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Abstract—Cellular-network operators are becoming increas-
ingly interested in knowing the Quality of Experience (QoE)
of their customers. QoE measurements represent today a main
source of information to monitor, analyze, and subsequently
manage operational networks. In this paper, we focus on the
analysis of YouTube QoE in cellular networks, using QoE and
distributed network measurements collected in real users’ smart-
phones. Relying on YoMoApp, a well-known tool for collecting
YouTube smartphone measurements and QoE feedback in a
crowdsourcing fashion, we have built a dataset covering about
360 different cellular users around the globe, throughout the
past five years. Using this dataset, we study the characteristics
of different QoE-relevant features for YouTube in smartphones.
Measurements reveal a constant improvement of YouTube QoE
in cellular networks over time, as well as an enhancement
of the YouTube video streaming functioning in smartphones.
Using the gathered measurements, we additionally investigate
two case studies for YouTube QoE monitoring and analysis
in cellular networks: the machine-learning-based prediction of
QoE-relevant metrics from network-level measurements, and the
modeling and assessment of YouTube QoE and user engagement
in cellular networks and smartphone devices. Last but not least,
we introduce the YoMoApp cloud dashboard to openly share
smartphone YouTube QoE measurements, which allows anyone
using the YoMoApp smartphone app to get immediate access to
all the raw measurements collected at her devices.

Index Terms—Mobile Network Measurements; Quality of Ex-
perience; YouTube; Crowdsourcing; Machine Learning.

I. INTRODUCTION

Today, access to the Internet is primarily carried out through
cellular networks, and smartphones are the most common way
to consume Internet content, from web browsing and video
streaming to a plethora of novel services offered through
apps. The increase in the volume and heterogeneity of content
accessed in cellular networks and smartphones forces cellular-
network Internet Service Providers (ISPs) to improve their per-
formance monitoring and assessment capabilities, in particular
with respect to understand the performance as perceived by
their customers. The Quality-of-Experience (QoE) paradigm
permits to understand and assess the functioning of networks
and services from the eyes of the end user. QoE-based network
measurements represent today a main source of information
for general network operation and management.

In this paper, we address the problem of YouTube-QoE
monitoring and analysis in cellular networks following a data-
driven approach, by analyzing a dataset of crowdsourced
measurements on YouTube QoE, passively collected in real
users’ smartphones. According to the official statistics of

YouTube, more than half of YouTube views today come from
smartphone devices, thus the relevance of our study.

The dataset is built from measurements collected with the
YoMoApp tool [1], an app that we have conceived in the
past to monitor network and QoE-relevant metrics related to
YouTube directly at the smartphone. YoMoApp is publicly
available and can be directly installed through the Google Play
Store. Using YoMoApp, we collected measurements related to
more than 3000 YouTube sessions worldwide, streamed on 70
different cellular-network providers to more than 360 differ-
ent customers, between 2014 and 2018. The YoMoApp tool
passively gathers multiple QoE-relevant metrics and network-
performance indicators related to YouTube, including mea-
surements at the player side (e.g., stalling events, changes in
video resolution, initial delay), the network side (throughput,
downlink/uplink bytes, radio access technology, etc.), as well
as at the user side, retrieving user feedback through QoE
surveys displayed by the app after completion of a session.

The analysis of this dataset reveals interesting findings
on the QoE of YouTube in cellular networks along the stud-
ied time period, including: (i) a sustained QoE improvement
of YouTube streaming in smartphones, (ii) an enhanced
performance of the YouTube video streaming protocol,
and (iii) a positive impact of these improvements on the
engagement of the users watching YouTube videos, with an
increase of over 30% on the video watching time.

Our work is not only unique in terms of the richness of the
measurements we analyzed, but also in terms of the different
perspectives from which we look at the overall problem. In
particular, we additionally investigate two problems linked to
the monitoring and analysis of YouTube mobile QoE: first, we
build machine-learning-based prediction models to estimate
application-layer QoE-related metrics collected by YoMoApp
from network-layer measurements only, which allows to ex-
tend and generalize the YouTube-mobile monitoring approach
without requiring users to actually use YoMoApp. Predictions
also include user engagement as a paramount target. Second,
we study the performance of multiple QoE-assessment models
previously proposed in the literature and standards, contrasting
their outcomes to the real user feedbacks.

Our last contribution is on opening the monitoring platform
offered by YoMoApp to the network measurement community.
In particular, we introduce the YoMoApp cloud dashboard
for openly sharing the full, raw measurements retrieved by
YoMoApp on registered devices. In a nutshell, through this
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dashboard, one can register a YoMoApp instance installed at
an Android device and get instant access to the measurements
collected on it. This has many implications and benefits for
those interested in the problems tackled in this paper; for
example, one could install multiple devices with YoMoApp
and run any sort of measurement campaigns to perform
tasks such as network-performance assessment, cellular-ISP
benchmarking, network monitoring, and many more.

Current work builds on top of our recent paper on
YouTube QoE analysis in smartphones [6], extending the data-
characterization part as well as the analysis through the ap-
plication of machine-learning models and QoE-based assess-
ment techniques. As such, this paper offers a comprehensive
perspective on the problem of YouTube-QoE monitoring and
analysis in cellular networks through the eyes of the end user,
and presents highly relevant use cases for machine-learning-
based data analytics in networks. The work is complete and
unique in terms of the addressed perspectives of the problem,
from the data collection, characterization, and analysis, to the
application of QoE modeling and machine-learning techniques
to enable a broader visibility on YouTube QoE in cellular
networks and smartphone devices.

The remainder of the paper is organized as follows: Sec-
tion II reports on related papers, in particular around the
topic of YouTube QoE in cellular networks and smartphones.
Section III describes in detail the YoMoApp application and
the YoMoApp cloud dashboard for open data collection and
sharing, and explains the main concepts behind the measure-
ments. Section IV presents and discusses the results of the
data characterization and analysis, particularly studying the
behavior and improvement of QoE-relevant metrics during
the five years spanned by the dataset. Section V studies in
detail two interesting applications of the YoMoApp system
for network monitoring and analysis, including the prediction
of QoE-relevant metrics and the modeling and assessment of
user QoE and user engagement. Finally, Section VI presents
some future outlook and concludes this work.

II. RELATED WORK

QoE-relevant KPI monitoring has been widely addressed in
the literature, mostly focused on fixed networks and consid-
ering in-network or network-side measurements. In [2], au-
thors provide an overview on QoE-based network-monitoring
approaches and their associated challenges. Focusing on the
problem of QoE monitoring for video streaming, there are dif-
ferent proposed techniques and models translating in-network
measurements and/or in-device application measurements to
QoE-relevant metrics. Among multiple mapping models stud-
ied in the literature, we refer to a recently standardized
QoE assessment model for adaptive video streaming – ITU-T
P.1203 [4], which predicts the Mean Opinion Score (MOS)
of a video session from direct analysis of both network- and
application-layer measurements.

In [5], we have proposed YoMo, an in-device, application-
and DPI-based tool for YouTube-QoE monitoring, capturing

video player activity and buffering conditions to infer re-
buffering events. In [7], [8], [9], we extended YoMo and its
overall concept to monitor YouTube QoE in cellular and fixed-
line networks at scale, using DPI approaches. Others [10],
[11], [12] adopted similar in-application measurements for
YouTube-QoE monitoring, relying on application-side tools
to directly collect KPIs such as playback delay, re-buffering
events, video resolution, or quality switches. Application-
side monitoring provides accurate measurements for QoE
assessment, as these can be directly observed, without the need
of additional estimation or mapping approaches.

The wide adoption of end-to-end encryption has turned
previous DPI-based approaches unreliable or even unfeasible,
motivating a surge of papers focusing on the analysis of in-
network measurements through machine-learning models. For
example, in [3], [13], authors apply different machine-learning
approaches to estimate QoE-relevant metrics for YouTube by
extracting features from the stream of encrypted packets, using
simple features such as packet times and sizes, or throughput.
Similarly, authors in [14] follow a machine-learning-based
analysis to infer QoE metrics for YouTube streaming over cel-
lular networks. Other recent papers propose to reconstruct the
evolution of the buffered video playtime [7], but analyzing the
encrypted stream of packets through heuristics and statistical
modeling approaches [15].

When dealing exclusively with cellular networks and smart-
phones, there are many tools to monitor QoE-relevant KPIs,
including Netalyzr [17] and Mobilyzer [16]. Smartphone-app
QoE can be monitored with QoE Doctor [18], an active-
measurement tool analyzing both network and application fea-
tures. Other tools for measuring YouTube QoE in smartphones
are introduced in [20] and [19]. YoMoApp [1] is an extension
of our previous YoMo tool, but implemented as an Android
app to passively measure YouTube QoE-relevant features in
smartphones. Last, previous papers have also presented results
on machine learning for QoE prediction in smartphones: our
previous work [22], [23] as well as [21] use machine-learning
models to infer the QoE of smartphone apps, relying on in-
device and/or in-network measurements.

III. USING YOMOAPP FOR YOUTUBE MOBILE ANALYSIS

YoMoApp [1] provides a distributed monitoring platform
for YouTube QoE, collecting user feedback in a crowdsourced
manner, and passively measuring a large set of QoE-relevant
KPIs at the player and network side. Metrics such as stallings,
initial playback delay, and video resolution are retrieved at
play time. All YoMoApp measurements are periodically up-
loaded to a remote server, building a comprehensive database
of YouTube performance- and QoE-related measurements. It
is possible to access these measurements for further analysis
using the YoMoApp dashboard service, which is presented
and described below. Next, we describe the basic concepts of
YoMoApp, the considered KPIs, and the incentives offered to
users to motivate them using the app.
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Log-file type Parameters
Data Current playtime Buffer Available playtime

Events

Video ID Quality Network Received bytes Transmitted bytes
Cell ID Signal SSID BSSID RSSI
Location Title Duration Screen orientation Player size

Player mode Volume MSE Supported codecs Player state
Dialog Content rating Quality rating Streaming rating Acceptability rating

YouTube loading time Advertisement Video end App behavior Hyperlink

Statistics

Date Time Device ID Mobile operator Country
Network switches Networks Screen size Screen density Orientation changes

Orientations Player resizes Player sizes Handovers Cell ID
Video ID Video title Log time Length of video User engagement

Initial delay Quality switches Qualities Stalling events Total stalling time
Average stalling time Maximum stalling time Average buffer Maximum buffer Pause events

Content rating Quality rating Streaming rating Acceptability rating

Table I: Monitored KPIs per log file in YoMoApp.

A. YoMoApp Basics and KPIs

YoMoApp is an Android app (freely available at the Google
Play Store) which replicates the original YouTube app in
functionality and design. An Android WebView is embedded
to display the YouTube mobile website, using an HTML5
video element relying on adaptive-streaming technology for
the video playback. Additional functions perform the monitor-
ing of the application-level parameters in the application. The
monitoring is done at runtime via JavaScript, which queries
the HTML5 video element.

We use JavaScript event listeners to monitor changes of
the player state (e.g., playing, paused, buffering, ended), and
the resolution of the video element. The app monitors the
current playback time and the buffered playtime every second.
Additionally, we retrieve metadata, e.g., the YouTube video
ID, title, duration of the watched video. The gathered data
is then sent to and processed by the Android app. As the
usage of JavaScript is prone to inconsistencies and errors, e.g.,
missing/incorrect values or non-equidistant data queries, the
data is post-processed locally by YoMoApp.

Besides playback events, YoMoApp measures both network
and context features. Moreover, it collects device features such
as size of the screen, orientation, playback audio volume, size
of the player, and playing mode (e.g., full screen). Lastly, the
application gathers network-traffic statistics such as per-second
uploaded/downloaded bytes, as well as information such as
GPS-based location, cellular operator, ID of the cell, Radio
Access Technology (RAT), or strength of the signal.

YoMoApp additionally collects QoE feedback provided by
the user, once a video is fully watched or aborted. A simple
questionnaire with multiple questions allows the user to rate
the QoE of the video session according to a standard ACR
MOS scale [24], ranging from bad (MOS = 1) to excellent
(MOS = 5). Questions include the user’s feedback on the
quality of the video, the quality of the streaming, the user’s
opinion on the video content, as well as the service accept-
ability (yes/no). The QoE-feedback questionnaire is presented
to the user only if she wishes to provide such feedback,
which is specified at the YoMoApp starting time. All these
measurements and user-QoE feedbacks are structured over

three different text files, logged for each video session: the
data log file keeps those metrics related to the playback buffer
of the video; the events log file tracks a rich number of KPIs
which are reported in an event-based manner, including states
of the video player, loading times, transmitted bytes, as well
as all QoE-related answers from the user; last, the statistics
log file is computed from the processing of both the data
log and event log files, once a video session has ended. This
log aggregates multiple application- and network-performance
KPIs, such as stallings, initial playback delay, quality switches,
and many more. The file also includes other metadata related
to the video session, such as mobile operator and handovers,
cell IDs, or video content details. Log files are identified by
a unique session ID, which includes a device ID, the session
date, and the starting time.

A complete list of the KPIs collected for the individual
log files are presented in Table I. Measurements belonging
to data and event log files are synchronized through Unix
timestamps. KPI monitoring is done either at every second
– for example, when tracking the video playtime – or just
when a specific event happens, such as a change in the played
video resolution. In contrast, the statistics log file offers an
overview/aggregation of the video streaming session. Further
details on the measurements collected through YoMoApp can
be found at the official YoMoApp documentation – http:
//yomoapp.de/documentation.pdf.

B. Incentives and the YoMoApp Dashboard

The large-scale usage of in-device monitoring tools such as
YoMoApp is subject to the incentives a user receives to install
such tools on his smartphone. Measurement tools operating
at the end devices are more useful to the ISP when these
are installed and used at large scale, offering representative
and meaningful information. To provide incentives for using
YoMoApp, the user can access several aggregate statistics for
each of her video sessions. A QoE map-view is also included
within the app, which displays all the geolocalized QoE ratings
and the corresponding network operators, for the full set of
collected ratings across all YoMoApp users. Results can be
displayed by ISP, allowing the user to compare, through easy-
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(a) Cumulative # of sessions. (b) Cumulative # of users.
Figure 1: Number of sessions and distinct users over time.

to-understand heatmaps, which operator performs best in cer-
tain locations in terms of YouTube mobile QoE performance
– see http://www.yomoapp.de for examples.

A second and strong incentive for using YoMoApp is
introduced in this paper: the YoMoApp cloud dashboard, avail-
able at http://yomoapp.de/dashboard. Through this dashboard,
users can access at any time the aforementioned log files
containing all the raw measurements and KPIs collected by
YoMoApp at their own devices. A user has access to the
data retrieved at any device for which she has the YoMoApp
device ID (available through YoMoApp), by simply creating
a user account at the dashboard, and associating all the
YoMoApp device IDs she has access to. There is no limit
on the number of different devices a user can associate to
her user account, turning YoMoApp and the dashboard into a
powerful distributed monitoring platform for YouTube mobile
measurements analysis. We stress again the fact that the data
which can be accessed through the dashboard includes the
full, raw, fine-grained measurements collected by YoMoApp
as described in Table I. This is highly useful for deep analysis
on multiple relevant problems associated to YouTube mobile
video streaming in the wild.

Besides full raw measurements access, the dashboard allows
any user to browse over the complete database of measure-
ments covering all YoMoApp users, in the form of aggregated
and anonymized statistics, maps, and heatmaps, providing
additional visibility. We are currently working on different
incentive-driven approaches to allow and motivate users to
install more YoMoApp instances and perform further measure-
ments, as well as additionally sharing their own (anonymized)
measurements with others; for example, we are testing an
approach inspired on Peer-to-Peer (P2P)-based file sharing,
providing access to anonymized measurements from other
devices in equal volume to the measurements generated by the
device(s) under the control of a user: the more measurements
she generates with his devices, the more measurements she
can access from devices of other users.

The combined usage of YoMoApp and the dashboard offers
multiple network QoE monitoring and analysis opportunities
to the network-measurement community: for example, it al-
lows for field testing, distributed cellular-network performance
monitoring, YouTube mobile QoE modeling and assessment in
operational environments, analysis of the impact of different
mobile-network technologies on YouTube mobile QoE, long

Figure 2: Worldwide usage of YoMoApp.

term characterization of YouTube streaming strategies and
even controlled QoE analysis. Next, we analyze the set of
measurements so far collected through YoMoApp, and address
some of the aforementioned monitoring and analysis direc-
tions.

IV. YOUTUBE MOBILE QOE ANALYSIS

We now study the measurements collected with YoMoApp
during the last five years. We analyze the evolution of YouTube
in smartphones along time, regarding QoE metrics, user
engagement and network performance. The dataset contains
more than 3000 complete video sessions, captured between
July 2014 and June 2018. Sessions correspond to 366 different
users worldwide. Figs. 1a and 1b report the accumulated
number of YoMoApp video sessions streamed over time and
the cumulative number of unique devices, respectively. A surge
of new users is clearly observed starting in 2016, which comes
as a consequence of a stronger advertisement of YoMoApp and
an increased dissemination through different research com-
munities and conferences. The number of streamed sessions,
new users, and collected measurements has more than doubled
since January 2017. Interestingly, there were more than 900
new video sessions during the first half of 2018, largely
exceeding the number of video sessions monitored in 2017. We
conclude that the usage trend for YoMoApp is very positive.

The distribution of collected measurements worldwide is
depicted in Fig. 2, in the form of a heatmap diagram. Mea-
surements are distributed on 58 different countries. About 38%
of the measurements come from Germany, 17% from Greece,
9% from India, and 5% from France. Measurements gathered
in other countries represent a share equal or less than 3%
each. We want to stress again that YoMoApp measurements
are performed at the end devices of the users, using their
corresponding mobile operators, resulting in a diverse set of
measurements in terms of devices and network properties.
YouTube QoE in smartphones has improved over the past
years: we now focus on the analysis of different QoE-related
metrics along time. In particular, we study the evolution of:
initial delays, re-bufferings, stalling times, and re-buffering
ratios. Fig. 3 depicts the empirical distribution of these metrics
per year. A first observation is that there is a clear enhancement
of all QoE-related metrics along time, 2018 being the year
with best performance in terms of initial playback delays
and re-buffering events. Next, we also show that such an
improvement is reflected by the QoE feedbacks reported by
the end users (cf. Fig. 7). About 90% of the sessions in 2018
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(a) initial delay (b) number of stallings (c) total stalling time (d) stalling ratio

Figure 3: Temporal evolution of the performance of YouTube mobile streaming in terms of QoE-relevant KPIs.

Figure 4: Video-quality levels and quality switches.

have an associated initial delay below 5 seconds, and a similar
fraction corresponds to videos streamed and displayed without
stalling. On the other hand, initial delay for video sessions in
2016 was below 5 seconds for about 80% of the videos, and
only 60% of the videos were displayed without re-buffering
events. Furthermore, more than 15% of the videos in 2016
suffered from a re-buffering ratio higher than 10%, whereas
this fraction falls to about 5% in 2017/2018.
YouTube mobile video distribution is more efficient today
than in the past: the played out video quality levels grouped
by year and the distribution of the number of quality switches
per year are illustrated in Fig. 4. The distribution of requested
video qualities by the YoMoApp video player reveals that,
in contrast to the period from 2016 to 2018, the played out
video qualities varied much more back in 2014 and 2015, with
a higher prevalence of higher quality levels as compared to
today. The YouTube streaming service has been evolving over
time, not only for the fixed-line network scenario, but mainly
in mobile networks. When YouTube started playing in mobile
devices, the adaptive-streaming policy was less conservative
and higher quality levels would be requested in adaptive
streaming mode. From 2016 onwards, the most dominant
video quality changed to 360p, which is a more conservative
quality level, imposing less bandwidth requirements. There
are also videos with lower video qualities like 144p or 240p,
but almost no HD content was streamed within the last three
years with YoMoApp. This is perfectly aligned to our previous
findings on YouTube QoE in smartphones [25], where we
observed that lower vertical resolutions result in the same
subjective experience as higher resolutions when dealing with
smartphones, due to the small screen sizes. Thus, it makes less

(a) Radio Access Technology.
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(b) Max. downlink throughput.
Figure 5: Radio access and video download throughput.

sense and is less efficient to stream HD content on YouTube
in smartphones.

As a consequence, it is also not surprising that the number
of quality switches observed within the last three years is much
lower compared to 2014 and 2015. Fig. 4 displays the distri-
bution of the number of quality switches per session. In more
than 80% of the sessions, no quality switch could be observed
for the period of 2016 to 2018, meaning that the initial quality
selected by YouTube was matching the underlying network
performance. In contrast, in 2014, only 43% of the sessions
showed no quality switch, around 53% observed one quality
switch, and the remaining sessions resulted in two or more
quality switches.
Mobile network technology and performance have also im-
proved, potentially resulting in increased user engagement:
the distribution of the underlying RAT per year is displayed
in Fig. 5a. We differentiate between 2G (GSM/EDGE), 3G
(UMTS/HSDPA) and 4G (LTE). RAT information started
being collected only from 2016 on. In 2016, UMTS/HSDPA
was the dominant RAT, with a prevalence of about 66% of all
sessions with cellular access. In 2017, the balance shifted and
LTE became the dominant RAT with a share of 59%. This
dominance increased even more in 2018, where sessions with
LTE make up to 90% of all streaming sessions with cellular
access. As a consequence, we observe better network perfor-
mance over time. For example, Fig. 5b shows the distribution
of the maximum download throughput achieved by YoMoApp
video sessions before and after December 2016. The average
max. download throughput increased from about 2Mbps to
more than 10Mbps, and the median has also increased from
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Figure 6: Evolution of user engagement.

about 600kbps to 1Mbps.
User engagement is defined as the fraction of the total video

length a user watched before the video was aborted or the
video ended (100% user engagement). The user-engagement
distribution per year is depicted in Fig. 6. User engagement
started being measured in 2015, we therefore have no results
for 2014. Results show how user engagement has systemat-
ically increased over time, and significantly in 2018. More
than 60% of the videos were watched completely and only
20% of the users aborted the video at 20% or less of the
video playback. This indicates that YoMoApp is increasingly
being used as a standard video player. The increased user
engagement can also be explained by the improvement of the
network performance in terms of higher downlink throughputs.
We note that video-duration averages and distribution are
similar across the different years, ruling out potential bias on
user engagement.

V. YOUTUBE MONITORING WITH YOMOAPP

We now show how YoMoApp can be used for network
monitoring and YouTube QoE analysis purposes, tackling two
different and highly relevant problems. Firstly, we focus on the
problem of YouTube QoE modeling and assessment, calibrat-
ing different YouTube QoE models available in the literature
as well as standardized models – in particular the ITU-T
P.1203 model for adaptive video streaming [4]. We compare
the outputs obtained from these models to the actual QoE
feedbacks provide by YoMoApp users. Secondly, we tackle the
prediction of QoE-relevant metrics as well as user experience
and user engagement through the application of machine-
learning models, using only network-layer measurements as
input. As we said before, such machine-learning models enable
an extended monitoring of YouTube mobile QoE, as one could
still obtain the KPIs currently collected by YoMoApp, but
without even requiring to use the app – for example, by just
having a general purpose network-measurement app running
in the background of the device.

A. QoE Modeling and Assessment

Fig. 7 depicts the distribution of (a) the subjective MOS
scores as provided by the users and (b) an estimation of the
MOS scores, obtained by the P.1203 model. Recall that QoE
feedback is provided in terms of MOS scores, using a 5-level
ACR scale [24]. For the sake of comparison to other objective
QoE models, we focus on the QoE of the users regarding their
opinion on the video streaming performance. As observed in

(a) Subjective ratings. (b) P.1203 scores.
Figure 7: Distribution of MOS scores per session.

(a) P.1203 vs. subjective ratings.
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(b) QoE model vs. user feedback.
Figure 8: Modeled MOS scores vs. actual user feedback.

Fig. 7a, MOS scores were reported by the users through a
continuous scale before 2017, and using a discrete scale from
2017 on. As reported before, there is a clear QoE improvement
during the last two years, with more than 80% of the videos
rated with MOS scores equal or above 4; this fraction drops
to a value between 40% to 60% in previous years. As shown
in Fig. 7b, results are accurately captured by the P.1203 model
predictions.

Besides the application of the P.1203 model, we additionally
investigate simpler QoE models available in the literature [26],
[27]. These models are of exponential nature, under the form
f(α, β, γ, δ, L,N) = α×e−(β×L+γ)×N+δ, where α, β, γ, and
δ are parameters that need to be calibrated through the specific
dataset under analysis, and L and N correspond to the average
stalling length and number of stallings respectively. We take
a simple manual calibration approach to set α = 4 and δ = 1
to be within MOS range, and set the other parameters by a
non-linear-least-squares regression.

Another family of models we look at are referred to
as simple additive QoE models, which are expressed as a
linear combination of individual models: Q(x1, . . . , xn) =∑n

i=1 wi×Qi(xi), where weights wi are ≥ 0 and
∑n

i=1 wi =
1 [26]. We rely on non-linear-least-squares regression to
determine the values of the parameters to tune. Our evaluation
revealed that the additive QoE model expressed as 0.49×(4×
e−0.14×#stallings+1)+0.17× (4×e−47.7×initialDelay+1)+
0.34× (4× e−0.44×#qualitySwitches +1) is the one which fits
best the data.

Fig. 8 depicts two scatter plots reporting the modeled MOS
scores vs. the actual user subjective feedbacks. Fig. 8a reports
the results for the P.1203 model, whereas Fig. 8b considers
the best model of the two tested ones [26], [27], which
corresponds to the additive QoE model. In both cases, we
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observe that both QoE models tend to overestimate the actual
QoE ratings reported by the users. This suggests that users
might be actually more annoyed than what one could perceive
by directly using these QoE models in practice.

Last, Fig. 9 depicts the linear correlations observed between
both the subjective ratings and the P.1203 estimations and
application-layer metrics such as stalling, initial delay, quality
switches and up to user engagement. While correlations tend
to be rather low, there is a clear negative impact of stalling
duration, initial delay, and number of stallings on both QoE
values (feedback and P.1203), as observed in past studies.

B. QoE Prediction through Machine Learning

We focus now on the prediction of QoE-relevant metrics
which are normally measured directly by YoMoApp, but
assuming only access to the smartphone general network-
level measurements, available through the Android APIs. The
rationale is that we would like to monitor YouTube mobile
KPIs such as initial delay, stalling, quality switches, QoE
(MOS scores), and even user engagement, but without using
an app like YoMoApp. These predictors could be applied in
a more generic smartphone-based monitoring system, where
users would not be forced to run an app with an embedded
player such as YoMoApp to measure relevant KPIs, and
where such KPIs could be actually forecasted for any user
watching YouTube videos at her smartphone, independently
of the YouTube player being used.

We tackle the prediction of four QoE-relevant metrics, the
prediction of the MOS scores (as provided by the P.1203
model), and the prediction of the user engagement. We build
predictors using machine-learning models, treating each prob-
lem as a classification task, where targets are discretized.
The targets are as follows: (i) whether initial delays (ID)
are above or below a pre-defined QoE-relevant threshold –
based on previous work on initial delay tolerance, we set
this value to 4 seconds; (ii) whether a video quality switch
has occurred during the session or not (cf. Fig. 4); (iii) the
number of stalling events (NS), considering three classes –
zero-stalling, mild-stalling: one or two stalling events, and
severe-stalling: more than two stallings; and (iv) the stalling
frequency or re-buffering rate (RR), considering again three
classes – stalling-free; mild-stalling: stallings occurred and
lasted for less than 10% of the total duration of the video
session, and severe-stalling: stallings occurred for more than
10% of the whole video session. For the prediction of QoE
scores, we use as target a binary discretization of the MOS
scores provided by the P.1203 model, and consider a two-
class classification problem, either better or worse than MOS
= 4. Finally, we turn the prediction of user engagement into
a three-class classification task, predicting whether a user has
watched less than 50% of the video, between 50% and 70%,
or more than 70%. For each metric, we evaluate a random
forest model with 10 trees through 10-fold cross validation.
We rely on simple bootstrapping techniques to balance classes
for learning purposes.

Figure 9: Linear correlations – subjective ratings and P.1203.

For all these prediction tasks, we rely on the network-
layer features captured by YoMoApp, which can actually be
measured by simply accessing the Android developer APIs.
The full feature set encompasses 275 features, including
information about the received signal strength, the number
of handovers, the number of network switches, and multiple
statistics about the incoming and outgoing traffic, aggregated
at different time windows of 1, 5, 10, 30, and 60 seconds.
The traffic is measured on three different levels: the total traffic
transmitted/received by the device, the traffic captured over the
mobile network, and the traffic sent/received by the application
itself. We use feature-selection techniques to identify the most
relevant features for each target. We find that about 30 features
out of the 275 are needed to obtain highly similar accuracies
to the ones achieved with the full feature set.

Fig. 10 reports the obtained results for the prediction of the
four QoE-relevant KPIs in terms of ROC curves. ROC curves
help understand the performance of binary-classification mod-
els at all classification thresholds and show the different
false positive rates (FPRs) and true positive rates (TPRs).
Our results are fairly accurate for the four prediction targets,
achieving good classification rates for most of the classes.
For example, the initial delay discrimination as well as the
quality-switching detection can be done with a false positive
rate below 5% for more than 90% of the sessions. Results
are even better when predicting the re-buffering ratio, with an
almost perfect performance for detecting bad-quality sessions
with a high stalling ratio. Inferring the exact number of stalling
events is clearly more challenging.

For the prediction of user engagement and MOS scores,
we also consider random forests, but additionally evaluate
other models such as a single decision tree (DT), SVM, k-
nearest neighbors (KNN), and Naı̈ve Bayes (NB). We also
consider ensemble learning approaches, covering the three
basic paradigms available in the ensemble-learning domain:
bagging, boosting (AdaBoost (ADA) and gradient boosting
(GRAD)), and stacking. Instead of constructing the most accu-
rate model to interpret the data, ensemble learning approaches
combine multiple models to improve analysis performance.
Ensemble methods use multiple learning algorithms to obtain
better predictive performance than could be obtained from any
of the constituent learning algorithms alone. Models built this
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Figure 10: QoE-metrics prediction performance. ROC curves evidence high recall for the considered classes.

(a) Prediction of user engagement. (b) Prediction of P.1203 MOS.
Figure 11: Prediction of user engagement and P.1203 MOS.

way are in general more robust to uncertainties and noise in
the data, which helps in generalizing the obtained results.

Fig. 11 summarizes the obtained results in terms of preci-
sion and recall for all the tested models, obtained through 10-
fold cross-validation. As before, high prediction performance
can be achieved for both targets, particularly when using
more complex, ensemble-based approaches, like stacked trees
(STACKED). Prediction of P.1203 MOS classes and user-
engagement discrimination can be realized with an overall
accuracy of around 90%.

VI. CONCLUSION

In this paper, we have studied the problem of YouTube
mobile QoE monitoring and analysis in a data-driven manner,
by relying on a very rich and fairly large dataset of QoE
measurements passively collected at users’ smartphones with
the YoMoApp monitoring framework. We introduced and
discussed the different YoMoApp tools which grant open ac-
cess to highly rich measurements retrieved at mobile devices.
Through the analysis of these measurements, we are able to
observe a systematic performance and QoE improvement of
YouTube in mobile devices since 2014 till today, additionally
evidencing that these enhancements might have a direct im-
pact on the user engagement in YouTube mobile. We have
additionally studied and discussed different network monitor-
ing and analysis problems which can be tackled by relying
on YoMoApp, showing its great potential. In particular, we
presented different machine-learning approaches to monitor
and predict QoE-relevant metrics for YouTube in smartphones,
as well as to predict user engagement and QoE, using as
input only those measurements which can be directly accessed

through Android APIs – i.e., without the need of accessing
any application-level KPI to perform the analysis. Besides
noting the good performance of random forest models for QoE
prediction, we have also presented evidence on the advantages
of relying on more complex, ensemble techniques, to properly
predict end user QoE and engagement.
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