarms even if they share the same
type of content. Here, the swarm population over time is
shown, with the base unit of the y-axis being 103 peers.

We observe that there are variations in the population
of each swarm, as well as quantitative and qualitative dif-
ferences in these variations between the swarms. While
swarm (D), which is sharing a movie in English, shows only
small changes in its peer population, the size of swarm (C)
exhibits a periodic behavior. We attribute this to the fact

that in this swarm, a movie in Spanish is distributed. In or-
der to check how many peers of that swarm are located in
Spain we use the GeoIP service of MaxMind [26] to map
the IP addresses to countries. In fact, more than 94% of
the peers are from Spain and only about 2% from South
America. Therefore, the swarm population increases during
the daytime in this region these regions and decreases
again afterwards. Swarm (G), sharing a German movie,
shows a similar characteristic. The fluctuations are not as
clearly visible as for swarm (C), but in relation to the aver-
age swarm size, the population of swarm (G) fluctuates to
roughly the same degree as swarm (C).

The development of the peer population of swarm (B) is
a superposition of a continually increasing popularity and a
24 h cycle like for swarms (C) and (G). While swarm (D)
distributes content that seems not to be preferred region-
ally, the movie shared in swarm (B) seems to be more pop-
ular in a specific part of the world.

We now want to determine the amount of swarms that
show a diurnal behavior similar to swarms (B), (C) and (G),
in order to judge the relevance of this effect for the perfor-
mance evaluation of locality awareness mechanisms. To
that end, we use a method called periodicity transform
which automatically detects periodicities for a given data
set. In particular, we rely on the ‘M-best’ algorithm as
introduced in [25] that returns a list of the M = 10 best
periodicities. From the M best periodicities that are {si:
1 6 i 6M}, we calculate the autocorrelation qi at lag si

and select the best period of duration sk with maximum,
positive autocorrelation qk, i.e. k = arg (max{qi: 1 6 i 6M}).
We also tried the other methods described in [25], but the
M-best algorithm delivered the best results in finding peri-
odicities of around 24 h.

Fig. 7 shows the CDF of the length of the ‘best’ period for
the number of seeders, the number of leechers, and the en-
tire swarm size for the TV. data set. It can be seen that the
three different curves show a similar behavior. In particu-
lar, the curves for the number of leechers and seeders are
almost identical, showing that the leechers mainly deter-
mine the diurnal behavior. Furthermore, we observe that
roughly for 60% of the swarms the ‘best’ period is between
21 h and 27 h. There is no discontinuity in the CDF at 24 h
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since the M-best analysis is not able to completely ignore
all other effects changing peer populations such as increas-
ing or decreasing popularity of the content or flash-crowd
arrivals.

Fig. 8 shows the autocorrelation qk to the best period of
duration sk. Again, the three different curves are quite sim-
ilar. We observe that from the swarms in the TV. data set
only 8.36% show a strong correlation qk > 0.7. As a sum-
mary of the time-dynamics analysis, we see that for
roughly 5.7% of the swarms a day–night behavior can be
observed. To be more precise, for these swarms the auto-
correlation is larger than 0.7 for the best period, while
the duration of the period is about 1 day, i.e. between
21 h and 27 h.

4.3. Distribution of peers over AS’s

One important performance indicator for locality aware
mechanisms, typically used in related studies [4–6,8], is
the amount of inter-domain traffic which can be saved
by its application. In such investigations, the distribution
of peers over AS’s can play a major role for the potential
savings [6,8]. As a consequence, we consider in this section
statistics on the number of AS’s which contain peers partic-
ipating in the same swarm and on the average number of
peers located in one AS. For this purpose, we use the
Mov. and Mus. data sets since they contain a large number
of swarms together with the IP addresses of the peers so
that we can map them to AS’s. The distribution of peers
over AS’s of swarms sharing regional content (Reg. data
set) is presented in Section 4.7.

We present the CDFs for the average number of peers
per AS for swarms of the Mov. data set in Fig. 9. Note that
the x-axis is scaled logarithmically. The swarms are
grouped according to their average size as shown in Table
4 together with the relative size of each group. We observe
that for an increasing mean swarm size, the average num-
ber of peers per AS grows. However, this value is still small
even for the largest swarms. This is in line with literature
[6,7,18,19]. Considering the Mus. data set leads to the same
conclusions. In fact, the average number of peers per AS is
even smaller for these swarms. The concrete numbers

corresponding to Table 4 and Fig. 9 can be found in our
technical report [12]. In Section 4.6, where we analyze
the distribution of peers over countries, we show CDFs also
for the maximum number of peers per AS (cf. Fig. 16).

Another important characteristic of a swarm is the
absolute number of AS’s because swarms that are distrib-
uted over fewer AS’s but with more peers per AS can likely
utilize locality promotion mechanisms more efficiently. To
this end, we consider the movie files (Mov.) as well as the
music files (Mus.). Fig. 10 shows the CDF of the number
of AS’s per swarm for both data sets. Since there are more
peers involved in swarms offering movie contents, there
are also more different AS’s involved than in swarms pro-
viding music files. On average, there are 65% more AS’s in-
volved in movie swarms than in music swarms. In
particular, if the CDF of the number of AS’s for movie
swarms is normalized by a factor of 1.65, it is nearly iden-
tical to the CDF for music swarms. The maximum number
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Table 4
Percentage of swarms grouped according to their size for movie files (Mov.).

½0; 25½ ½25; 50½ ½50; 100½ ½100; 500½ ½500; 1e3½ ½1e3;1½

0.8580 0.0703 0.0294 0.0347 0.0040 0.0036
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of observed AS’s is 1744 for movie swarms and 809 for mu-
sic swarms, respectively. We will explore the distribution
of peers over AS’s in more depth in Section 5 where we
provide a model for the probability that a peer belongs to
a certain AS.

4.4. AS clustering of peers

A fundamental pre-condition of keeping BitTorrent traf-
fic within a given AS is that several peers sharing the same
file are present in that AS. Therefore, we study in this sec-
tion which fraction of swarms actually have the possibility
to exchange data with local neighbors. To that end, we
count the number of peers in every swarm which are lo-
cated in an AS with at least a peers of the swarm. To obtain
the AS clustering of peers da of a swarm, we normalize this
number by the swarm size. In other words, da represents
the fraction of peers in the swarm having at least a � 1
other peers of the same swarm in their AS. In Fig. 11 we
show CDFs of the AS clustering for a 2 {3,4,5}. We observe
that in roughly 89% of the Mus. swarms no AS exists where
at least 3 peers are present (d3 = 0) and only in about 3.5%
of the swarms the majority of peers (d3 = 0.5) can be clus-
tered in their AS’s. Considering the movie files (Mov.), the
probability to find clusters of peers within an AS is higher
since these swarms are larger. Still, in about 88% of the mo-
vie swarms there is no AS with at least 5 peers. Thus, local-
ity awareness will only be useful in a rather small fraction
of the swarms. However, this statement does not refer to
the question about which fraction of the total BitTorrent
traffic can be influenced by locality awareness.

To answer this question, we first study the total amount
of traffic produced by the swarms in the Mus. and Mov. data
set. For that purpose, we take the number of peers in a
swarm as an indicator of how much traffic a swarm pro-
duces in relation the other swarms and assume that peer
access capacities are not correlated with the swarm sizes.
Therefore, they can be neglected in our simple approxima-
tion. Fig. 12 presents the cumulative estimates (‘music
traffic T0’, ‘movie traffic T0’) for the top x% of the largest
swarms normalized by the total amount of traffic. The fig-
ure reveals that 10% of the swarms of the Mov. data set con-
tain 80% of the peers and are consequently responsible for

the same fraction of the total traffic according to the afore-
mentioned assumptions. If we weight the number of peers
in a swarm with the size of the exchanged file (‘traffic Tf’,
legend: ‘with file sizes’) to estimate the amount of traffic,
we obtain almost the same results as for taking just the
number of peers (‘w/o file sizes’). This is in particular true
for the movie traffic. For the music files the difference is
small.

Next, we develop a very simple and optimistic approx-
imation for the potential of locality awareness. This
approximation is based on the results for the AS clustering
da. For each swarm, we calculate d2, i.e., the fraction of
peers in the swarm which are not the sole peer in their
AS. We assume an ideal locality algorithm which achieves
that those peers produce no inter-domain traffic and ne-
glect which peers are seeders and leechers and possible
performance degradations for simplicity reasons. Then, d2

is the fraction of ‘potentially local traffic’ of that swarm.
Fig. 12 shows this value weighted by the total traffic of
the swarm for the music and movie files. The figure shows
that it has almost no impact on this approximation
whether we take into account the file sizes (‘Lf’) or not
(‘L0’) for the calculation of the total traffic a swarm pro-
duces. Furthermore, the figure confirms our finding that
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locality awareness is only useful in a small subset of all
swarms. However, it shows in addition that the potential
savings of inter-domain traffic are quite larger in the big
swarms which are responsible for the vast majority of Bit-
Torrent traffic. Therefore, the overall optimization poten-
tial of locality awareness is about 65% for the movie files
(Mov.) and roughly 40% for the music files (Mus.). In other
words, around 35% (60%) of the overall movie (music) traf-
fic is produced by peers which are the only one in the AS.
Therefore, no locality awareness mechanism can avoid this
inter-domain traffic. In summary, we conclude from this
section that the overall optimization potential for locality
awareness is large even if the mechanisms will only be
useful in the top 20% of the swarms.

4.5. Relation of the number of peers and the AS degree

In this section we investigate to which degree the size
of an AS is correlated with the number of peers it contains.
For that purpose, we study two metrics representing the
‘‘size’’ of an AS: the AS rank and the AS degree. Both met-
rics are provided by CAIDA [27]. The AS degree is defined
as the number of AS’s to which a given AS is connected.
Like in [28] we use the AS degree as an indicator for the
size of the AS. To obtain the AS rank of a given AS, CAIDA
basically orders all AS’s according to their size and defines
the AS rank of a given AS as its index in this ordered list.
For this investigation we use the Mus. and Mov. data set
since these contain large numbers of swarms and their dis-
tribution of peers over AS’s.

First, we check the correlation of the total number of
peers per AS to the size of the AS. To this end, we calculate
the total number of peers in a given AS as the sum of the
number of peers in this AS of all swarms in the data set.
Then, we correlate the total number of peers per AS with
the AS degree and the AS rank obtained from CAIDA. This
calculation shows that the total number of peers in an AS
is neither correlated to the AS rank nor to the AS degree.
The concrete values for the correlation to the AS rank are
�0.0962 and �0.0834 for the Mus. and Mov. data set,
respectively. The corresponding values for the correlation
to the AS degree are 0.1492 (Mus.) and 0.1020 (Mov.).

Next, we calculate the correlation of the number of
peers per AS with the corresponding AS degree for each
swarm. That means, we get one correlation coefficient for
every swarm in the data set and plot CDFs of this value
for the 100 and 10,000 largest swarms (cf. Fig. 13).
Although some swarms exist in the top 10,000 swarms of
both data sets where the correlation is high, most of the
swarms do not have this strong correlation. In particular,
these swarms are not among the 100 largest swarms.
Therefore, we conclude that within a given swarm it is
quite unlikely that the number of peers per AS is correlated
with the AS degree. A possible explanation for that rather
unexpected result is that there is a large number of AS’s
in every swarm which contain only 1 or 2 peers. Still, these
AS’s may have a high AS degree which leads to low values
for the correlation.

To avoid this influence of the large number of AS’s with
only a few peers, we now focus on the top AS of every
swarm. In this way, we limit our investigation to those

AS’s with a large number of peers. In Fig. 14 we calculate
the number of peers in the top AS’s of the x largest swarms
and correlate these x numbers to the corresponding AS de-
gree and AS rank. We observe that the correlation with the
AS degree is stronger than the one with the AS rank. Fur-
thermore, the correlation decreases when we increase x,
i.e., when we take into account more swarms. In particular,
the correlation of the AS degree and the number of peers in
the top AS of the 100 largest swarms (Mus.) is close to 1.
That means, for the AS’s where the number of peers is
large, this number is correlated to the AS degree.

4.6. Another metric for locality: country codes

While AS affiliations are a popular metric describing
which peers are nearby, other metrics such as the number
of IP- or AS-hops, similarity of CDN redirection behavior
[17], or geographic proximity can also be used for that pur-
pose. In this section we investigate in which way the re-
sults of the previous section are affected if we use
another criterion than the AS affiliation. For feasibility rea-
sons we select the geographic proximity out of the afore-
mentioned example metrics and map every IP address to
a country code using the MaxMind GeoIP service [26].
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First, we compare the number of peers per AS to the
number of peers per country. For that purpose, we calcu-
late the average number of peers per AS and per country
for every swarm (Mus. and Mov.) and show CDFs over all
swarms in Fig. 15. We observe that the number of peers
per country is higher than per AS. For the Mus. data set
the mean number of peers per country (averaged over all
swarms) is about 2.3 times higher than the mean number
of peers per AS. For the Mov. data set the same relation is
about 6.2. This seems reasonable since most countries con-
tain several AS’s. Fig. 16 is similar to Fig. 15 but presents
the maximum number of peers per AS and per country in-
stead of the average numbers. That means that we select
from each swarm that AS and that country with the highest
number of peers. Again, we observe that the number of
peers per AS is lower than per country. Second, we investi-
gate the number of countries per swarm in analogy to
Fig. 10, which is based on the AS affiliations. The corre-
sponding figure for the country codes is very similar to
Fig. 10, and we therefore omit it. The only difference is
the one already observed in Fig. 15 that there are on aver-
age more peers per country than per AS.

Hence, using country codes instead of AS affiliations
leads to coarser classification of peers and consequently
higher numbers of peers in the same class. Therefore, keep-
ing traffic local in a given country should be easier since it
is more likely to find local neighbors than in the same AS.

4.7. Characteristics of regional swarms

We have already seen the effect regional content has on
the evolution of the swarm size over time. We now take a
closer look at the topological characteristics of swarms
sharing this content. These swarms are contained in the
data sets Reg. and Grp. The Grp. data set comprises 16
example swarms of different average sizes distributing
movies in German, Spanish, Chinese or English (cf. Table
5). For these swarms, we analyze the number of AS’s and
the top AS fraction of the swarm, i.e., the maximum num-
ber of peers in an AS of that swarm normalized by the
swarm size (cf. Fig. 17). In this figure, the swarm size
(given in Table 5) is indicated by different colors on a

logarithmic scale. Swarms sharing regional content have
a high top AS fraction (20% to 50%) and are spread over
comparably few AS’s. In contrast, swarms sharing interna-
tionally interesting content, i.e., in English, have a small
top AS fraction (below 10%) and are spread over more AS’s.

Swarm D is an exception here. We have seen in Section
4.2 that the peer population within swarm D remains al-
most constant over time and does not show any periodic
day–night pattern. Thus, the swarm distributes content
that seems not to be preferred regionally. However, swarm
D shows the highest skewness in terms of number of peers
per AS compared to the other swarms. In particular, 30% of
the peers belong to the same AS with the AS number
30058. A closer look reveals that the company responsible
for this AS offers its customers to rent dedicated or virtual
servers located in this AS. This permits a single customer to
run a large number of peers on different virtual nodes
which could be used to insert fake peers in the swarm in
order to disturb the distribution process. This might be
an explanation of the high fraction of peers in swarm D
in AS 30058.

Next, we move from the Grp. data sets with 16 example
swarms to the Reg. data sets containing 120 swarms
exchanging regional movies observed at the index server
PirateBay.org in May 2009. This set is more suitable for sta-
tistical analysis since the number of swarms is higher and
the swarms are not selected by hand as it is the case for
Grp. The fact that users are interested in regional content
leads to a high top AS fraction, which is the relative num-
ber of peers in a swarm’s top AS. This is especially true for
Spanish content, see Fig. 18. Here, the top AS of each
swarm in the Reg. set is used for comparison, i.e., the AS
containing most peers from a swarm. In this graph, a CDF
of the relative share of peers that are located in these
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Table 5
Individually measured swarms over time (Grp.) using the following notion:
(ID) average swarm size & language.

(A) 21,351 EN (B) 17,170 EN (C) 4550 SP (D) 3182 EN
(E) 1390 SP (F) 972 GE (G) 832 GE (H) 626 GE
(I) 579 SP (J) 479 EN (K) 473 GE (L) 351 GE
(M) 289 GE (N) 258 EN (O) 217 SP (P) 81 CN
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AS’s is plotted for swarms with Dutch, French, Italian and
Spanish content.

While in all cases there are at least 10% of the total
swarm population in the top AS, this share is between
40% and 48% for the Spanish content, implying a high de-
gree of peer grouping. To judge whether this phenomenon
only exists for a single AS, we evaluated also the second to
fifth largest AS’s of the swarms in the Reg. data set, cf.
Fig. 19. It appears that the top AS of a swarm contains sig-
nificantly more peers than the other AS’s, although these
are still holding around 5% of the total swarm population.

We affirm this result by comparing the kurtosis, i.e., the
fourth moment of a distribution that indicates statistical
peaks, of the number of peers per AS for the swarms in
the Reg., the Mus. and Mov. sets. The results are shown in
form of a CDF in Fig. 20.

The regional swarms show a much higher kurtosis than
the two larger and more general sets. This leads us to the
conclusion that the concentration of a larger fraction of
the swarm in the same AS is much more common in regio-
nal swarms. This means that the regional interest in a
shared file can play a significant role in the suitability of
the according swarm for locality promotion, something
previously underestimated. In particular, the high kurtosis

values for a certain fraction of swarms providing music or
movie files in Fig. 20 indicates that this phenomenon of re-
gional interests with many peers in the top AS can be ob-
served for any kind of content.

4.8. Measurement summary

From the results presented above, we make the follow-
ing main observations for the characterization of BitTor-
rent swarms and their distribution in the Internet.

Considering the swarm statistics according to the of-
fered content (i.e., TV shows, movies, and music) we ob-
serve that the larger the offered content is in terms of
volume, the larger the average and maximum number of
peers is in such a swarm, as already shown in less detail
in [19]. Additionally, our results show that the distribution
of peers among the swarms follows the Pareto principle for
the different measurement sets (1), (4) and (5) which con-
tain random files. This means that 80% of all peers belong
roughly to the top 20% swarms for all media types. The Par-
eto principle cannot be observed for measurement set (2),
(3), and (6) since we only consider popular or recently pub-
lished content there. These recently published torrents are
highly popular. This is reasonable since users are typically
interested in new contents, recently broadcasted movies
etc. We studied the distribution of peers over AS’s of the
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swarms and showed that the average number of peers per
AS is small for most of the swarms. However, the distribu-
tion of peers over AS’s is skewed so that a high fraction of
the peers is contained in the few top AS’s of the swarm.
Previous studies, e.g., [6,8], revealed that this can have a
strong impact on the performance of traffic optimizations
schemes, especially for swarms sharing regional content,
where the skewness in the peer distribution is higher.
Hence, quantitative characterizations (cf. Section 5) of the
distribution of peers over AS’s are required for a meaning-
ful performance evaluation of traffic optimization
schemes. In addition, our measurements show that the
fraction of swarms with AS’s where more than 5 peers
are located in at least one AS is quite small. Nevertheless,
the optimization potential of locality aware mechanisms
remains high since peers in the large swarms, which pro-
duce the majority of the traffic, can be clustered in their
AS. As a consequence, it would be an option to concentrate
traffic optimization efforts on the relatively low number of
swarms with larger content and high popularity because
the potential gains are much higher than for small swarms.
Not only does a larger content lead to more traffic, but also
the possibilities for locality promotion are more numerous
in larger swarms, where there are more peers in one AS in
general.

Also, especially for regional content we observe a day–
night behavior of the swarm size since mostly users of a
certain region (within a similar time zone) are interested
in that content, e.g., movies in French are mostly down-
loaded by users from France. In general, we found for 5%
of the investigated swarms a clear statistical indication
for day–night behavior. Therefore, the efficiency of traffic
optimization schemes may vary over time. Also, a one-time
observation of a swarm may not suffice to characterize it
for its suitability for locality promotion, even if it is no
longer in its flash-crowd phase. When the classification
of peers is done on the basis of the country code instead
of the AS affiliation, we observe that more peers are in
the same class and therefore it is easier to keep traffic
within that class of peers. Finally, the measurements reveal
that for a very small number of swarms (which are not the
large ones) the number of peers in an AS is correlated to
the AS degree.

4.9. Limitations of the measurement study

There are some limitations of our measurement study
which we present here so these can be taken into account
when using our results. First, we studied only swarms
which use a tracker to request an initial set of peers and
no tracker-less swarms. Second, our measurements rely
on the assumption that the information obtained from
the websites and the trackers are correct. Furthermore,
we did not try to contact the peers we received from the
trackers. Therefore, it is possible that some company in-
serted fake peers in order to disturb the distribution pro-
gress which would result in a smaller number of peers
actively participating in a swarm than the one we mea-
sured. Third, we used different measurement methodolo-
gies for different data sets because we refined our
methodology during the course of this work. This has

two consequences: (1) not all types of data are available
for all data sets (namely distribution of peers over AS’s
and measurements over time) and (2) the results might
be influenced by the used measurement methodology.
Overall, we argue that these limitations have only a minor
impact on the presented results. To support this we cross-
checked the results using all data sets for which the corre-
sponding type of measurement was available, provided
explanations of differing results, and compared our results
to the ones described in literature.

5. Statistical characterizations of BitTorrent swarms

Based on the measurements presented in Section 4 we
develop a set of characterizations for BitTorrent swarms
which can be used for performance evaluations of locality
awareness solutions for BitTorrent. Namely, we model the
distribution of peers of a single swarm over AS’s and fit the
swarm population, the number of AS’s over which a swarm
is distributed, the fraction of the swarm located in the top
AS, and the size of the shared file with stochastic distribu-
tions for the data sets Mus., Mov., and Reg. Finally, we pres-
ent the correlation of these values as multivariate
correlation matrices.

5.1. Power-law of the distribution of peers over AS’s

As we have seen from the measurement results pre-
sented in Section 4, one key aspect for modelling BitTor-
rent swarms is the skewed peer distribution. In this
section, we present a simple model which returns the
probability P(k) that a peer belongs to the kth largest AS
within a swarm consisting of n different AS’s. In particular,
we investigate whether the peer distribution among the
different AS’s follows a power-law, which means

PðkÞ ¼ a=kb þ c: ð3Þ

Therefore, we consider all swarms In consisting of exactly
n different AS’s from Mus. and the Mov. data set, respec-
tively. For each swarm i 2 In, we measure the ratio ePiðkÞ
of peers belonging to the kth largest AS in swarm i for
k = 1, 2, . . . , n. Then, we compute the average ratio ePðkÞ
over all swarms, yielding at

ePðkÞ ¼ 1
Inj j

X
i2In

ePiðkÞ: ð4Þ

Fig. 21 shows the measured ratio ePiðkÞ of peers belonging
to the kth largest AS within a swarm consisting of n = 40
different AS’s. All swarms consisting of exactly n different
AS’s are considered from the Mus. data set. The observed
ratio ePiðkÞ is then compared with the power-law model
function as defined in Eq. (3). The parameters a, b, c of
the model function are retrieved by means of non-linear
regression. We used the optimization toolbox of Matlab
to find an optimal fitting function for the given measure-
ment data. Optimal in this case means to find the unknown
parameters a, b, c in Eq. (3), such that the mean squared er-
ror is minimized. As a result, we obtain P(k) = 0.0769/
k0.8013 + 0.0134 which is plotted as solid curve. Fig. 21
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indicates that the power-law describes quite well the peer
distribution among AS’s.

The goodness-of-fit for the model function P(k) is ex-
pressed by means of the coefficient of determination R2.
A value close to one means a perfect match between the
model function and the measured data. For the measure-
ments given in Fig. 21 and the obtained model function,
the coefficient of determination is R2 = 0.978035 indicating
the good match in a statistical way. In our case, the coeffi-
cient of determination can be computed as follows

R2 ¼ 1�
Pn

k¼1
ePðkÞ � PðkÞ
� �2

Pn
k¼1

ePðkÞ � 1=n
� �2 : ð5Þ

In the following, we have computed the optimal parame-
ters of the power-law function as defined in Eq. (3) for all
swarms consisting of exactly n different AS’s. Again, the
coefficient of determination R2 is used to measure the
goodness-of-fit. Fig. 22 shows a scatter plot of the number
n of different AS’s in a swarm vs. R2 for the Mus. data set.
The maximum number of observed AS’s is 1744 for movie
swarms and 809 for music swarms. As we can see, the
match between the measurement data and the power-
law model function is very good and the coefficient of
determination is above 0.9. In [12], the power-law describ-
ing the distribution of peers over AS’s of BitTorrent swarms
was also shown for the Mov. data set. In order to provide a
model for BitTorrent swarms, the file size, the size of a
swarm, and the number of AS’s per swarm is required in
addition to the parameters of the power-law model. This
is discussed in the following section.

5.2. Additional parameters of BitTorrent swarms

In order to provide input for the evaluation of locality
awareness mechanisms under more realistic conditions,
we introduce statistical characterizations for music files,
movie files, and files of regional interest based on the mea-
surements for the Mus., Mov., and Reg. data sets, respec-
tively. The considered features of BitTorrent swarms
relevant for traffic optimization comprise (a) the size of a

swarm, (b) the number of AS’s per swarm, (c) the top AS
fraction, and (d) the size of the provided file in the swarm.

Tables 6–8 show the distribution model of these fea-
tures f, the mean value l(f), the coefficient of variation
c(f), and the corresponding model parameters. For the
Mov. and Mus. data sets, we excluded swarms with less
than 10 peers from our consideration since most of the Bit-
Torrent users (around 80%, cf. Fig. 2) do not belong to these
swarms and locality awareness is expected to have only a
very small impact in these swarms (cf. Section 4.4). The
Reg. data set does not contain those small swarms and
we therefore included all swarms from this set in the char-
acterizations. Using the measurement data, the maximum
likelihood estimates of the parameters for the different
model distributions were calculated. The goodness-of-fit
(gof) of the model distribution and the measurement data
is expressed by the coefficient of determination R2 which
takes values from 0 to 1. A value of R2 = 1 shows that the
model function and the measurement data are identical.
Thus, we can see a very good match between the measure-
ment data and the model functions. An exception is the
size of movie files (Mov.) and regional files which only have
a gof of R2 = 0.86 and R2 = 0.83, respectively. This can be ex-
plained by the fact that the distributions of these file sizes
show a strong peak. In particular, 45.85% of all movie files
have a size between 650 MB and 750 MB which corre-
sponds to the size of a regular compact disc. In addition,
about 8.46% of the swarms have a file size between
1350 MB and 1450 MB. Fitting only the file sizes of the
remaining 53.31% of the swarm gives significantly higher
gof of 0.99 (‘file size (impr.)’ in Table 7). This is very similar
for the Reg. data set. 51.65% of the swarms have a file size
between 650 MB and 750 MB and 23.08% of them are be-
tween 1350 MB and 1450 MB. The number of the remain-
ing swarms is too low to provide a meaningful fitting and
we therefore suggest to use the corresponding values of
the movie files.

However, as we have outlined in Section 4, there is a
strong correlation between some of the features of BitTor-
rent swarms. Tables 9–11 show the multivariate correla-
tion matrix for music, movie, and regional files,
respectively. We observe that there is a strong correlation
(>0.8 for Mus. and Mov., and > 0.6 for Reg.) between the
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number of peers in a swarm and the number of different
AS’s in a swarm.

In order to generate a random BitTorrent swarm based
on this model, approximate methods for sampling
correlated random variables from partially specified distri-
butions can be used which are well known in literature,
e.g. [29]. For these approximations, the information from
the tables presented in the section can be used,
respectively.

6. Conclusion

In this paper we measure and characterize real-life Bit-
Torrent swarms. The results can serve as input for the design
and assessment of traffic optimization techniques as cur-
rently discussed in the ALTO working group of the IETF. Still,
they are of a general nature and therefore not limited to that
purpose. A core part of our investigation is the result of a
large-scale measurement campaign, where a comprehen-
sive set of swarms has been investigated using a distributed
tracker monitoring system. Measurements include swarm
size distributions, ratio of seeder and leecher populations,
time dynamics within a swarm, the distribution of peers
over AS’s and over countries of swarms, and characteristics
of swarms with a certain content or region focus. We show
that real-life BitTorrent swarm distributions are highly
skewed and that this is in particular true for regional
swarms. On the one hand, more than 90% of the observed
AS’s contain less than 10 peers and the average number of
peers per AS is below 2 peers for 99% of the swarms with a
very high variation leading to many single peer AS’s. On
the other hand, most of the peers (about 80%) belong to
the top 20% of the swarms. Therefore, we argue that there
is a large optimization potential for locality awareness since
these large swarms are (1) responsible for the majority of
the BitTorrent traffic and (2) especially suitable for locality
aware mechanisms. For this reason, we have specified a sim-
ple AS swarm characterization for music, movie, and regio-
nal files provided in BitTorrent swarms which takes into
account the swarm size, the number of different AS’s per
swarm, the top AS fraction, and the file size. These measure-
ment results and the provided characterizations enable
researchers to design algorithms as well as simulation stud-
ies and experiments for ALTO solutions based on real-world
characteristics of BitTorrent swarms.

Table 6
Characterizations for music swarms with at least 10 peers.

Feature f l(f) c(f) Model Model parameter R2

Swarm size 46.15 2.66 Log-normal l = 3.18 r = 0.89 0.96
#ASs per swarm 28.31 1.39 Log-normal l = 2.97 r = 0.74 0.98
Top AS fraction 0.13 0.65 Log-normal l =�2.19 r = 0.54 1.00
File size 218.04 2.05 Log-normal l = 4.53 r = 1.40 0.97

Table 7
Characterizations for movie swarms with at least 10 peers.

Feature f l(f) c(f) Model Model parameter R2

Swarm size 85.34 5.64 Log-normal l = 3.42 r = 1.06 0.97
#ASs per swarm 33.67 1.95 Log-normal l = 3.01 r = 0.86 0.98
Top AS fraction 0.18 0.84 Log-normal l = �1.98 r = 0.75 1.00
File size 887.05 0.76 Gamma a = 1.91 b = 463.3 0.86
File size (impr.) 975.74 0.97 Weibull k = 985.97 k = 1.03 0.99

Table 8
Characterizations for regional swarms with at least 1 peers.

Feature f l(f) c(f) Model Model parameter R2

Swarm size 1350.86 1.39 Log-normal l = 6.60 r = 1.04 0.92
#ASs per swarm 77.45 0.54 Gamma a = 3.58 b = 21.65 1.00
Top AS fraction 0.31 0.38 Gamma a = 6.17 b = 0.05 0.97
File size 1367.81 0.81 Log-normal l = 7.00 r = 0.60 0.83

Table 9
Multivariate correlation matrix for music swarms with at least 10 peers.

#Peers #ASs Top AS File size

#Peers 1.0000 0.9100 �0.1364 �0.0048
#ASs 0.9100 1.0000 �0.2979 �0.0071
Top AS �0.1364 �0.2979 1.0000 0.0129
File size �0.0048 �0.0071 0.0129 1.0000

Table 10
Multivariate correlation matrix for movie swarms with at least 10 peers.

#Peers #ASs Top AS File size

#Peers 1.0000 0.8281 �0.0084 0.0043
#ASs 0.8281 1.0000 �0.2160 �0.0000
Top AS �0.0084 �0.2160 1.0000 0.0086
File size 0.0043 �0.0000 0.0086 1.0000

Table 11
Multivariate correlation matrix for regional swarms with at least 1 peer.

#Peers #ASs Top AS File size

#Peers 1.0000 0.6102 0.5744 �0.0707
#ASs 0.6102 1.0000 0.0450 0.1259
Top AS 0.5744 0.0450 1.0000 �0.2670
File size �0.0707 0.1259 �0.2670 1.0000
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