


II. APPLICATION SCENARIO

The INPUT Project was conceived to design a novel infras-
tructure for supporting Future Internet personal cloud services.
The main goal was to move beyond classical service models
(i.e., IaaS, PaaS, and SaaS) by providing users with the
”virtual images” of their physical smart devices, which are
deployed in a cloud/fog/edge environment with the advantages
of additional scalability, sustainability and innovative added-
value capabilities.

The INPUT platform is envisaged for deployment in the
edge facilities of telecom operators, composed of comput-
ing and storage appliances interconnected by physical/virtual
OpenFlow switches. The INPUT architecture embraces the
edge computing paradigm, with full and state-of-the-art tech-
nological convergence of mobile and wireline access with the
softwarization of network services, based on the NFV [3]
and SDN [4] technologies and integrated with 4/5G mobile
networks. To this goal, two VNFs have been developed to
extract the control information needed for MEC attach points
management and then inject and retrieve packets between user
equipment and MEC data-plane. In this way, access and/or
core network segments can be directly exposed to vertical
applications in 4G legacy environment just line in 5G.

The personal services designed in the INPUT use cases (of
which an example can be found in [5]) are designed in the form
of a service chain that is stored in a service template managed
by the INPUT platform [6] and instantiated only upon user
subscription. The service chain is composed of individual
service applications running in an execution container, which
is typically a Virtual Machine (VM). Communication and
information exchanged among applications of the same service
chain, and between user and service instance, are handled
through SDN overlays.

Moreover, service chains are characterized by proximity
classes, which represents the maximum allowed distance be-
tween the user and his/her instances that guarantees the fulfill-
ment of the Service Level Agreement (SLA). The appropriate
placement and dynamic (re)allocation of the service chain with
respect to the user position or is constrained by the proximity
class as will be described in Section IV.

III. THE INPUT CONTROL PLANE ARCHITECTURE

The central element in the design of the INPUT platform
is represented by the OpenVolcano open-source project [7],
a software platform that exploits in-network programmability
capabilities for off-loading, virtualization and monitoring to
provide scalable and virtualized networking technologies able
to natively integrate Edge Computing functionalities.

In the design of the INPUT platform, building blocks from
OpenVolcano, along with the external support of the Ericsson
Network Manager (ENM), have provided the control and the
management processes of the infrastructure: the Network and
Service Service Operating System (NS-OS) and the Network
and Service Management (NS-MAN). Their main roles and
interactions can be seen in Figure 1.

Fig. 1. Logical view of the INPUT control plane.

The NS-OS drives the real-time configuration of the pro-
grammable resources and the dynamic instantiation and mi-
gration of Virtual Network Functions (VNFs) and VMs com-
posing the service chains according to users locations. In more
detail, the NS-OS performs the following three main tasks:
Consolidation, Orchestration and Monitoring.

The Consolidation task is in charge of calculating the opti-
mal re-configuration of the infrastructure (e.g., the topology of
the Personal Networks and the matching and action rules of the
SDN switches) in terms of network paths/overlays and of the
service chain instances locations, with the objective to match
the required QoE/QoS and the estimated workload/traffic vol-
umes with the minimum possible level of energy consumption.
In particular, consolidation criteria will be designed to obtain
the re-configuration matrix of the network infrastructure and
of services.

The Orchestration mechanism takes the re-configuration
matrix coming from the consolidation process as an input
and instantiates/migrates service instances to the identified
subset of devices/hardware resources, by changing the net-
work configuration accordingly, without causing any service
interruption or performance degradation.

In order to assure that the consolidated configuration works
as expected and to support the fine tuning of future re-
configurations, the monitoring sub-system will collect perfor-
mance measures and alerts, which include network-, app-, and
power-aware performance indexes.

The NS-MAN is responsible for the long-term configuration
of the network, the administrative configuration of the infras-
tructure, the overlaying cloud services and personal networks.
In addition, it is in charge of monitoring faults, intrusions and
attacks in the system and uses trend analysis to predict errors
and guarantee that deployed services are always available.

To do this, the NS-MAN stores historical data received
from the NS-OS and the network and computing elements
(e.g., network/servers usage, users mobility, service chains
computational resources, etc.), for performing data analytics
and providing trend estimates. The goal of these correlations
is to get insights on the overall operating behaviour of network
devices and computing facilities to predict service demand,
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plan the resource provisioning, prevent congestion, possible
failures, and maximize energy saving.

IV. MONITORING, ORCHESTRATION AND CONSOLIDATION

We go into detail in this section about the relationships of
monitoring, consolidation, and orchestration, which is impor-
tant for the further understanding of this paper. The necessary
mechanisms for the dynamic provision of resources and energy
management are listed and justified within the objectives1:

• A Monitoring Sub-System to collect performance mea-
sures and alerts, which include network-, app-, and
power-aware performance indexes.

• Orchestration Mechanisms to dynamically migrate in-
network Apps without causing any service interruption
or performance decay.

• Consolidation for the re-configuration of the smart infras-
tructure to meet the estimated workload and user/service
requirements with the minimum possible level of energy
consumption.

1) Monitoring: Monitoring refers to statistical information
gathering from objects concerning, but not limited to, the
performance of applications, communicating between them,
physical utilization rates and power consumption.

The Apps-aware monitoring function provides system ad-
ministrators the information of connected applications re-
garding their overall performance/state, quality and current
resource utilization. For instance, a video quality monitoring
function carries out the information about current video buffer,
video resolution at the client and, possibly, the probability of
stalling occurrence based on downstream bandwidth, which
can be used to estimate the QoE level perceived by the users.
In the INPUT architecture, DC Apps and Service Apps are
monitored continuously at the server side, the User Apps are
monitored by dedicated Net Functions that are deployed at
the client side or in the INPUT network.

The Network-aware monitoring function, on the other hand,
assesses the communication between applications, as well as
various network components. This function is in charge of de-
tecting compromised network components or potentially harm-
ful events, such as an overload of traffic to servers or virtual
objects, or failures in SDN controllers or OpenFlow switches.
A detection of low bandwidth in the users access network can
activate the migration process of applications/services to the
edge.

The power-aware monitoring function is the enabler of inter-
faces to provide the current energy state of servers/network de-
vices. Power consumption measurements can be called with a
certain time periodicity. In the INPUT architecture, the Geyser
module based on the ACPI standard monitors continuously the
power consumption of an OpenVolcano server.

2) Orchestration: Since the INPUT architecture extends
SDN and NFV technologies to support advanced network
functionalities, virtual resources allocated to Service Apps or

1http://www.input-project.eu/index.php/about/objectives

Network Functions must be automatically managed and or-
chestrated. To this end, an orchestration algorithm is designed
and implemented in two steps: first, by an initial placement,
and afterwards by a dynamic reallocation of resources. During
the initial placement, the amount of resources required for a
created task are estimated and provisioned. There, the goal
is to satisfy the predefined Service-Level-Agreements (SLA),
especially the QoS and QoE of all customers with the available
resources at minimal costs. The biggest challenge is to allocate
the available resources fairly and to make sure no customer is
under-provisioned. Additionally, unutilized resources are shut
down to save energy. The second phase in the orchestration
process is the reallocation. There, a major challenge is to
dynamically react on changing resource demands without
causing any service interruptions or performance delays. The
resource utilization can either be checked periodically or in
any other timing pattern by the orchestration algorithm or upon
the notification of the under-provisioned VMs. Afterwards, the
reallocation of resources is started. The first option in adapting
to changing requirements is adding resources to a running task,
for example, adding RAM to a running virtual machine. The
benefit of this method is that no task migration is necessary.
The alternative method is the migration of a task to another
location with higher available resources. Next to an iterative
improvement of the allocation, where resources are allocated
only to the under-provisioned task, a global optimization is
possible. There, resource utilization of the whole infrastructure
is monitored and unused resources are reallocated to other
processes or shut down to safe energy.

3) Consolidation: Consolidation in cloud computing refers
to the process of distributing the workload to a smaller number
of servers. This is achieved by redirection of service requests
to other service instances or the (live) migration of virtual
machines (VM). Thereby, the surplus servers can be suspended
or terminated, and the remaining servers can be better utilized.
The ultimate goal is to save energy costs, thereby not violating
service level agreements (SLAs), but still achieving a high
QoE for end users. The consolidation problem is typically
modeled as a vector bin packing problem, which is NP-
hard [8]. Thus, heuristics are used to obtain solutions, such as
first fit decreasing (FFD) and best fit decreasing (BFD) [9],
[10]. However, a nave consolidation, which just puts the
workload to the smallest number of servers and reaches close
to 100% utilization can even increase the energy consumption.
Thus, consolidation has to consider the aggregated resource
consumptions of collocated VMs as well. Typically, resource
consumptions are not additive, and a thorough understanding
of the implications of collocated VMs is required to decide
which VMs to consolidate on which server [5]. Additionally,
the migration of running VMs between servers also has to be
considered when consolidating VMs. It can cause downtime
or reduced performance of the service, which negatively
influences the QoE of end users. Thereby, the transmission
of the VMs can even affect other services, which also share
the same network links. A further challenge of consolidation
is the prediction of changing workloads. If very elastic VMs
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(in terms of resource requirements) are consolidated on a
highly utilized server, there might be no possibility to scale
up the resource allocations if the workloads increase. This
results in reduced performance until new VM instances can
be started or the VM is migrated to a server, which can fulfill
the increased requirements. Note that this might necessitate to
power on further servers. In the context of the INPUT project,
consolidation refers to operating all requested services and
their corresponding Service Apps with a minimum number
of INPUT nodes. The consolidation process can be triggered
by the NS-MAN either periodically (e.g., at regular time
intervals), or it can be event-based (e.g., when the number of
services in the INPUT system changes), or threshold-based
(e.g., if the resource utilization of an INPUT node drops
below a threshold). Based on the requirements of the currently
running services and the resource utilization of the INPUT
nodes, which are obtained from the monitoring, consolidation
actions are decided and implemented. The consolidation ac-
tions include the migration of Service Apps, as well as the
redirection of requests to newly instantiated Service Apps.
Subsequently, all emptied INPUT nodes will be suspended
or terminated.

V. EVALUATION

Cloud infrastructure optimization requires efficient cloud
orchestration algorithms and procedures and is tightly related
to workloads consolidation within the cloud infrastructure. The
ultimate goals are serving the highest possible QoE for the user
and saving energy on the infrastructure side.

In the INPUT cases, a significant factor for high QoE
is the appropriate placement and dynamic (re)allocation of
Service Apps of the service chains (as close to the user or to
the previous Service App as possible) and their termination
when necessary. In this context, especially considering Edge
Computing capabilities and Service Chains, initial placement
of Services Apps shall make use of specific algorithms that
take into account service apps specific requirements such as
Service Chain sequence, location/proximity to end user loca-
tion, performance of Service apps, availability of cloud infras-
tructure nodes/hosts, etc. Although this Service Chain Place-
ment problem presents similarities to Virtual Network Em-
bedding (VNE) and Virtual Data Center Embedding (VDCE)
problems, a new problem formulation is required to include
the full extent of parameters that reflect the aforementioned
requirements.

A. The Service Chain Placement Problem

A service chain consists of several distinct interconnected
software components. The deployment of a service chain over
an infrastructure requires assigning an execution environment
to each software component, as well as an overlay link routed
over one or more physical links for each communication
channel between two interconnected software components.
The infrastructure consists of several physical machines able to
host several execution environments (i.e. hypervisors running
on physical machines hosting several virtual machines) and

several physical links able to route over them several overlay
channels. Hosts and links offer resources of certain capacity
(capacitated resources). Indicative resources for hosts are CPU,
memory and storage I/O rate, while links most commonly offer
capacitated bandwidth resource. An execution environment for
an application software component requires a certain amount
of all or a subset of resources offered by a host. Meanwhile a
channel between software components requires all or a subset
of resources offered by a link assigned for routing. Assign-
ments may require not only a certain amount of a capacitated
resource but as well a certain monitored metric to be within a
certain range, e.g. link delay. These requirements, along with
others, specify what is considered a feasible assignment and
form the constraints of the problem of deploying a service
chain over the infrastructure.

B. Formulation of the Service Chain Placement Problem

In the following, an approach to formulating the optimiza-
tion problem is given. In this approach, (1) host assignment
and overlay path building are considered at a single phase
providing for better solutions to the problem; (2) the cost
initially considered is the distance measured in physical link
hops of the overlay links that is created after the assignment
of the communication links (channels) between application
components; (3) capacitated resources and metrics constraints
are considered; (4) placement is considered for the overall
service chain considering that the user application and shared
service apps are statically placed at the time of the placement
problem solving; thus, service application components place-
ment is decided for all except those already placed; (5) DC
applications may be considered with this general formulation
as statically placed components, as well; (6) the output after
solving the problem is the matrix indicating where each
component is placed and the matrix indicating which links
are used to build overlay paths between components; (7)
for collocated components, a path is not decided, since the
connection is represented internally within the host.

In the formulation of the optimization problem, the follow-
ing notations are used:

TABLE I
SUMMARY OF PARAMETERS USED IN THE ILP MODEL

Parameters Description

T Set of application components
C Set of channels between application components, C ✓ T ⇥ T

H Set of hosts
L Set of links between hosts, L ✓ H ⇥H

S Set of user application components statically allocated at hosts, S ⇢ T

H
S Set of hosts where static user application components are placed, HS ⇢ H ,

f : S ! H
S | 8h0 2 H

S
, 9t0 2 S : h0 = f(t0) (f is subjective)

R Set of unique resources offered by hosts
R

0 Set of unique resources offered by links
M Set of monitored metrics at hosts
M

0 Set of monitored metrics at links
a
r
t Amount of resource r demand by application component t

i
r
h Capacity of resource r at host h
�
r
h Amount of resource r available at host h

m
k
h Measured value of metric k at host h

c
r
sd Amount of resource r demand required by channel (s, d)

b
r
uv Amount of resource r available at link (u, v)

µ
k
uv Measured value of metric k at link (u, v)

Based on the notations and the considerations mentioned
before, the optimization problem is formulated as follows.
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Given:

R = {CPU,Memory}
R0 = {Bandwidth}

M = ;

Minimize:

• Objective 1: Minimize total delay of service chain

Objective1 =
X

(s,d)2C

⇡uv,sdµ
Delay

uv
, 8(u, v) 2 L. (1)

• Objective 2: Minimize resource utilization

Objective2 =
X

h2H

(min{
X

t2T

�ht, 1}
100�CPU

h

iCPU

h

). (2)

Objective 2 aims to minimize the product of the number of
servers used in a placement and the percentage of available
CPU. This optimization procedure will attempt to collocate
VMs in a server but will have preference to an already utilized
server. Thus, it will try to leave in a placement unused those
servers that have zero utilization. By doing this, they may
be put in idle state to save energy. However, at the initial
placement all servers will have the same probability to be
selected. The objective function does not favor any of them
(e.g., a server with high capacity).

Subject to:

�ht 2 {0, 1}, h 2 H, t 2 T. (3)

In constraint (3), �ht is a decision variable and equals to 1 if
task t is assigned to host h, 0 otherwise.

X

h2H

�ht = 1, 8t 2 T, (4)

�ht = 1, h 2 HS , t 2 S, (5)
X

t2T\S

�ht = 0, 8h 2 HS . (6)

Constraint (4) ensures that a task (or application component) is
assigned only to one host. The static placement of the user task
is defined in Eq. (5), it is given as an input to the problem
and not decided. Whereas, constraint (6) specifies that user
applications are only placed in hosts assigned for them.

X

t2T

�ht↵
r

t
 �r

h
, 8r 2 R, 8h 2 H. (7)

Equation (7) stipulates that the considered host h must have
enough resources to allocate the application component t.

⇡uv,sd 2 {0, 1}, (s, d) 2 C, (u, v) 2 L. (8)

In Eq. (8), ⇡uv,sd is a decision variable and equals to 1 if task
channel (s, d) is routed from link (u, v), 0 otherwise.

X

(u,h)2L

⇡uh,sd + �hs =
X

(h,v)2L

⇡hv,sd + �hd. (9)

Constraint (9) captures and expresses in one equation,
• the unsplittable flow constraint: A channel uses a single

outgoing link from source and a single incoming link at

destination and does not split,

X

(u,h)2L

⇡uh,sd = 1 if �us = 1,

X

(h,v)2L

⇡hv,sd = 1 if �vd = 1,

• the collocation of tasks: A communication path is not
required in the case that both s and d are assigned to the
same host (and no capacity checking),

�hs = �hd,
⇡uu,sd = 0,

• the flow conservation constraint: No traffic is stored in a
node unless this node is the source or the destination or
collocated source and destination,X

(u,h)2L

⇡uh,sd =
X

(h,v)2L

⇡hv,sd,

8h 2 H : �hs = 0,�hd = 0.

X

(u,h)2L

�hs⇡uh,sd = 0. (10)

Constraint (10) makes sure that there is no loop in the path
before reaching destination.

⇡uv,sd = ⇡vu,ds, (s, d), (d, s) 2 C, (u, v), (v, u) 2 L. (11)

As determined in Eq. (11), a bidirectional communication
between two tasks is routed through the same bidirectional
overlay path. In addition to this, upstream and downstream of
a flow is not routed separately.

X

(s,d)2C

⇡uv,sdcsd  buv, 8(u, v) 2 L. (12)

Constraint (12) guarantees that the link (u, v) must have
enough resource required by channel (s, d).

C. Initial Performance Evaluation

In this Section, we present an initial performance evaluation
of the Vent and Crater modules of OpenVolcano, which
implement the service placement and the MCO procedures, re-
spectively. In particular, we stress the orchestration mechanism
to evaluate the time required to calculate the service positions
and the OpenFlow rules to create the overlay networks.

Considering the complex operations performed by the or-
chestration algorithms, our objective is to assure that the pro-
posed procedures are able to orchestrate virtualized services
without compromising the KPIs defined in [10] related to the
time to deploy new services and the migration times when the
user moves.

We run the OpenVolcano orchestrator on a Linux server
equipped with a hyper-threading- enabled Intel R Xeon R E5-
2620 v4 2.10GHz processor [42], and we emulated a real wide-
area topology obtained from the datasets available in [41]. In
more detail, we adapt the Interroute topology to consist of
20 randomly selected datacenter nodes and 90 transit/access
nodes, interconnected by 148 edges.
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Fig. 2. Template of the testing service chains.

Fig. 3. Service placement execution time for the Crater and Vent modules
according to the subscribed service chain.

We considered three service chaining scenarios SC1, SC2
and SC3, as illustrated in Figure 2. These SCs are designed to
cover variations in the number of centers and proximity levels
(p) and Service Apps involved. Moreover, it can be observed
that they also take into account possible interconnections
between Service Apps and Back-end Networks.

To measure the time required for calculation of the Ser-
vice Apps/Centers positioning and generation of the Open-
Flow rules when the user subscribes to a new service, we
emulated 100 service subscriptions for each of the service
chains, with random CPU and RAM requirements.

Figure 3 shows the obtained calculation times of the Crater
and Vent modules according to the different number of Ser-
vice Apps and centers of the three service chains in Figure 2.
As we can observe, the most time spending task is the creation
of the MCO network, which reaches 210 ms for the most
complex service chain (SC3) composed of 60 Service Apps.
Differently, the time required for running the SSPP in Vent
is almost negligible and it mainly depends on the number
of centers to be placed. Indeed, as previously anticipated,
the MCO mechanism allows reducing the complexity of the
placement policy, which reaches a maximum calculation time
of 18 ms.

These results demonstrate that the orchestration policies
implemented introduce negligible delays in the time required
to deploy and migrate services. However, in real scenarios
further delays can be introduced by the time required by
services to be ready to be used, which mainly depends on
the boot time of the virtual machines and their configurations.

VI. CONCLUSIONS

In this work we describe the INPUT fog computing archi-
tecture. To efficiently and economically support new cloud
services and edge devices, the Internet emerges into an archi-
tecture characterized by high degrees of freedom. The INPUT
architecture is a consistent fog computing implementation,
which exploits in-network programmability capabilities for
off-loading, virtualization, and monitoring. Physical and vir-
tual resource management control plane mechanisms provide
the ability to move computing and storage capabilities to
the end user to enable short service response times. Physical
smart devices are integrated into the architecture as virtualized
images.

The paper describes the orchestration, monitoring, and con-
solidation workflow for services, taking into account user and
energy considerations. For this, service chains for services
are defined and the service chain problem is specified and
formulated. The paper concludes with a performance analysis
of three different service chain scenarios. The implemented
policies result in negligible delay when the service is instan-
tiated or migrated. Future work includes the quantification of
the delay for arbitrary services with different boot times and
configurations within the INPUT and other fog architectures.
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