
A Discrete-Time Model for Optimizing the Processing
Time of Virtualized Network Functions

Thomas Zinner, Stefan Geissler, Stanislav Lange, Steffen Gebert, Michael
Seufert, Phuoc Tran-Gia

Julius-Maximilians-Universität Würzburg, Chair of Communication Networks

Abstract

The softwarization of networks promises cost savings and better scalability
of network functions by moving functionality from specialized devices into
commercial off-the-shelf hardware. Generalized computing hardware offers many
degrees of adjustment and tuning, which can affect performance and resource
utilization. One of these adjustments are interrupt moderation techniques
implemented by modern network interface cards and operating systems. Using
these, an administrator can optimize either for low latencies or low CPU overhead
for processing of network traffic. In this work, an analytical model that allows
the computation of relevant performance metrics like packet processing time
and packet loss for generic virtualized network functions running on commodity
hardware is presented. Based on this model, impact factors like average packet
interarrival time, interarrival time distribution, and duration of the interrupt
aggregation interval are studied. Furthermore, we significantly improve the
computational tractability of this discrete-time model by proving and leveraging
a property regarding its limit behavior. We also demonstrate that using this
property does not affect the accuracy of the model in the context of realistic
parameter combinations. Finally, the improved runtime for numerical evaluations
allows administrators to dynamically adapt their interrupt mitigation settings
to changing network conditions by recalculating optimal parameters.

Keywords: Discrete-Time Analysis, Performance Modeling, NFV, VNF,
Queueing Theory.

N
O

T
IC

E
:

T
h
is

is
th

e
a
u
th

o
r’

s
v
e
rs

io
n

o
f

a
w

o
rk

a
c
c
e
p
te

d
fo

r
p
u
b
li
c
a
ti

o
n

b
y

E
ls

e
v
ie

r.
C

h
a
n
g
e
s

re
su

lt
in

g
fr

o
m

th
e

p
u
b
li
sh

in
g

p
ro

c
e
ss

,
in

c
lu

d
in

g
e
d
it

in
g
,

c
o
rr

e
c
ti

o
n
s,

st
ru

c
tu

ra
l

fo
rm

a
tt

in
g

a
n
d

o
th

e
r

q
u
a
li
ty

c
o
n
tr

o
l

m
e
ch

a
n
is

m
s,

m
a
y

n
o
t

b
e

re
fl
e
c
te

d
in

th
is

d
o
c
u
m

e
n
t.

C
h
a
n
g
e
s

m
a
y

h
a
v
e

b
e
e
n

m
a
d
e

to
th

is
w

o
rk

si
n
c
e

it
w

a
s

a
c
c
e
p
te

d
fo

r
p
u
b
li
c
a
ti

o
n

in
C

O
M

P
U

T
E

R
N

E
T

W
O

R
K

S
.

Email addresses: zinner@informatik.uni-wuerzburg.de (Thomas Zinner),
stefan.geissler@informatik.uni-wuerzburg.de (Stefan Geissler),
stanislav.lange@informatik.uni-wuerzburg.de (Stanislav Lange),
steffen.gebert@informatik.uni-wuerzburg.de (Steffen Gebert),
seufert@informatik.uni-wuerzburg.de (Michael Seufert),
trangia@informatik.uni-wuerzburg.de (Phuoc Tran-Gia)

Preprint submitted to Elsevier April 18, 2017

1. Introduction

The trend towards softwarization of networks, especially using Software
Defined Networking (SDN) [9] and Network Functions Virtualization (NFV) [2],
promises more flexibility and innovation for networks. Network functions running
on commercial off-the-shelf (COTS) hardware have many appealing advantages
such as easy scale up or scale down of computing resources as well as scale out
or scale in of virtual machines among the available physical hardware. Further,
faster release cycles compared to hardware devices are possible.

This high flexibility, however, comes at the expense of performance [6, 15], i.e.,
lower packet throughput and longer processing delays of softwarized solutions
compared to hardware-based implementations. The usage of particular network
functions, for instance within network function chains, however, has stringent
performance requirements. Firstly, enough function instances have to be available
to handle the corresponding traffic. Secondly, the overall processing delay of a
network function should be minimized, particularly in case of large forwarding
graphs where such delays sum up.

The contribution of this article is twofold. On the one hand, we extend
the evaluation of the discrete-time model for Virtualized Network Functions
(VNFs) running in software on commodity hardware that was developed in [5].
On the other hand, we significantly improve the computational efficiency of its
numerical evaluations by utilizing a property regarding its limit behavior. In
addition to proving this property, we also show that for realistic input parameters,
convergence is reached and thus, the performance improvement does not affect
the accuracy of the model.

The model takes into account interrupt moderation, a technique used by
current operating systems and server hardware to reduce the overall number of
interrupts. Based on the presented model, the impact of different interarrival
times, interarrival distributions, and aggregation interval durations on processing
times and packet loss ratios is presented. The proposed model also allows com-
puting distributions, i.e., mean values, standard deviations, as well as quantiles
of the delay distributions. In [5], we have already illustrated the applicability of
the model by comparing it to measurements for a fixed aggregation interval and
varying interarrival times using a mobile network Serving Gateway (SGW) as
an exemplary network function.

Since the parameters of the interrupt moderation mechanism can severely
affect the overall network performance, administrators can apply the model
in order to find optimal values for their use cases. Additionally, the network
conditions might change dynamically over time. Hence, a fast recalculation of
optimal settings is required in order to adapt in a timely manner. This aspect
is addressed by leveraging the abovementioned behavior regarding convergence,
resulting in computations that are up to 22 times faster than in the context of
the original model.

The remainder of this work is structured as follows: Background information
as well as related work is introduced in Section 2. The steps involved in processing
packets in a x86 system are described in Section 3, before an abstract model

2

is introduced in Section 4. Afterwards, exemplary evaluations of the packet
processing time and packet loss behavior under different settings are presented
in Section 5. Finally, Section 6 draws conclusions and outlines future work.

2. Background & Related Work

This section discusses related work with respect to the performance of soft-
warized network functions and corresponding optimization mechanisms. After-
wards, interrupt moderation techniques are discussed.

2.1. Performance of Packet Processing in Software

Applications processing network traffic send and receive data packets through
functions provided by the operating system kernel. Accordingly, packets traverse
a complex chain of forwarding steps between the Network Interface Card (NIC),
the kernel, and the software application resulting in a specific delay overhead.

One major contributor to these delays are copy operations between the
memory of the kernel space and the user space. To reduce this overhead,
multiple techniques and frameworks that enable faster processing of packets in
software have been introduced. These approaches, e.g., Netmap [14], ClickOS [13],
Intel DPDK [7], or VPP [3] bypass the kernel completely during packet reception,
use shared memory buffers to avoid additional copy operations, process packets
in batches, or replace the entire network stack. Accordingly, these mechanisms
usually speed up specific parts of the stack. An extensive measurement study on
the performance of several of the aforementioned mechanisms in case of packet
forwarding is conducted in [1].

However, the abovementioned studies have several drawbacks. First, the focus
on simple network functions like pure packet forwarding obscures the influence
of the processing time spent in the user space on the total processing time. This
component, however, might account for the majority of the total processing time.
Second, measurements are conducted for very specific use cases and cannot be
generalized in order to obtain a holistic evaluation of the proposed mechanisms.
Finally, it is impossible to determine the feasibility of an approach without
identifying its key performance indicators. Therefore, a model for analyzing the
packet processing performance on COTS hardware is required. In addition to
providing the capability to derive key performance indicators, model parameters
can be tuned in order to represent different acceleration techniques and quantify
their effects in the context of different use cases.

Based on such evaluations, it could be decided, which technique offers a
good trade-off between complexity of implementation and speedup for a specific
network function. As seen in [10], operating modes of network functions exist,
in which the overhead of packet handling, and therefore the speedup gained by
techniques like DPDK, is negligible.

The model presented in this work is a first step towards enabling analytical
evaluation of packet processing performance in commodity hardware running
general purpose operating systems.

3

2.2. Interrupt Moderation

One of the key features of the previously listed frameworks consists of avoiding
livelocks [11] that result from the Central Processing Unit (CPU) being effectively
busy with interrupt handling instead of executing the program that processes
incoming data. In order to avoid such livelocks and to reduce the overhead of
packet processing in a server, several approaches that apply interrupt moderation
have been introduced on operating system side as well as in networking hardware.

The networking stack in the Linux kernel (New API, short NAPI [11]) disables
interrupt handling for interrupts related to receiving packets, once the first packet
is processed. Followed by that, the NIC queue is polled in assumption that
multiple packets arrived in a burst. After a certain number of packets has been
processed, or a timeout occurs, interrupts are re-enabled and the process restarts
with the next packet arrival.

Hardware-based implementations of interrupt moderation are supported by
many server network adapters. The actual feature set varies between different
chipsets. For receive as well as transmit directions, the NIC can hold back
interrupts until either a pre-configured number of packets is received or sent, or
until a pre-configured time since the first packet starting the batch passed by.
Further options allow to define a threshold to differentiate between a low and
a high traffic load and to specify options for both of these conditions. Finally,
some NICs offer adaptive modes, in which they change their behavior based on
the current receive rate.

3. System Description

In order to understand the process of packet processing within a Linux x86
system, an abstracted description is provided in the following. This process,
which starts with receiving a packet on the wire and ends with the processed
packet being sent over the wire, is also depicted in Figure 1.

Receive incoming packet: The network interface card reads data from the
transmission media, transforms it into packets and stores it into a receive
queue.

Trigger copy to kernel via interrupt: The NIC triggers an interrupt to no-
tify the CPU about the arrival of a packet. The interrupt starts an
expensive copy process that moves the data from the network card into
the address space of the kernel.

Store packet in RAM: The data is stored in a buffer until the application
requests it for processing. The size of this buffer is limited to a fixed
number of bytes. If the application cannot catch up with reading, the
kernel drops packets.

Process packet in application: While the application processes the packet,
it blocks the CPU.

4

NIC
Hardware

Kernel

Application

NIC

RAM
Kernel

User

CPU

RAM
Kernel

User
CPU

CPU

Incoming Packet Outgoing Packet

Interrupt Interrupt
CPU

Figure 1: Packet processing in an x86 server running Linux.

Send outgoing packet: After processing, the packet traverses the same way
backwards until it is finally sent to media.

4. Model

The queuing model used for the performance analysis of the system outlined
in Section 3 is depicted in Figure 2. It is a generalization of the clocked
approach introduced by Manfield et al. [12]. The generation of packets follows
an arbitrary distribution A. For the model presented in this work, we assume
independent packet interarrivals. The packets are stored in a peripheral queue
which is assumed to have infinite size. This queue corresponds to the NIC queue
displayed in Figure 1. Incoming packets are transferred in a batch to the central
queue (cf. RAM in Figure 1) after a time interval τ initiated by the first packet
after a batch transfer. The inner queue is then modeled as a GI [X]/GI/1− L
system and evaluated by means of discrete-time analysis. Distributions of the
batch sizes and burst interarrival times are derived in the following. The next
sections introduce the model of the peripheral as well as central queue and finally
arrive at a combined model for the whole system.

Peripheral
queue

A
GI

Central
queue

GI, B

T0

Figure 2: Queueing Model.

5

ܺሺݐሻ

ݐ

ݐ

߬

interrupt

Φ ߬

ܵ

interrupt

ܣ

ଷܹ

ଵܹ
ଶܹ

Figure 3: Exemplary development of the peripheral queue and involved random variables.

4.1. Model of the Peripheral Queue (NIC)

In the peripheral queue, which represents the network interface card, packets
are aggregated. The resulting batch is then forwarded to the central queue,
which represents the CPU/software.

For the remainder of this work, we use the following notation to distinguish
between random variables (RVs), their distributions, and their distribution
functions. A random variable is represented by an uppercase letter, e.g., X. The
distribution of X is denoted by x(k) and is defined as

x(k) = P (X = k), −∞ < k <∞.

Although the random variables considered in this work only take on positive
values, distributions are defined over the range from −∞ to ∞ in order to
enable operations like computing the distribution of the difference of two random
variables. Furthermore, the distribution function of X is written as X(k) and is
defined as

X(k) =

k∑
i=−∞

x(i), −∞ < k <∞.

Finally, E [X] denotes the mean of X and ∗ refers to the discrete convolution
operation, i.e.,

a3(k) = a1(k) ∗ a2(k) =

∞∑
j=−∞

a1(k − j) · a2(j).

The following distributions are used for modeling the peripheral queue.
Additionally, an exemplary development of the queue is shown in Figure 3, which
highlights the relationships between different RVs.

� a(k): distribution of the packet interarrival time.

6

� ra(k): distribution of the packet recurrence time. The recurrence time is
defined as the duration between a randomly chosen time and the arrival of
the next packet.

� τ(k): distribution of the duration of the aggregation interval. For the
remainder of this work, we use a constant aggregation interval of length τ .
That is, τ(k) = δ(τ) where δ(τ) denotes the Dirac impulse at τ .

� f (j)(k): distribution of the time between the start of an aggregation interval
and the arrival of the j-th packet. Since the aggregation interval starts
with the arrival of a packet, this time equals the sum of j interarrival times.
The corresponding random variable is referred to as F (j).

� x(k): distribution of the batch size.

� φ(k, τ): distribution of the time between the end of an aggregation interval
of length τ and the arrival of the packet that initiates the next aggregation
interval.

� s(k): distribution of the interarrival time between batches.

� o(k): distribution of the interrupt processing delay.

� wi(k): distribution of the waiting time of the i-th packet in the peripheral
queue.

� un(k): distribution of unfinished work in the system before the arrival of
the n-th batch.

The first packet arriving after a burst transferal initiates a new aggregation
interval. All packets arriving in this time frame are transferred to the inner
queue at the end of this interval. Based on the work in [16] and [4], the batch
size distribution x(k) can be computed as follows.

x(k) = τ(0)δ0(k)

+

∞∑
m=1

τ(m)

m−1∑
i=0

(
f (k)(i)− f (k+1)(i)

)
, k = 0, 1,

(1)

The equation allows calculating the number of arrival events in an arbitrarily
distributed time interval. The special case, in which no arrivals are observed in
an interval of length 0, is covered by the first term. The function δ0 serves as
indicator and is defined formally in Equation 2. The law of total probability is
used in the second term in order to calculate the conditional probability x(k|m)
for the remaining interval lengths. It can be derived from the relationship shown
in Equation 3.

δ0(k) =

{
1 k = 0

0 otherwise
(2)

7

x(k|m) = P
(
F (k) < m ≤ F (k+1)

)
= P

(
F (k) < m

)
− P

(
F (k+1) < m

)
=

m−1∑
i=0

(
f (k)(i)− f (k+1)(i)

)
,m > 0

(3)

According to the above description of the distribution φ(k, τ), it can be
computed using Equation 4. In particular, the equation states that in order to
observe Φ = k, two conditions need to be met. First, the sum of n interarrival
times needs to be equal to τ + k. Second, the last interarrival time needs to
be larger than k in order to ensure that only the last arrival is outside the
aggregation interval. Finally, the sum over all possible numbers of events n
yields the desired probability.

φ(k, τ) = P(A > k)

∞∑
n=1

f (n)(τ + k) (4)

Since the first packet after a transfer initiates the next aggregation interval,
the batch interarrival time s can be calculated as the sum of Φ and the duration
of the aggregation interval τ :

s(k) = φ(k, τ) ∗ τ(k). (5)

Furthermore, the waiting time of consecutive packets, after the interval is
started, is reduced. In particular, the waiting time of the i-th packet of a batch
in the peripheral queue depends on the arrivals of the i − 1 packets before it.
Hence, the distribution of its waiting time can be computed as follows:

wi(k) = π0

τ(k) ∗ a(−k) ∗ · · · ∗ a(−k)︸ ︷︷ ︸
(i− 1) times

 (6)

In [5], we assumed that Φ follows the same distribution as the packet re-
currence time Ra. We now show that this is only true when considering limits.
In particular, we prove the following theorem in the appendix. Note that this
theorem does not apply to deterministic packet interarrivals with an average
interarrival time greater than 1. This stems from the fact that the corresponding
distribution is arithmetic and has a span greater than 1.

Theorem 1. For non-arithmetic packet interarrival times and arithmetic packet
interarrival times with a span equal to 1, the distribution of the time between
consecutive batches, φ(k, τ), converges to the recurrence time of the interarrival
time, ra(k), as τ approaches infinity, i.e.,

lim
τ→∞

φ(k, τ) = ra(k).

8

However, evaluations presented in Section 5.3 demonstrate that in the context
of realistic input parameters, convergence is reached and the assumption of
equality does not impact the accuracy of performance indicators like packet
loss or overall processing time. Additionally, in contrast to calculating the
distribution φ(k, τ), the calculation of the recurrence time does not require
any convolution operations and thus allows for significantly faster numerical
evaluations of the model.

4.2. Model of the Central Queue (CPU/software)

We model the inner queue as a GI [X]/GI/1− L queue, i.e., a system with
batch arrivals and bounded delay. The waiting time of packets is limited by a
maximum value of L, i.e., packets that arrive and would have to wait longer
than L − 1 are rejected. Our analysis extends the work presented in [17] by
introducing batch arrivals. A similar notation, as presented in the following, is
used:

� un,bi(k): distribution of unfinished work in the system before the arrival
of the i-th packet of the n-th batch.

� Bn,i: RV for the service time of the i-th packet of the n-th batch.

� pb: average blocking probability per packet.

� π0(·): sweep operator which sums the probability mass of negative un-
finished work in the system and appends it to the state for an empty
system.

π0(x(k)) =


x(k) k > 0

0∑
i=−∞

x(i) k = 0

0 k < 0

� σm(·): operator which truncates the upper part of a probability distribution
function.

σm(x(k)) =

{
x(k) k ≤ m
0 k > m

� σm(·): operator which truncates the lower part of a probability distribution
function.

σm(x(k)) =

{
0 k < m

x(k) k ≥ m

The development of the batch arrival process is illustrated in Figure 4.
Observing the packets of the n-th batch arrival, the i-th packet of the burst is
accepted if the current unfinished work in the system is less than L− 1. In case
the packet is accepted, the unfinished work is increased by the amount of work
Bn,i that is required to process the packet. Otherwise, the packet as well as the
remaining packets of the current batch are rejected.

9

Un+1

blocking of
2nd packet

U(t)

L
B

S

t
Un

n-1 n n+1

n

n,3

batch arrivals

X = 2n-1
X = 3n

X = 1n+1

Bn,1

Bn,2

X = 2n+3

Bi,1

X = 3

n+2 n+3

n+2

Figure 4: Exemplary system development for GI[X]/GI/1 − L with bounded delay.

The following recursive relationship can be used in order to compute the
amount of unfinished work in the system:

un,b1(k) = un(k) (7)

un,bi+1
(k) = σL−1 [un,bi(k)] ∗ bn,i(k) + σL [un,bi(k)] (8)

Hence, the remaining unfinished work in the system at the arrival of the next
batch can be computed as:

un+1(k) = π0

[(∞∑
i=1

x(i) · un,bi(k)

)
∗ sn(−k) ∗ o(k)

]
. (9)

In this calculation, the interrupt overhead o is added to the batch interarrival
time s due to the fact that for each batch, the CPU has to devote time to handle
this interrupt instead of processing packets.

Using the above equations, an algorithm for calculating the workload prior
to the i-th arrival can be derived. The algorithm can be used for both stationary
and non-stationary traffic conditions. Under stationary conditions, the index n
and (n+ 1) in these equations can be suppressed, cf. Equation 10. Furthermore,
we assume that the packet service time is independent of a packet’s position
within the batch. Hence, the RV Bn refers to the service time for packets in the
n-th batch. Similarly to Equation 10, the index n can also be suppressed under
stationary conditions, resulting in RV B.

10

u(k) = lim
n→∞

un(k)

ubi(k) = lim
n→∞

un,bi(k)
(10)

It is also possible to quantify the load ρ of the central queue. This is achieved
by calculating the ratio between the amount of work that arrives within a given
time interval and the amount of work processed in this interval. In particular,
we observe that the amount of work arriving within a batch interarrival time
depends on the batch size and the packet service time (cf. Equation 11). Note
that both the batch size and the batch interarrival time are affected by the
packet interarrival time (cf. Equations 1 and 5).

ρ =
E [X] E [B]

E [S]
(11)

Finally, the packet loss probability in statistical equilibrium can be computed
as follows:

pb =

∞∑
i=1

1

i
x(i) ·

∞∑
j=L

ubi(j)

 (12)

Depending on the batch size and the amount of unfinished work added by
each packet within the batch, the blocking probability for the latter packets
within the batch increases.

4.3. Combined Model

Using the two models described in Sections 4.1 and 4.2, it is possible to
determine the distribution of the total processing time. It is comprised of the
waiting time in the peripheral queue, the waiting time in the central queue, and
the service time in the latter. The waiting time in the central queue can be
calculated from the unfinished work in the system and a packet’s position in its
batch. Hence, the following equation can be used to calculate the distribution of
the total processing time of the i-th packet in a batch di:

di(k) = wi(k) ∗ u(k) ∗ b(k) ∗ · · · ∗ b(k)︸ ︷︷ ︸
i times

(13)

Consequently, the distribution of the total processing time for all packets can
be determined via conditional probabilities:

d(k) =

∞∑
i=1

P(X = i) · di(k) =

∞∑
i=1

x(i) · di(k) (14)

The applicability of the proposed model has already been shown in [5].

11

5. Evaluation

In this section, we investigate the behavior of a packet processing server
based on the introduced model. In this context, we focus on the total processing
time D and the packet loss probability pb. The influence of the length of the
aggregation interval τ is studied in the context of different amounts of load that
is offered to the system. Since the load of the entire system can not be calculated

easily in advance, we vary the normalized arrival rate α = E[B]
E[A] instead. This

quantity contains the main contributors to the system load ρ and thus, provides
a good estimate.

At first, coarse-grained analyses of the resulting mean processing times and
packet loss ratios for different parameter combinations are presented. Afterwards,
we evaluate the impact of using the assumption that the time between the end of
an aggregation interval and the beginning of the next interval Φ, is distributed
according to the recurrence time of packet interarrivals, Ra. On the one hand,
we quantify the difference between the two distributions directly. On the other
hand, we investigate the resulting impact on the total processing time and the
packet loss, which are calculated based on these distributions.

5.1. Impact of the Aggregation Interval

The sensitivity of the modeled system to different aggregation intervals τ
is studied based on four different distributions, namely Poisson (pois), geomet-
ric (geo), and negative binomial (nbin). While for pois and geo, the distributions
are characterized solely by E[A], the parameters p and r of nbin are adjusted in
such a manner that coefficients of variation cA = 0.5 and cA = 2 are achieved.

5.1.1. Impact on Mean Processing Times

Figure 5 presents the mean packet processing time D that results from
different combinations of the aggregation interval τ , normalized arrival rate α
as well as different interarrival distributions. In the calculations, the processing
time at the CPU follows a Poisson distribution and we use a fixed value for its
mean, i.e., E[B] = 10µs. Then, the different values for α are achieved by setting
the mean interarrival time E[A] to values in {5, 10.75, 30}, respectively. While
the x-axis displays the length of the aggregation interval, the y-axis indicates
the average packet processing time. Additionally, line colors represent different
values of the normalized arrival rate α and line styles correspond to the four
distribution types.

In the context of a low normalized arrival rate, an almost strictly linear rela-
tionship between the length of the aggregation interval and the total processing
time can be observed for all distributions. In these cases, the CPU operates at a
low load and thus, can finish work faster than it arrives. Therefore, the waiting
time at the peripheral queue constitutes the main influence factor on the total
processing time. This waiting time is directly affected by τ , hence the observed
relationship.

When exposed to a high value of α = 2, the processing time is also almost
independent of the underlying distribution. However, the resulting processing

12

0 50 100 150 200
=

0

200

400

600

800

1000

E
[D

]

pois
geo
nbin(c=2)
nbin(c=0.5)

, = 0.93

, = 2

, = 0.33

Figure 5: Effects of different aggregation interval lengths τ and normalized arrival rates α on
the mean processing time E[D].

times are significantly higher and the effect of τ is not linear. Due to the fact
that the CPU is overloaded in this scenario, the total processing time is also
affected by the increased waiting time in the central queue. For low values of
τ , the overhead associated with frequent interrupts results in the highest total
processing time. When τ is increased, the overhead is reduced and multiple
packets are handled with a single interrupt. In the presented case, the lowest
processing time is achieved with values of τ at around 80µs. When τ is increased
further, the processing time increases due to the growing waiting time at the
peripheral queue.

Finally, the processing time for α = 0.93 depends on the underlying distribu-
tion of packet interarrival times and attains values between those for α = 0.33
and α = 2. As in the previous case, low values of τ result in a high overhead and
a high total processing time while high values of τ increase the waiting time in
the peripheral queue. Between these extremes, the shape of the curves is mainly
determined by the variability of the packet arrival distribution. For distributions
with a low coefficient of variation, i.e., pois and geo, bends can be identified
when τ attains values that are integer multiples of E[A]. At these points, the
expected number of events in an aggregation interval increases by one. Thus,
the last packet of each batch has a low waiting time in the peripheral queue
while there are no significant changes for the remaining packets. Therefore, the
average total processing time is decreased. In contrast, distributions with a
higher coefficient of variation lead to smoother curves and attain values that lie
between the aforementioned bends. For each distribution, there is an optimum
value for τ which minimizes the resulting mean processing time. Hence, the
model can be used by network operators in order to optimize the processing
times of their VNFs based on traffic characteristics observed in their particular
network.

13

0 50 100 150 200
=

0

0.2

0.4

0.6

0.8

1

p
b

pois
geo
nbin(c=2)
nbin(c=0.5)

,=0.93 ,=0.33

,=2

Figure 6: Effects of different aggregation interval lengths τ and normalized arrival rates α on
the packet loss probability pb.

5.1.2. Impact on Packet Loss

As described previously, the processing time increases with the number of
packets per second, because packets experience a waiting time at the central
queue. As the central queue is limited, packet loss occurs once this limit is
exceeded. In the following, we evaluate the average packet loss probability for
different sizes of the aggregation interval τ and distributions of the interarrival
time.

In Figure 6, the x-axis represents the length of the aggregation interval τ and
the y-axis displays the average packet loss probability. Different packet arrival
processes are highlighted by means of different line shapes and different values
for the normalized arrival rate α are denoted by their color. The presented
results are based on the same parameter combinations as in Figure 5.

Similar to the observations regarding the average processing time, the case
of α = 0.33 does not stress the system to a large enough extent, so that packet
loss does not occur. When the system is in a situation of overload with α = 2,
packet loss always occurs, but decreases for larger values of τ . As stated before,
choosing short aggregation intervals results in a higher interrupt rate and thus,
in more overhead. Hence, the CPU has even less time to actually process packets,
which leads to more congestion at the inner queue and finally, a larger packet
loss rate.

Furthermore, the packet loss probability depends on the arrival distribution.
In particular, the distribution with the lowest coefficient of variation leads to
the highest packet loss probability and vice versa. This is also true for α = 0.93.
This phenomenon can be explained with the effect of the arrival distribution on
the service time and the resulting overhead per packet. In case of high variance,
the arrival process is burstier, resulting in more packets per batch. However, the
heavy tail of the corresponding distributions also leads to longer service times
due to a higher probability of very long interarrival times between batches. This,
in turn, results in longer times between consecutive batches Φ. Consequently,
only a single interrupt is triggered for such a batch. If, on the other hand, the

14

0 200 400 600
Processing Time

0

0.2

0.4

0.6

0.8

1
C

D
F

pois geo nbin(c=0.5) nbin(c=2)

= = 10

= = 100

= = 200

(a) Low normalized arrival rate (α = 0.66).

0 200 400 600 800
Processing Time

0

0.2

0.4

0.6

0.8

1

C
D

F

pois geo nbin(c=0.5) nbin(c=2)

= = 100

= = 10

= = 200

(b) High normalized arrival rate (α = 0.93).

Figure 7: Processing time distributions for different aggregation interval lengths and different
interarrival distributions.

variance of the packet interarrival time is low, batches contain fewer packets and
service times are shorter. Thus, more interrupts are triggered during the same
time, resulting in more overhead per processed packet.

5.2. Processing Time Distributions for Varying Aggregation Intervals

In addition to studying the influence of the length of the aggregation interval
τ on the mean processing time, we also investigate its effect on the distribution
of the processing time. Figure 7 shows the distribution of the processing time D
for different τ and normalized arrival rates α.

Regarding low expected system load, Figure 7(a) shows the processing time
distribution for three different aggregation intervals, i.e, τ = 10, 100, 200µs, and
four different arrival distributions. In this case it can be seen that the processing
time distribution is clustered by the selected aggregation interval length. This
indicates that, due to spare computational resources, the system can handle
the variation of the number of incoming packets up to a certain point. This is
supported by the fact that the two distributions with low coefficients of variation,
i.e. pois and nbin(c = 0.5), result in similar processing time distributions with
a small variance in values. The two distributions with a higher coefficient of
variation, geo and nbin(c = 2), on the other hand result in processing time
distributions with a larger range of values. In particular, the significantly higher
variance observed for nbin(c = 2) can lead to increased processing times. This
can be explained by the high variation of the batch size.

Finally, the figure confirms the continuous increment of the mean processing
time with growing τ in low load scenarios.

Observing the processing time distribution in a scenario with high expected
system load, i.e., a normalized arrival rate of α = 0.93 yields entirely different
results, as shown in Figure 7(b). First, the previously observed clusters are,
although still present, less significant. Furthermore, it can be seen that an
aggregation interval of τ = 10 now results in the highest processing times. This
can be explained by the overhead resulting from short aggregation intervals
that, especially in the high load scenario, leads to prolonged processing times.
As the CPU is already busy handling the actual workload, the overhead hits
harder in this scenario and thereby the processing times are significantly increased.

15

0 2 4 6 8 10
=

E[A]

0

0.1

0.2

0.3

0.4

0.5

K
S
D

()
,
R

a
)

pois
geo
nbin(c=2)
nbin(c=0.5)

Figure 8: Kolmogorov-Smirnov distance between the distributions of the recurrence time
of packet interarrivals, Ra, and the actual distribution of the time between the end of an
aggregation and the next packet arrival, Φ.

Moreover, it can again be observed that the distributions featuring low coefficients
of variation also result in a processing time distribution showing lower variance.
The same holds true for the two distributions with a high coefficient of variation,
as these result in processing time distributions with a high range of values.

5.3. Impact of the Recurrence Time Assumption

In the proof of Theorem 1, we show that the time between the end of an
aggregation interval and the next packet arrival converges to the recurrence
time of the packet interarrival time as the length of the aggregation interval τ
approaches infinity. Hence, for large enough τ , the expected error that is caused
by assuming φ(k, τ) = ra(k) converges to zero. In this section, we quantify
the errors that are caused by using this assumption in the context of realistic
parameter combinations.

Figure 8 displays the difference between the distributions φ(k, τ) and ra(k)
for different combinations of τ , E[A], and packet interarrival distributions. In
this case, the difference is expressed in terms of the Kolmogorov-Smirnov dis-
tance (KSD) between the corresponding cumulative distribution functions and is
shown on the y-axis. On the x-axis, the ratio between τ and E[A] represents the
average number of events during an aggregation interval. For these evaluations,
the mean interarrival time was chosen so that E[A] ∈ {10, 20, 30, 40, 50} and the
length of the aggregation interval τ ranged from 2 to 200.

Due to the property of memorylessness of the geometric distribution, the
equality φ(k, τ) = ra(k) is always true for this distribution, resulting in a
constant KSD of zero. For the remaining distributions, the KSD equals zero as
soon as more than an average of seven arrivals fit into an aggregation interval.
Since the negative binomial distribution has a higher variance than the Poisson
distribution, the former converges faster as the end of an aggregation interval
becomes equivalent to an independent observer more quickly. On the other
hand, it can be seen that the negative exponential distribution with a coefficient

16

of variance of c = 2 takes longer to converge as the same distribution with a
coefficient of variance of c = 0.5. This indicates that the shape of the distribution
also influences the convergence process. The different allocation of probability
mass among the possible values of the distribution also influences the speed of
convergence. Hence, the variance of a distribution in general is not sufficient to
make an absolute statement about the speed of the convergence, but can be used
as a reliable indicator towards the behavior of the process. Finally, interarrival
times that follow a Poisson distribution cause the slowest convergence due to their
low variance and narrow range of attained values. Additionally, an alternating
behavior of the KSD can be observed in case of the Poisson distribution when
τ is an integer multiple of E[A]. This causes φ(k, τ) to be more similar to a(k)
rather than ra(k).

Figure 8 shows the difference between the distributions φ(k, τ) and ra(k).
However, we are more interested in the impact on the accuracy of the model’s
prediction of performance indicators that is caused by using the abovementioned
assumption. Therefore, we show the effects regarding the mean processing
time and the packet loss probability in Figure 9. In particular, it displays an
overview of the difference between the actual values and the values when using
the assumption that the time between the end of an aggregation interval and
the recurrence time of packet arrivals follow the same distribution. In case
of the mean total processing time, the difference is normalized by dividing it
by the actual mean value, whereas the difference between the two packet loss
probabilities is guaranteed to range between zero and one. Again, different
parameter combinations regarding τ , E[A], and packet interarrival distributions
are used. Additionally, we vary the mean packet processing time at the CPU,
E[B], in order to achieve different levels of system load ρ (cf. Equation 11). In
particular, the following parameter combinations are used.

� The length of the aggregation interval τ is set to values in {100, 150, . . . , 500}.

� The mean interarrival time E[A] is chosen so that the ratio τ
E[A] ranges from

1 to 10. Like in all presented evaluations, four interarrival distributions
are used, i.e., pois, geo, nbin(c = 0.5), and nbin(c = 2).

� The processing time at the CPU follows a Poisson distribution whose mean

value E[B] is varied so that the normalized arrival rate E[B]
E[A] attains values

in {0.03, 0.06, . . . , 1.02}.

Both, Figures 9(a) and 9(b) present the corresponding maximum error as a
function of the system load ρ, which is represented by the x-axis, and the ratio
between τ and E[A] on the y-axis. The color of each cell denotes the error, with
dark blue cells indicating an error of zero and light yellow colored cells indicating
the largest observed error. Qualitatively, both figures show a similar behavior.
That is, the observed error is zero in most cases except for those where ρ is high,
i.e., 70 % and larger, and the expected number of arrivals during an aggregation
interval is low, i.e., below four. In case of the mean total processing time, the

17

0 0.2 0.4 0.6 0.8 1
;

2

4

6

8

10
=

E
[A

]

0

0.02

0.04

0.06

0.08

(a) Error w.r.t. average processing time.

0 0.2 0.4 0.6 0.8 1
;

2

4

6

8

10

=
E

[A
]

0

0.01

0.02

0.03

0.04

(b) Error w.r.t. packet loss probability.

Figure 9: Impact of the recurrence time assumption on E[D] and pb.

largest relative error is at around 9 %, while the largest deviation in terms of
the packet loss probability is at around 5 %.

Since the goal of interrupt mitigation mechanisms is to avoid frequent in-
terrupts, the ratio between τ and E[A] is usually high. Furthermore, network
operators tend to dimension their infrastructure for average load levels far below
90 % [8]. Hence, the results shown in Figures 9(a) and 9(b) confirm that in
the context of realistic parameter combinations, using the significantly more
efficient calculation of ra(k) instead of φ(k, τ) does not impact the accuracy of
the model’s predictions. At the same time, the computation time can be reduced
by a factor of up to 22 in the context of the investigated cases.

6. Conclusion

NFV has many appealing advantages such as easy scale-up or scale-down of
compute resources as well as scale-out or scale-in of virtual machines among the
available physical hardware. This high flexibility, however, comes at the expense
of performance, i.e., lower packet throughput and longer processing delays. To
understand the impact of performance-relevant parameters on these metrics, and
in order to allow an adequate dimensioning and a proper performance prediction,
appropriate performance models are required.

The primary contribution of this article is an analytical model for virtual-
ized network functions running in software on commodity hardware. Given the
characteristics of the network traffic and the utilized VNFs, this model allows net-
work administrators to identify optimal parameters for the interrupt moderation
mechanisms that are used by modern operating systems and network interface
cards. A central benefit is that the model supports arbitrary distributions for
the packet interarrival and packet service times. Hence, administrators only
need to determine empirical distributions and do not need to fit observed values
to a predefined set of known distributions.

Furthermore, we show that approximating the time between consecutive
batches with the recurrence time of the interarrival process only introduces a

18

negligible error while providing a significant speedup when performing numerical
evaluations of the model. This provides network administrators with the ability
to quickly optimize their system parameters in a dynamic fashion when network
conditions change over time.

We perform an in-depth evaluation of the model by investigating the impact of
different load levels, aggregation interval durations, and interarrival distributions
on processing times and packet loss ratios. The proposed model also allows the
computation of distributions of these performance indicators, i.e., it is possible
to determine mean values, standard deviations, as well as quantiles. Therefore,
the presented model can be used by administrators to ensure an appropriate
operation of network functions based on their needs. The model itself may be
generalized to take into account acceleration techniques like Intel’s DPDK or
Cisco’s Vector Packet Processing (VPP). This allows comparing heterogeneous
network function implementations and selecting the appropriate technique for a
specific use case. Furthermore, economic trade-offs between operational metrics
and corresponding costs can be investigated.

Acknowledgment

This work has been performed in the framework of the CELTIC EUREKA
project SENDATE-PLANETS (Project ID C2015/3-1), and it is partly funded by
the German BMBF (Project ID 16KIS0474). The authors alone are responsible
for the content of the paper. Additionally, the authors would like to thank
Michael Schönlein for assisting with the validation of the presented proofs.

Appendix A. Proofs

Lemma 1. Let A be independent and identically distributed (i.i.d.) interarrival
times with E[A] > 0. Then, the expected number of renewal events during a finite
interval t <∞, defined by the renewal function m(t), is also finite, i.e.,

m(t) <∞.

Proof of Lemma 1. Let A be the RV that describes the interarrival time
between consecutive events with E[A] > 0. The corresponding interarrival times
are denoted as Ai for i ∈ N. Let now A′ generate the following interarrival times.

A′i =

{
0 if Ai = 0

1 otherwise
.

We then get
∀i A′i ≤ Ai.

Consequently, we can define the number of events during t with arrivals according
to A′ as

N ′(t) = max{n : A′1 +A′2 + ...+A′n ≤ t}.

19

Equally, the same can be defined for the original distribution of interarrival times
that are based on A.

N(t) = max{n : A1 +A2 + ...+An ≤ t}.

It follows that
N(t) ≤ N ′(t)

and consequently

E[N(t)] ≤ E[N ′(t)]. (A.1)

Let now X = N ′(1) be the number of events in an interval of length 1. We get

E[X] =
∞∑
k=1

kP(A′ < 1)k−1 P(A′ ≥ 1) = P(A′ ≥ 1)

∞∑
k=1

kP(A′ < 1)k−1 =

=
P(A′ ≥ 1)

P(A′ < 1)

∞∑
k=0

kP(A′ < 1)k.

Since P(A′ < 1) is a probability, P(A′ < 1) ≤ 1 holds and thus, we can apply
the formula for the geometric progression, arriving at

P(A′ ≥ 1)

P(A′ < 1)

P(A′ < 1)

(1− P(A′ < 1))2
=

P(A′ ≥ 1)

P(A′ ≥ 1)2
=

1

P(A′ ≥ 1)
.

Since P(A′ ≥ 1) > 0, it follows that E[X] <∞. We can now extend the interval
to an arbitrary length t <∞ and get

E[N ′(t)] = tE[X].

We can thus conclude that E[N ′(t)] <∞. Using A.1 we finally arrive at

m(t) = E[N(t)] ≤ E[N ′(t)] <∞

Lemma 2. We consider the renewal function m(t) which is used to determine
the average number of renewals during time t. If the mean interarrival time,
E[A], is greater than 0, the following relationship holds for the renewal function
m(t):

m(τ + k) =

∞∑
n=1

f (n)(τ + k) +m(τ + k − 1).

Proof of Lemma 2. For positive arrivals that are i.i.d., the renewal function
m(t) at t = τ + k is defined as

m(τ + k) :=

∞∑
n=1

F (n)(τ + k).

20

Using the relationship between the cumulative distribution function F and
the probability density function f , we get

∞∑
n=1

F (n)(τ + k) =

∞∑
n=1

τ+k∑
i=0

f (n)(i).

From the proof of Lemma 1, we conclude that m(τ + k) <∞. Since F (n)(t)
is a cumulative distribution function, F (n)(τ + k) ≥ 0 holds as well. Therefore,
the convergence of m(τ + k) is absolute. Hence, the order of the summation can
be switched, i.e.,

∞∑
n=1

τ+k∑
i=0

f (n)(i) =

τ+k∑
i=0

∞∑
n=1

f (n)(i).

Finally, the first element of the outer sum can be separated while the remain-
ing elements form m(τ + k − 1):

τ+k∑
i=0

∞∑
n=1

f (n)(i) =

∞∑
n=1

f (n)(τ+k)+

τ+k−1∑
i=0

∞∑
n=1

f (n)(i) =

∞∑
n=1

f (n)(τ+k)+m(τ+k−1).

Proof of Theorem 1. Using the definition of φ(k, τ), we obtain

lim
τ→∞

φ(k, τ) = lim
τ→∞

(
P(A > k)

∞∑
n=1

f (n)(τ + k)

)
.

Furthermore, the relationship shown in the proof of Lemma 2 allows repre-
senting the sum in terms of the renewal function m(t).

lim
τ→∞

(
P(A > k)

∞∑
n=1

f (n)(τ + k)

)
= P(A > k) lim

τ→∞
(m(τ + k)−m(τ + k − 1)) .

Finally, using Blackwell’s renewal theorem, we can show the desired equality
for non-arithmetic inter-renewal distributions as well as arithmetic distributions
with a span equal to 1:

P(A > k) lim
τ→∞

(m(τ + k)−m(τ + k − 1)) = P(A > k)
1

E[A]
= ra(k).

21

[1] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast userspace packet
processing. In 11th ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ANCS ’15, pages 5–16, Washington, DC,
USA, 2015. IEEE Computer Society.

[2] M. Chiosi et al. Network Functions Virtualisation - Introductory White
Paper. http://portal.etsi.org/NFV/NFV_White_Paper.pdf, 2012.

[3] Cisco Systems and Intel Corporation. NFV Partnership. Joint
Whitepaper, http://www.intel.com/content/dam/www/public/us/en/

documents/white-papers/cisco-nfv-partnership-paper.pdf, 2015.

[4] Steffen Gebert, Thomas Zinner, Stanislav Lange, Christian Schwartz, and
Phuoc Tran-Gia. Discrete-Time Analysis: Deriving the Distribution of
the Number of Events in an Arbitrarily Distributed Interval. Techni-
cal Report 498, June 2016. Available online: https://www3.informatik.
uni-wuerzburg.de/TR/tr498.pdf.

[5] Steffen Gebert, Thomas Zinner, Stanislav Lange, Christian Schwartz, and
Phuoc Tran-Gia. Performance modeling of softwarized network functions
using discrete-time analysis. In 28th International Teletraffic Congress
(ITC), Würzburg, Germany, 2016.

[6] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Network
function virtualization: Challenges and opportunities for innovations. IEEE
Communications Magazine, 53(2):90–97, Feb 2015.

[7] Intel. Intel Data Plane Development Kit (DPDK). http://dpdk.org.

[8] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski,
Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu,
et al. B4: Experience with a globally-deployed software defined wan. ACM
SIGCOMM Computer Communication Review, 43(4):3–14, 2013.

[9] Michael Jarschel, Thomas Zinner, Tobias Hoßfeld, Phuoc Tran-Gia, and
Wolfgang Kellerer. Interfaces, Attributes, and Use Cases: A Compass for
SDN. IEEE Communications Magazine, 2014.

[10] Stanislav Lange, Anh Nguyen-Ngoc, Steffen Gebert, Thomas Zinner, Michael
Jarschel, Andreas Köpsel, Marc Sune, Daniel Raumer, Sebastian Gal-
lenmüller, Georg Carle, et al. Performance benchmarking of a software-based
LTE SGW. In Network and Service Management (CNSM), 2015 11th In-
ternational Conference on, pages 378–383. IEEE, 2015.

[11] Robert Love. Linux Kernel Development. Addison-Wesley Professional, 3rd
edition, 2010.

[12] David Manfield, Phuoc Tran-Gia, and Herbert Jans. Modelling and perfor-
mance of inter-processor messaging in distributed systems. Perform. Eval.,
7, 1987.

22

[13] Joao Martins, Mohamed Ahmed, Costin Raiciu, et al. ClickOS and the
art of network function virtualization. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14), pages 459–473,
Seattle, WA, April 2014. USENIX Association.

[14] Luigi Rizzo. netmap: A novel framework for fast packet I/O. In 21st
USENIX Security Symposium (USENIX Security 12), pages 101–112, Belle-
vue, WA, August 2012. USENIX Association.

[15] Sakir Sezer, Sandra Scott-Hayward, and Pushbinder Chouhan et al. Are
we ready for sdn? implementation challenges for software-defined networks.
IEEE Communications Magazine, 51(7):36–43, July 2013.

[16] Phuoc Tran-Gia. Zeitdiskrete Analyse verkehrstheoretischer Modelle in
Rechner- und Kommunikationssystemen - 46. Bericht über verkehrstheo-
retische Arbeiten, 1988.

[17] Phuoc Tran-Gia. Discrete-time analysis technique and application to usage
parameter control modelling in ATM systems. In 8th Australian Teletraffic
Research Seminar, Melbourne, Australia, December 1993.

23

