
Server and Content Selection for MPEG DASH Video
Streaming with Client Information

Florian Wamser, Ste�en Höfner, Michael Seufert, Phuoc Tran-Gia
Chair of Communication Networks, University of Würzburg, Würzburg, Germany

{wamser,hoefner,seufert,trangia}@informatik.uni-wuerzburg.de

ABSTRACT
In HTTP adaptive streaming (HAS), such as MPEG DASH,
the video is split into chunks and is available in di�erent
quality levels. If the video chunks are stored or cached on
di�erent servers to deal with the high load in the network
and the Quality of Experience (QoE) requirements of the
users, the problem of content selection arises. In this paper,
we evaluate client-side algorithms for dynamically selecting
an appropriate content server during DASH video streaming.
We present three algorithms with which the DASH client
itself can determine the most appropriate server based on
client-speci�c metrics, like actual latency or bandwidth to
the content servers. We evaluate and discuss the proposed
algorithms with respect to the resulting DASH streaming
behavior in terms of bu�er levels and quality level selection.
ACM Reference format:
Florian Wamser, Ste�en Höfner, Michael Seufert, Phuoc Tran-Gia.
2017. Server and Content Selection for MPEG DASH Video Stream-
ing with Client Information. In Proceedings of Internet QoE, USA,
2017, 6 pages.
DOI: 10.1145/3098603.3098607

1 INTRODUCTION
HTTP adaptive streaming (HAS), standardized by MPEG as
Dynamic Adaptive Streaming over HTTP (DASH), is one of
the most important streaming approaches in today’s Inter-
net. The market leaders YouTube and Net�ix decided to go
for DASH in early 2013 [8] and late 2015 [9], respectively.
The reason for this is plain obvious: the heavy and propri-
etary Flash browser plug-in can be avoided and the vendor-
independent HTML5, coupled with adaptive and client spe-
ci�c video streaming, o�ers itself as a future-proof, open-
source, and widely supported solution.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
Internet QoE, USA
© 2017 ACM. 978-1-4503-5056-3/17/08. . . $15.00
DOI: 10.1145/3098603.3098607

MPEG DASH is gaining momentum, however, the high
popularity and the rising user demands pose severe chal-
lenges for DASH and its underlying architecture. With DASH,
the video �les are split up in a sequence of small �le chunks,
that are downloaded on demand from the streaming server.
The chunks are stored in various quality levels, e.g., di�erent
resolutions and formats, on the content server and are de-
scribed in a manifest �le, which is downloaded by the client
at the beginning of the streaming session.

In today’s approaches, the video chunks are almost always
stored on the same content server, which is usually only fully
replicated for load balancing purposes. Due to today’s load
situation and the required proximity of the video content
to the user, full replication of all DASH video chunks on all
servers is impractical and not useful from the energy and
resource consumptions’ point of view. Instead, it is desirable
to distribute the individual video chunks on di�erent servers,
so that, for example, low resolution chunks of short videos
are stored in servers in mobile networks (as many smart-
phone users access short clips of medium quality), while
high resolution video content is cached within �xed “eyeball”
networks.

If content is stored redundantly and can be requested
in di�erent qualities on di�erent servers, the problem of
content selection arises. Client-based server selection is one
possible solution to counteract the problem [10]. The idea
behind this is that the client determines and utilizes the
best available connection to the content servers in order to
reach the highest Quality of Experience (QoE). A so-called
entrance server provides a list of available hosts and quality
levels to the client, using a DASH manifest �le, i.e., a Media
Presentation Description (MPD) �le. The client then uses
an individual server selection algorithm to determine which
content server will be requested for content. The advantage
is that the server selection can be based on client-speci�c
metrics to reach a high QoE, e.g., client properties, latency,
bandwidth, and availability.

In this paper, we evaluate algorithms for selecting the
streaming content server for DASH video streaming. We
present three algorithms that determine the content server
due to di�erent metrics, namely (1) a latency-based algo-
rithm, which takes into account the current client-server

1

c ©
A

C
M

20
17

.
T

hi
s

is
th

e
au

th
or

’s
ve

rs
io

n
of

th
e

w
or

k.
It

is
po

st
ed

he
re

fo
r

yo
ur

pe
rs

on
al

us
e.

N
ot

fo
r

re
di

st
ri

bu
tio

n.
T

he
de

fin
iti

ve
V

er
si

on
of

R
ec

or
d

w
as

pu
bl

is
he

d
in

Pr
oc

ee
di

ng
s

of
th

e
W

or
ks

ho
p

on
Q

oE
-b

as
ed

A
na

ly
si

s
an

d

M
an

ag
em

en
t

of
D

at
a

C
om

m
un

ic
at

io
n

N
et

w
or

ks
(I

nt
er

ne
t

Q
oE

’1
7)

,
ht

tp
://

dx
.d

oi
.o

rg
/1

0.
11

45
/3

09
86

03
.3

09
86

07
.

http://dx.doi.org/10.1145/3098603.3098607

Internet QoE, 2017, USA F. Wamser et al.

latency, (2) a bandwidth-based approach, which probabilisti-
cally selects the server with the highest bandwidth, and (3)
a weighted bandwidth-based algorithm, which emphasizes
the probability of the best server. Eventually, we compare
the algorithms to a baseline streaming, and thus, provide
insights into the performance of HAS with client-side server
selection algorithms. Based on the obtained results from the
performance evaluation, the advantages and disadvantages
of the di�erent algorithms are discussed.

The rest of the work is structured as follows. Related work
referring to video streaming is described in Section 2. The
concept for client-based server selection is presented in Sec-
tion 3 as well as the di�erent selection algorithms. In Sec-
tion 4, the results are discussed and evaluated. Conclusions
are �nally given in Section 5.

2 RELATED WORK
In section, we present work that is related to adaptive video
streaming and try to highlight similarities and di�erences to
our work. The DASH Industry Forum (DASH-IF) is working
on implementation guidelines for DASH with H.264/AVC
and H.265/HEVC [2]. In order to improve DASH, the authors
of [6] show the bene�ts of using Scalable Video Coding
(SVC) for a DASH environment. They conclude that using
SVC would lead to a better experience for users and a higher
number of satis�ed users. Comparisons of di�erent stream-
ing solutions can be found in [1, 4, 7]. In [7], Seufert et
al. present a survey on the quality of experience of HTTP
Adaptive Streaming and compare the di�erent solutions to
adaptive video streaming. They also give an overview of
the current state of the art and recent developments. In [1],
the authors focus on the rate-adaptation mechanisms of
adaptive streaming and evaluate two commercial players
(i.e. Smooth Streaming by Microsoft and Net�ix) and one
open source player (OSMF). In their work, they identify dif-
ferences between these players.In [4], Hoßfeld et al. present a
user-centric evaluation of adaptation logics for HTTP Adap-
tive Streaming. Therefore, they compare existing algorithms
to their own SVC based solution, regarding user achieved
quality of experience. They are able to show that their own
mechanism outperforms the other algorithms in terms of
video quality, switching frequency, and utilization of the
available resources for the investigated network scenario.
While adaptive streaming is related to the client side, often
mechanisms such as load balancing are active on the server
side. For this purpose, data and content are distributed in a
CDN network. By DNS name resolution, the requests can be
distributed to the various CDN servers to avoid overloaded
servers. Our algorithms proposed in the paper go further
than simple CDN load balancing solutions since they take
into account the nature of the content. Thus a �ne-granular

Figure 1: Concept of client side server selection.

decision can be made. The disadvantage of our solution is
that it is more complex to implement.

3 CONCEPT FOR CLIENT-BASED SERVER
SELECTION

We now brie�y cover the concept of client side server selec-
tion that is featured in this work [10]. We depict a typical
server selection scenario in Figure 1. New content chunks
are registered at a master or entrance server so that this
server always owns a list of all available content (1). This
server then lists the chunks in a manifest �le. This manifest
�le contains the IP addresses as well as optional information
regarding the instances, e.g. available quality levels of the
provided content. The master or entrace server is the only
new instance that must be added to the server side. It can be
implemented as a logical instance on several physical hosts.
It knows all content servers and builds the manifest �les for
the clients. Once a client connects to the service, it will �rst
request the manifest �le from the entrance server (2). There-
after, the client can utilize several client side metrics (3), e.g.
latency, available bandwidth or display resolution, to select
the most appropriate content server. In the last step (4), the
client establishes a connection to the most appropriate host
based on its own measurements. To ensure that the optimal
host is selected at all times, the client can repeat steps (3)
and (4) periodically.

We now introduce three client side server selection algo-
rithms. These algorithms distribute requests to all content
servers to measure and dynamically select the best server.
They complement the quality adaptation logic, which addi-
tionally runs after the server selection, and is explicitly not
in the focus of this work.

Latency-based. The �rst algorithm utilizes the latency
between client and content servers as a metric for the selec-
tion of the content server. This approach enables the client
to detect server outage or congestion on the current network
link. As input, the Bandwidth algorithm requires a manifest
�le, which contains the IP addresses of the available content
servers. For the latency estimation, we make use of the ping
tool, which is standard for most Unix distributions. With

2

Server and Content Selection for MPEG DASH Video Streaming with Client Information Internet QoE, 2017, USA

this tool, we periodically measure the latency to each of the
content servers available in the manifest �le and set the cur-
rent host for the video downloads accordingly. In order to
verify the correctness of latency estimation functionality,
we performed an adequate amount of measurements with
our latency algorithm. The algorithm proved to estimate
the correct latency with only small deviations for higher
latencies.

Bandwidth-based. The idea behind this server selection
algorithm is to passively measure the current bandwidth of
the available content servers, whenever a video chunk is
downloaded, to select the most appropriate content server.
The algorithm is called whenever a new video chunk is re-
quested by the DASH player and determines which content
server is to be used as host for the current chunk download.
The behavior of the algorithm can be divided in two phases.
In the �rst phase, the algorithm simply returns the addresses
of content servers, which have not been used by the client
as host yet. This ensures that the available bandwidth of
each of the content servers is measured once. If the avail-
able bandwidth of all content servers has been measured,
the second phase starts. In the second phase, whenever the
algorithm is called, it assigns each of the content servers a
selection probability, which is equal to the content server’s
individual bandwidth divided by the sum of the bandwidths
of all available content servers. The actual server for the
currently requested video chunk is then selected randomly
according to the previously assigned selection probability.
After the download of a video chunk has ended successfully,
the current bandwidth of the associated content server is
updated to the newly measured value.

Weighted Bandwidth-based. The weighted bandwidth-
based algorithm was developed as an improvement to the
standard bandwidth algorithm. Therefore, we altered the
previously introduced bandwidth algorithm in such a manner
that the currently best content server is preferred with a
speci�c probability. This probability will be referred to as
weight in the following. For this purpose, a uniform random
number Y with 0 Y < 1 is additionally drawn. If it is
smaller than the weight, the currently best content server
is selected, else the normal algorithms is applied. The idea
behind this is to prevent the algorithm from selecting an
unfavorable content server too frequently. Moreover, this
solution is supposed to be suited to deal with a higher number
of available content servers since the participation of the best
available server in the overall bandwidth decreases as the
number of content servers increases.

4 RESULTS
In this section, the scenario to evaluate the di�erent server
selection algorithms is described. We chose the well known
open-source movie "Big Buck Bunny" (https://peach.blender.

org/) as video content. This video clip was converted in seven
di�erent quality levels and divided in 158 video chunks with
a playtime of around four seconds each. The bit rate ranges
from 600 Kbps for Quality 0 to 8000 Kbps for Quality 6:
(0): 640x360, 600 Kbps, (1): 640x360, 1000 Kbps, (2): 854x480,
1400 Kbps, (3): 1280x720, 2000 Kbps, (4): 1920x1080, 3500 Kbps,
(5): 2560x1440, 4500 Kbps, (6): 3840x2160, 8000 Kbps.

In the evaluation scenario, we instantiated two indepen-
dent content servers with a limited upload bandwidth of
8 Mbps each. Additionally, we used multiple download clients
to continuously generate background tra�c between 1 Mbps
and 7 Mbps, in order to simulate server load. Every 20 s,
the total background tra�c of each server is increased or
decreased by 1 Mbps in an anti-cyclical pattern, which is de-
picted in Figure 2. Server 1 (blue) starts to o�er 1 Mbps and
its available bandwidth increases to 7 Mbps, which is reached
after 120 s. Afterwards, the available bandwidth is decreased
and reaches 1 Mbps at 240 s. In the same interval, Server 2
(red) starts with an available bandwidth of 7 Mbps, which is
decreased to 1 Mbps at 120s, and again increased to 7 Mbps
at 240 s. This pattern is periodically repeated until the end of
the video streaming. The �uctuations of the ping times were
additionally measured. The measured latency is very low
up to a load of 8 Mbps, since the bandwidth limitation does
not come to bear. From 8 Mbps, the ping goes to an average
value of 807ms in our scenario. The video is available on both
servers, and we use a single client with a TAPAS [3] player
to stream the video. As the focus of this work is not on the
adaptation logic of the video streaming player, but rather on
the server selection mechanism, we use the native TAPAS
algorithm as adaptation logic. It continuously monitors the
bu�ered playtime of the video and the available bandwidth
of the content server [5]. These values are then compared to
the available quality levels and the most appropriate quality
level is chosen in order to maintain a high level of bu�ered
playtime.

4.1 Baseline Results
In the baseline scenario, the DASH client only requests chunks
from a single content server. We selected Server 1 and evalu-
ate 50 streaming sessions in this scenario. Figure 3 presents
the playtime of the video on the x-axis, the bu�ered play-
time in seconds on the left y-axis and the level of the video
resolution on the right y-axis. The presented results show
the mean bu�ered playtime (green) and mean quality level
(pink) over the 50 streaming sessions including the 95% con-
�dence intervals. Generally, we can divide the streaming in
three main sections. The �rst section is an initial bu�ering
phase, in which the bu�ered playtime is quickly �lling up
to a maximum of 50 s. This bu�ering phase approximately
covers the �rst 80 s of playtime. In the next section until
about 580 s of playtime, the bu�er level �uctuates closely

3

Internet QoE, 2017, USA F. Wamser et al.

Time [sec]
0 60 120 180 240 300 360 420 480 540 600

Av
ail

ab
le

Ba
nd

wi
dt

h
[M

bit
]

0

1

2

3

4

5

6

7
Server 1 Server 2

Peak

Equal

Peak

Equal

Peak

Equal

Peak

Equal

Peak

Figure 2: Bandwidth pattern of each content server at
the evaluation scenario.

Pe
ak

Eq
ua

l

Pe
ak

Eq
ua

l

Pe
ak

Eq
ua

l

Pe
ak

Eq
ua

l

Pe
ak

Eq
ua

l

Pe
ak

Playtime [sec]
0 60 120 180 240 300 360 420 480 540 600

Bu
ffe

re
d T

im
e [

se
c]

0

10

20

30

40

50

60

Le
ve

l o
f V

ide
o R

es
olu

tio
n

0

1

2

3

4

5

Buffer Video Level

Figure 3: Video playback time versus bu�ered playtime
and quality level with the native TAPAS algorithm.

around its maximum value of 50 s. In the last section, all
video chunks have been downloaded successfully and the
bu�er level is consequently decreasing to zero.

In contrast to the bu�er level, which is mostly stable in the
second phase, the quality level is highly depending on the
available bandwidth of Server 1. It can be seen that the video
resolution reaches its maximum whenever Server 1 has a
peak in the available bandwidth, i.e., at 120 s, 360 s, and 600 s
of playtime. Analogously, the resolution is lowest, whenever
the available bandwidth reaches a trough, i.e. at 0 s, 240 s,
and 480 s of playtime. Note that the peaks and troughs of
the quality level are slightly shifted to the right compared
to the corresponding available bandwidth of Server 1. This
is caused by the fact that the adaptation is based on past
measurements, and the adaption logic aims to maintain a
stable video resolution as long as possible and avoid frequent
quality adaptation, which could negatively in�uence the
QoE.

4.2 Results for Latency- and
Bandwidth-based Server Selection

We now compare the baseline results to the results, in which
a latency- or bandwidth-based server selection is enabled. As
the initial bu�ering phase and the �nal de-bu�ering phase
are identical for each algorithm, we will only focus on the
speci�c interval between 240 s and 480 s of playtime, which
covers a complete bandwidth cycle for each of the two con-
tent servers.

Figure 4 shows the average bu�ered playtime and 95% con-
�dence intervals for 50 independent streaming runs for each
of the following algorithms: Native TAPAS (i.e., baseline)
adaptation logic (blue), latency-based server selection (red),
bandwidth-based server selection (brown). It can be seen,
that the latency-based server selection results in a similar
bu�er behavior around 45 s to 50 s as in the baseline scenario.
In contrast, the bu�er level of the bandwidth-based server
selection oscillates between 15 s and 37 s. Thereby, the bu�er
level reaches its maximum in the 20 s interval right before
the peaks in the available bandwidth, and generally mimics

the course of the maximum available bandwidth with a shift
of 20 seconds to the left.

Figure 4b shows the average quality level and 95% con�-
dence intervals for the same period. It can be seen that the
average quality level of the latency-based server selection lies
between 2 and 4 in this period with small con�dence intervals
when the available bandwidth of the content servers is equal.
During the bandwidth peaks, the con�dence intervals no-
tably increase. This shows that the latency-based algorithm
is not able to consistently select the most appropriate content
server, which results in a high variance of the selected video
resolution. The quality levels of the bandwidth-based server
selection periodically alternates between 3 and 5, similar to
the corresponding course of the bu�ered playtime. However,
the peak and trough intervals of the video quality are shifted
to the right by around 20 s in comparison to the maximum
available bandwidth, just like in the baseline scenario with
the native TAPAS algorithm.

In the following, we will discuss the behavior of the band-
width-based server strategy in detail for the interval from
320 s to 440 s. During this interval, the average quality level is
close to the naive TAPAS algorithm because Server 1 has the
highest available bandwidth in this time period. From 320 s
to 340 s, the average bu�ered playtime increases from 24 s to
31 s. In the same interval, the average quality level reaches a
trough at around 3.3, just as expected because both servers
o�ered equal bandwidth at 320 s. In the next interval of 20 s,
we would expect both the bu�ered playtime and the quality
level to increase because the available bandwidth on one
of the servers increases. However, only the average quality
level increases while the average bu�ered playtime does not
change at all. This e�ect is caused by the fact, that the band-
width algorithm is based on a randomized access strategy.
In this interval, the probability to choose the content server
with the lower available bandwidth is equal to 25 %, which
results in high download times for the current video chunk.
At the same time, the quality level is only adjusted when
the best available content server is chosen. This intensi�es
the negative e�ect on download time and the bu�er level.

4

Server and Content Selection for MPEG DASH Video Streaming with Client Information Internet QoE, 2017, USA

Pe
ak

Eq
ua

l

Pe
ak

Eq
ua

l

Playtime [sec]
240 300 360 420 480

Bu
ffe

re
d

Ti
m

e
[se

c]

0
5

10
15
20
25
30
35
40
45
50
55 Native Latency Bandwidth

(a) Comparison of bu�ered playtime.

Pe
ak

Eq
ua

l

Pe
ak

Eq
ua

l

Playtime [sec]
240 300 360 420 480

Le
ve

l o
f V

ide
o R

es
olu

tio
n [

se
c]

0

1

2

3

4

5
Native Latency Bandwidth

(b) Comparison of video quality level.

Figure 4: Comparison of the latency-based algorithm
and bandwidth-based algorithm.

This becomes even more visible in the interval from 360 s to
380 s, in which the di�erence in the available bandwidth of
the content servers is at its maximum, i.e., 7 Mbps at Server
1 and 1 Mbps at Server 2, while the average quality level
reaches the peak at 5. As we can see, the average bu�ered
playtime starts to decrease in this period, which is caused
by an unfavorable server selection.

Buffered Playtime [sec]
0 10 20 30 40 50

F(
x)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Native
Latency
Bandwidth

(a) CDF of bu�ered playtime.
Level of Video Resolution

0 1 2 3 4 5 6

F(
x)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Native
Latency
Bandwidth

(b) CDF of the quality level.

Figure 5: CDFs of streaming parameters for the native,
latency-, and bandwidth-based algorithms.

Over the whole course of the streaming, the bandwidth-
based server selection results in a much lover average bu�er
level than the other two algorithms. However, the average
quality level converges to the ideal curve resulting from the
available bandwidth in the system. This is con�rmed by the
CDFs of the bu�ered playtime and quality level, which are
presented in Figure 5a and 5b, respectively.

As shown in Figure 5a, the probability of the bu�ered
playtime being at a certain level between 0 s and 50 s is almost
linear for the bandwidth algorithm. Also, the probability of
the bu�er level being below 10 s is at around 11%, which
leads to frequent occurrences of unwanted playback stalling.
The bu�ered playtime of the other two algorithms however,
is higher than 27 s with a probability of 100% (the start and
end of the streaming are excluded). Thus, both algorithms
are una�ected by stalling. However, if we have a look at the
CDF of the quality level in Figure 5b, we can see that the
video level of the bandwidth algorithm is much better than
the quality level of the other algorithms. The quality level of
the bandwidth-based algorithm never drops below a value
of 3, while the probability of the other algorithms dropping
below a video resolution of 3 is at 18 % for the latency-based
server selection and 30% for the native algorithm. Also, the
probabilities of the quality level being at a high value is much
higher for the bandwidth algorithm. Thereby, the probability
of the quality level being equal to 4 or greater is at 82% for
the bandwidth-based server selection, while the best of the
two remaining algorithms only reaches a probability of 40%.

Although the latency-based server selection is able to
maintain a stable, high bu�er level like in the baseline sce-
nario, it is not able to signi�cantly improve the streamed
video resolution. In contrast, the bandwidth-based server se-
lection reaches generally higher quality levels, which nicely
re�ect the available bandwidth in the system. However, the
bu�er levels of this algorithm are much lower, which in-
creases the risk of stalling. This is caused by a poor selection
of the most bene�cial content server due to the random se-
lection algorithm, which is tied to the content servers’ partic-
ipation in the overall available bandwidth. The weighted
bandwidth-based server selection aims to overcome this
drawback by adding additional weight to the content server
with the highest available bandwidth. The corresponding
results will be discussed in the following section.

4.3 Results of the Weighted
Bandwidth-based Server Selection

Figure 6 compares the average temporal courses of bu�ered
playtime and the quality of the bandwidth-based algorithm
and the weighted bandwidth-based algorithm in the interval
from 240 s to 480 s. Three di�erent weights of 25 %, 50 %, 75 %
are considered. Figure 6a shows that the average bu�er level
increases in correlation with the chosen weight. Further-
more, for higher weights, also the amplitude of the bu�er
level �uctuation decreases. This can be explained by the fact
that the probability of probing a server with less available
bandwidth is decreased drastically by adding weight to the
current best server. For the temporal course of the quality
level in Figure 6b, we can observe that the courses of the
average quality levels for the di�erent weights are very close
to each other with overlapping con�dence intervals. This

5

Internet QoE, 2017, USA F. Wamser et al.

suggests that the resulting quality is not a�ected by the used
weight. However, it is essential that the weight is not set too
high in order to ensure a constant probing of the di�erent
content servers.

To sum up, the weighted bandwidth algorithm with a
weight of 50 % showed the best overall results for the rela-
tion between bu�er level and video resolution among all
server selection algorithms in the current scenario. To fur-
ther increase the consistency of the bu�er level, it is possible
to increase the weight at cost of the video resolution. Thus,
the performance of this algorithm highly depends on the
optimal selection of the weight parameter, such that in other
scenarios a di�erent weight might be more appropriate.

5 CONCLUSION
In this paper, distributed DASH video streaming is evaluated.
The idea is to develop a client side server selection mecha-
nism, which reliably selects the current best content server,
in order to optimally utilize the available bandwidth to en-
sure a high quality of the video playback. Therefore, a latency
based and a bandwidth based server selection strategy have
been developed. The results show that the latency based algo-
rithm is capable of maintaining a high bu�er level even if the
available bandwidth of the content servers is continuously
changing. However, it does not choose the content servers
e�cient enough to achieve a high video quality. In contrast

Pe
ak

Eq
ua

l

Pe
ak

Eq
ua

l

Playtime [sec]
240 300 360 420 480

Bu
ffe

re
d

Ti
m

e
[se

c]

0
5

10
15
20
25
30
35
40
45
50
55 Bandwidth 25Weight 50Weight 75Weight

(a) Comparison of bu�ered playtime.

Pe
ak

Eq
ua

l

Pe
ak

Eq
ua

l

Playtime [sec]
240 300 360 420 480

Le
ve

l o
f V

ide
o R

es
olu

tio
n [

se
c]

0

1

2

3

4

5
Bandwidth 25Weight 50Weight 75Weight

(b) Comparison of video quality level.

Figure 6: Comparison of the bandwidth-based algo-
rithm and the weighted bandwidth-based algorithm
with 25%, 50% and 75% weight.

to this, the bandwidth based algorithm always chooses a
video quality that matches the highest available bandwidth
among the content servers. However, the bu�er level of the
bandwidth algorithm was relatively low during the video
playback, which may lead to frequent playback interruptions.
This is caused by frequent probing of disadvantageous con-
tent servers. Thus, the client receives less bandwidth than
required. As a consequence, the bandwidth algorithm was ex-
tended by a weighted server probing system, which reduces
the probing frequency of disadvantageous content servers.
The evaluation of the improved bandwidth based selection
algorithm with a high weight shows that it is capable of
maintaining decent bu�er values and a high video quality in
scenarios with high di�erences in the available bandwidth of
the content servers. For future work, we plan to enhance our
measurement scenario by adding multiple clients, di�erent
bandwidth patterns and more servers.

This work was partialy supported by German Research
Foundation (DFG) under Grant No. KE 1863/6-1, TR 257/41-1
and the H2020 INPUT (H2020-ICT-2014-1, Grant No. 644672).
REFERENCES
[1] Saamer Akhshabi, Ali C. Begen, and Constantine Dovrolis. 2011. An

Experimental Evaluation of Rate-adaptation Algorithms in Adaptive
Streaming over HTTP. In Second Annual ACM Conference on Multime-
dia Systems (MMSys ’11). ACM, USA, 157–168.

[2] DASH Industry Forum. 2015. Guidelines for Implementation: DASH-IF
Interoperability Points. (2015).

[3] Luca De Cicco, Vito Caldaralo, Vittorio Palmisano, and Saverio Mas-
colo. 2014. TAPAS: a Tool for rApid Prototyping of Adaptive Streaming
algorithms. In Workshop on Design, Quality and Deployment of Adap-
tive Video Streaming. ACM, 1–6.

[4] Tobias Hoßfeld, Michael Seufert, Christian Sieber, Thomas Zinner, and
Phuoc Tran-Gia. 2014. Close to Optimum? User-centric Evaluation
of Adaptation Logics for HTTP Adaptive Streaming. PIK - Praxis der
Informationsverarbeitung und Kommunikation 37 (2014).

[5] Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali C Be-
gen, and David Oran. 2014. Probe and adapt: Rate adaptation for
HTTP video streaming at scale. IEEE Journal on Selected Areas in
Communications 32, 4 (2014), 719–733.

[6] Yago Sánchez de la Fuente, Thomas Schierl, Cornelius Hellge, Thomas
Wiegand, Dohy Hong, Danny De Vleeschauwer, Werner Van Leek-
wijck, and Yannick Le Louédec. 2011. iDASH: improved dynamic
adaptive streaming over HTTP using scalable video coding. In Second
Annual ACM conference on Multimedia systems. ACM, 257–264.

[7] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner,
Tobias Hoßfeld, and Phuoc Tran-Gia. 2015. A Survey on Quality
of Experience of HTTP Adaptive Streaming. IEEE Communications
Surveys & Tutorials 17 (2015).

[8] Rajeev Tiwari. 2013. MPEG-DASH Support in Youtube.
(2013). http://streamingcodecs.blogspot.de/2013/01/
mpeg-dash-support-in-youtube.html

[9] Matt Trunnell. 2015. HTML5 Video is now supported
in Firefox. (2015). http://techblog.net�ix.com/2015/12/
html5-video-is-now-supported-in-�refox.html

[10] Florian Wamser, Michael Seufert, Ste�en Höfner, and Phuoc Tran-Gia.
2016. Concept for Client-initiated Selection of Cloud Instances for
Improving QoE of Distributed Cloud Services. In ACM SIGCOMM
Workshop, Internet-QoE. Florianópolis, Brazil.

6

