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Abstract—The requirements for video streaming have changed
drastically during the past years. In today’s Internet, high
definition resolutions are considered default for videos, even in
mobile settings, and with 4G penetration reaching 90 percent in
the US, this no longer poses a big problem. However, while mobile
bandwidth has increased, the battery life time of mobile devices
has not increased significantly. Furthermore, current data plans
are still not large enough to regularly stream movies during the
commute. Users still resort to downloading media before travel.

In this paper we propose a new HTTP adaptive streaming
algorithm that delivers videos in high quality while avoiding
stalling events, schedules the download of video segments so that a
energy conserving idle state is often reached and keeps the buffer
low at points in the video where many viewers abandon the video
to save data. While most adaptive streaming algorithms optimize
quality and stalling, this is the first attempt to use an adaptive
streaming algorithm to reduce energy consumption. Since video
streaming providers mostly care about the Quality of Experience
when watching videos, energy efficiency is left to the device
manufacturers. Therefore, both parties have little incentive to
cooperate in this regard. But on the Internet of tomorrow, where
most videos are watched on mobile devices, energy efficiency and
the Quality of Experience must go hand in hand.

Index Terms—HTTP adaptive streaming, energy efficiency,
user engagement, adaptation algorithm, mobile networks

2019 International Conference on Networked Systems (NetSys)

I. INTRODUCTION

Video streaming is one of the most popular applications
in the Internet. With higher bandwidth coverage, mobile
video streaming has become commonplace. According to a
Cisco white paper [1] in 2016, 9% of total video traffic was
mobile traffic and it is assumed to increase to 21% in 2021.
Furthermore, Ericsson predicts that in 2024 over 1.4 billion
devices will be subscribed to 5G which is estimated to offer
bit rates of 1-10 Gbit/s. Mobile video data is estimated to
grow by 35% per year. By 2024 video is forecast be make up
74% of total mobile traffic [2]. In times where 4G penetration
reached 90% in the US1 and 5G is starting to be deployed,
stalling events and poor video quality are less of an issue.
Mobile bandwidth grows exponentially. In contrast, the energy
density of Lithium-Ion cells has only quadrupled since they
became commercially available in 1991 and may soon hit
a limit [3]. The average monthly data volume per mobile

1https://opensignal.com/reports/2018/02/state-of-lte

Internet subscription in Germany was 850 MB in 20172. In
comparison, one hour of HD (720p) video uses about 900 MB.
Currently, there exists no energy and data efficient adaptive
streaming mechanism. The last attempt was in [4] where a data
conserving algorithm is presented for non-adaptive streaming.

In this paper, we present a new adaptation algorithm for
HTTP Adaptive Streaming (HAS) that is based on KLUDCP
[5]. The algorithm uses audience retention statistics of the
video that is currently watched to keep the buffer low during
periods where many users abandon the video to not waste
data. Otherwise, the algorithm downloads video segments
in an on/off pattern based on eSchedule [4]. This way a
device that is used for video streaming can enter the Radio
Resource Control (RRC) IDLE state more frequently, leading
to lower energy consumption. In practice this algorithm is easy
to implement for video streaming providers since they have
access to these statistics. We compare our algorithm with its
baseline (KLUDCP) in terms of application layer QoS (i.e.
number of stalling events, average quality, and number of
quality switches) and in terms of energy savings and data
savings. For this prupose, we conduct a simulation which
uses viewing statistics3 from real YouTube videos, real mobile
bandwidth traces (WiFi, 3G [6] and LTE [7]) and appropriate
energy models. In the simulation, users watch five consecutive
videos and may skip ahead in a video or abandon it based on
the audience retention statistic of each video. This is the first
time that real user behavior is used in an adaptation algorithm
and in its evaluation.

The remainder of this paper is structured as follows. Section
III discusses the used energy models, the audience retention.
Section II further provides background and an overview of
related work. In Section IV we present the new adaptation
algorithm. Simulation results are presented in Section V, while
concluding remarks and outlook are given in Section VI.

II. RELATED WORK

A. HTTP Adaptive Streaming

In modern video streaming applications, video segments are
downloaded into a buffer and later played from it. During an
Internet video stream, the throughput of the utilized network
can vary. If the video is played with a higher rate than it is

2https://www.statista.com/statistics/469121/mobile-internet-monthly-data-
volume-per-user-germany/

3https://support.google.com/youtube/answer/1715160?reftopic=3029003978-1-7281-0568-0/19/$31.00 c©2019 IEEE



downloaded, the buffer empties and stalling occurs until the
buffer is refilled. To prevent this, in adaptive video streaming
the video bit rate can be reduced if a low buffer or a low
network throughput is detected. If the network conditions
improve, the video bit rate can be increased.

User studies have shown that the factors that affect the
user experience the most include the frequency and duration
of stalling events and the video quality [8]. There is a
disagreement whether the number of quality switches has a
significant impact [9], [10] or not [11]. However, all agree
that the number of switches is not important as long as it is
not too high. The ITU-T standard from 2017 [12] does not
include the number of switches in its QoE model.

The heuristics that decide when the video quality should be
changed rely on buffer thresholds or throughput thresholds
of the last few segments. As one of the earlier academic
algorithms, KLU [5] considers a single user in a mobile
environment using single layer content. KLU takes three input
parameters into account: the current buffer level as ratio com-
pared to the maximum buffer level, the throughput measured
while the last segment is downloaded and the average playback
bitrate of each quality level. The adaptation strategy calculates
the available bandwidth as percentage of the last measured
throughput to select the next quality level. The higher the
buffer level, the higher is the calculated percentage of the last
measured throughput. The calculated throughput is compared
to the bitrate of each quality level. The highest quality level
below the calculated bitrate is selected as next quality level.
The algorithm presented in this paper is based on KLU and
KLU is used as a baseline for comparison. There are modern
adaptation algorithms that use machine learning approaches to
predict the best decision. One successful example is Pensieve
[13] which is trained to directly optimize certain QoE metrics.
Others are based on Markov models such as CQBS [14]
which increases the video buffer when channel quality is
high and consumes the buffer when channel quality decreases
in a cost-efficient manner. While their system works with
the assumption that videos are watched completely, in this
paper, we go one step further, and investigate the effect of
realistic user abandonment behavior. Furthermore, we develop
an adaptation strategy that considers the user behavior and the
energy cost of the current channel to increase the data and
energy efficiency of video streaming.

The primary goal of adaptation algorithms is to avoid
stalling, since it has a high negative impact on the quality
of experience. The secondary goal is to keep the video quality
high while not switching between quality levels too frequently,
since this is considered annoying. Bandwidth should be con-
served since most videos are abandoned after a few seconds.
This can be done by limiting the maximum buffer size or limit-
ing the download rate. For example, YouTube has a maximum
buffer size to limit the unnecessarily downloaded data if users
abandon a video. If there were no limit, in a high bandwidth
setting, the whole video would be downloaded quickly. If users
abandon the video early, a large share of the downloaded data
is wasted. This leads to unnecessary transmission cost for the

involved ISPs and YouTube. In a mobile setting, the data a
client can use in a month is often limited by the data plan the
user has signed with his ISP. Therefore, data is particularly
expensive in mobile environments. Since the battery life of
mobile devices is also limited, energy efficiency is considered
very important. Current adaptive streaming algorithms manage
to minimize stalling events and the number of quality switches
while maintaining a high average video quality. However most
do not consider data and energy efficiency.

One issue that is addressed little in current research is
adaptive streaming for multiple users that share a bottleneck.
In such a scenario interactions between the clients happen on
application layer and network layer. In particular with QUIC,
there are many problems in a multi user scenario, since it uses
UDP instead of TCP. For example [15] found that in a shared
bottleneck scenario with one QUIC flow and two or four
TCP flows, QUIC consumes more than 50% of the available
bandwidth. Currently, there are no adaptation approaches that
are used to resolve this issue since this is a new and difficult
topic. The authors of [16] determine the optimal resource
allocation for multiple users who watch the same video at the
same time, e.g. live streaming of a popular show or event.
Their quadratic program optimizes the average quality and
the number of quality switches while stalling is completely
avoided. The authors of [17] extend this scenario to different
videos that may be watched at different times by multiple
users. Their quadratic program is extended to include the
fairness of the resource allocation between the users. Different
types of fairness are discussed that may be employed.

B. Energy and Data Efficiency in Mobile Video Streaming

Qian et al. [18] investigate different RRC inactivity timers
in video streaming over 3G cellular networks. They discover a
performance inefficiency due to tail effects and state promotion
overhead. They find that each application has its optimal value
for the inactivity timer. In [19], they present a framework
that optimizes tail times resulting in a significant reduction of
energy consumption for various Internet applications. Hoqoe
et al. [20] discover that video streaming platforms use different
streaming techniques for different devices, players, and video
qualities. They discover that there is room for optimization in
terms of energy efficiency for every technique.

Seufert et al. [21] use throughput traces of 2G, 3G, 4G
and WiFi networks to investigate how effective it is to
offload mobile traffic to WiFi hotspots. They find that the
low throughout of WiFi networks leads to lower QoE and
higher energy consumption compared to 4G. WiFi offloading
is recommended if only 2G or 3G networks are available but
not for 4G. In this paper, we conduct a similar simulation,
which utilizes 3G and LTE network traces to simulate HAS
in a mobile environment. Further, we simulate user behavior
and evaluate the energy consumption of different adaptation
strategies and different devices to evaluate HAS with similar
network traces and different tail times.

Schwartz et. al. [22] evaluated four different video streaming
mechanisms, in respect to QoE, energy consumption, User



Equipment (UE), and wasted traffic. They show, that their
streaming mechanism, which uses a buffer with two thresh-
olds, offers the best trade-off between energy consumption
and wasted traffic. They use basic probability distributions to
model the user behavior while we use real user statistics in our
evaluation. Furthermore, their work does not discuss adaptive
streaming mechanisms since it was written in a time before
adaptive streaming was popularized.

Siekkinen et al. [23] measured 20% energy savings in
mobile video streaming when shaping the traffic received
from 3G and LTE networks into traffic bursts. Energy could
not be reduced further due to YouTube’s background traffic,
which was interfering with the traffic shaping and causes
unexpected transitions of the RRC. Traffic shaping also pro-
vides a good balance between saved energy and signaling
overhead. In [4], they developed a scheduling algorithm, which
relies on viewing statistics to reduce the energy consumption
and traffic overhead in mobile video streaming. They defined
a scenario, where users can abandon the playback at any
time and developed an algorithm, which predicts the user
behavior based on the viewing statistics. Depending on the
wireless interface that is used, the algorithm calculates the
energy and traffic optimal download schedule. We adapt their
scheduling algorithm to develop a HAS adaptation strategy,
which optimizes the quality, energy consumption, and traffic
waste. Furthermore, we follow a similar idea and utilize
audience retention statistics to perform a user centric traffic
shaping. However, our strategy is built around HAS since it
is very common in video streaming applications. In addition,
we have more complex video sessions, where multiple videos
are watched, and video content may be skipped.

It was observed that YouTube downloads segments first in a
low resolution and later, if there is more bandwidth available,
in a higher resolution [24]. While this may be beneficial
in mobile networks with high variance, it leads to wasted
data. The authors of [25] find that instead of re-downloading
segments, the quality of 20% of the videos investigated in
their study could be downloaded in a higher quality level.
Furthermore, 94% of all stalling events that occurred during
their study could have been avoided. This demonstrates how
much potential for optimization there is and how necessary
data-conserving mechanisms are in HAS.

III. SYSTEM MODEL

A. Energy Model

Huang et al. [26] investigated the performance and power
characteristics of LTE networks. They measured the energy
consumption and timing of 3G, LTE and WLAN interface
in smart phones. They found that LTE possesses the highest
tail time and power consumption. WLAN has the smallest
tail time and energy consumption, and the smallest DRX
cycle and promotion delay. The 3G wireless interface has
the biggest promotion delay. The LTE interface possesses less
promotion delay than 3G, but a significant higher promotion
energy. Additionally, they investigated the send and receive
power consumption. They conducted several experiments and

developed an energy consumption model. Also, LTE possesses
the biggest base power consumption, but the least power con-
sumption per download throughput. WLAN possesses the least
amount of base energy consumption, but the biggest energy
consumption per download throughput. The tail energy can be
limited using Fast Dormancy (FD) [27]. As the model does
not provide a specification for the 3G wireless interface with
FD, we specify the missing model using the FD configuration
from [4]. The FD timer is set by the device to reduce the
tail time45. To reduce the tail time, we set the FD timer to
5 seconds. We use the same 3G power model to simulate
the same device, which supports FD. Further, the tail time
is reduced to the half of the LTE wireless interface’s tail time.
Li et al. [28] investigated the energy consumption of video
decoding in smartphones. They conducted several experiments,
watching different videos and built an empirical model of
the video decoding power consumption. They compared the
energy consumption with the empirical model, which shows
less than 10 percent error. The smartphones both possess a
display resolution of 800x480. The video decoding energy
consumption is different for up scaling and down scaling to
the same resolution. The different devices possess a difference
in energy consumption of 300 mW for smaller and 500 mW
for larger videos.

B. Audience Retention

Most studies, such as [29], consider a video to be completely
watched when benchmarking adaptation algorithms, but on
actual video platforms users frequently interact with videos.
Users abandon the video playback or skip some playback and
resume at another playback position. Statistics about the user’s
video playback behavior show, that users skip playback time
and abandon the playback. For example, YouTube provides
audience retention statistics6 to the owner of the video channel.
These statistics describe which part of a given video is watched
by what share of users. Figure 1 shows an example for a
video, which possesses a duration of 3 minutes and 43 seconds.
The audience retention starts at 100%, indicating that all users
started to watch the video at its beginning. About 30% of all
users abandoned the video or skipped ahead during the first 7
seconds. Due to the user’s possibility to skip playback before
the start of playback, the audience retention can also start with
less than 100%. Users, who skip backwards to the beginning
of the video, result in higher audience retention than 100%.
Forward and backward skipping lets the audience retention
rise and fall during the playback time.

Video segments with a low user retention, are watched by
few users. Always downloading them results in a lot of wasted
data and energy. We make use of this fact by delaying the
download of these segments until necessary. This leads to
a lower expected data consumption and energy consumption

4https://www.gsma.com/newsroom/wp-content/uploads/2013/08/TS18v1-
0.pdf

5http://www.3glteinfo.com/fast-dormancy-in-3gpp/
6https://support.google.com/youtube/answer/1715160?hl=en



Figure 1. Example for viewer abandonment statistic: audience retention of video segments compared to total views of YouTube video ABSIFBFIOS.
Abandonment is typically high at the beginning. An increase in the curve indicates that users skipped ahead in the video.

Variable Definition
P0 last segment that was downloaded
P1 first segment of next batch that is downloaded
P2 last segment of next batch that is downloaded
n size of batch in segments

bw+ optimistic bit rate suggestion for next batch
bw+ pessimistic bit rate suggestion for next batch
tl tail time
er predictability of the network throughput

rdl(P0) throughput during download of last segment
bl+ optimistic buffer level estimation
bl− pessimistic buffer level estimation
Q(i) quality layer in which segment i is downloaded

br(Q(i)) encoding rate of quality layer Q(i)
ti remaining play time of segment i
con constraints to avoid stalling and guarantee high quality

pabd(j) abandonment prob. at segment j
D last segment played before next download

Etail energy consumption per second during tail
Erx energy consumption of bit rate

Table I
NOTION OF VARIABLES.

during video streaming. The details of this approach are
described in Algorithm 1.

IV. ADAPTATION ALGORITHM

In this section, we present the adaptation algorithm and its
components. Our algorithm is a combination of the buffer- and
bandwidth-based algorithm from [5] and an energy-efficient
schedule for the download of video segments from [4] that
we extend for adaptive streaming. We determine the bit
rate bw+ of the following segments P1 to P2 according to
KLUDCP, adding an error variable to avoid overestimating
future bandwidth. Since we want to select a quality layer for a
batch of segments instead of a single segment, several changes
had to be made to the basic algorithm. To avoid stalling when
downloading large batches of segments, we estimate the bit
rate after the download of each segment. An overview of the
used notion is given in Table I.

We define an error er ∈ [0, 1], which describes the high-
est percentage, which we expect the bandwidth to sink/rise
per downloaded segment. We call this optimistic bandwidth
estimation for a rising throughput and pessimistic bandwidth
estimation for a shrinking throughput. Equation 1 shows the
optimistic bandwidth estimation, where the error value rises

per segment download and the resulting estimated bandwidth
rises per segment download. Equation 2 shows the pessimistic
bandwidth estimation, where the error value rises per segment
download and the resulting estimated bandwidth shrinks. The
buffer level is used to calculate the quality level, so we cal-
culate the expected buffer level after each segment download.
The throughput prediction can be replaced by more refined
methods, compare [13].

As we consider optimistic and pessimistic bandwidth, we
also need an optimistic and pessimistic buffer level estimation.
Equation 3 calculates the expected pessimistic buffer level,
while Equation 4 calculates the expected optimistic buffer
level. Both consist of three parts: the first part sums the
already buffered time. The second part sums additionally
buffered time after the download is completed, in respect to
the pessimistic/optimistic bandwidth estimation. The third part
represents the tail time, which is spent before the download
started.

bw+(P1, P2, n, tl) = (1)

rdl(P0) · (1− er)n−1 · 0.3 if 0 ≤ bl+ < 0.15

rdl(P0) · (1− er)n−1 · 0.5 if 0.15 ≤ bl+ < 0.35

rdl(P0) · (1− er)n−1 if 0.35 ≤ bl+ < 0.5

rdl(P0) · (1− er)n−1 · (1 + 0.5 · bli) if 0.5 ≤ bl+ < 1

bw−(P1, P2, n, tl) = (2)

rdl(P0) · (1− er)n−1 · 0.3 if 0 ≤ bl− < 0.15

rdl(P0) · (1− er)n−1 · 0.5 if 0.15 ≤ bl− < 0.35

rdl(P0) · (1− er)n−1 if 0.35 ≤ bl− < 0.5

rdl(P0) · (1− er)n−1 · (1 + 0.5 · bli) if 0.5 ≤ bl− < 1

For the video encoding rate br(Q(i)) of quality Q(i) of
segment i, the buffer level is determined as

bl+ =

P2∑
i=P1

ti +

P2+n∑
i=P2+1

ti · (1−
br(Q(i))

bw+
)− tl (3)

bl− =

P2∑
i=P1

ti +

P2+n∑
i=P2+1

ti · (1−
br(Q(i))

bw− )− tl. (4)



The equations determine an optimistic and pessimistic band-
width and buffer estimation. Equation 5 contains multiple
constraints for optimistic and pessimistic bandwidth and buffer
estimation. The buffer constraint checks, if the buffer may
run empty or full. The bandwidth constraint checks, if the
estimated bandwidth is not less than the quality level’s bit rate.
It also checks, if the optimistic bandwidth estimation is not
bigger than the next quality level’s bit rate. Both constraints
must be met to ensure a smooth playback.

con =


1, if bw+ ≥ br(Q) ∧ bw− < br(Q+ 1)

∧bl+ > 0 ∧ bl− < 1

0, else

(5)

E[Bwaste(P2, D, n)] =

P2+n∑
i=D+1

i∑
j=D+1

pabd(j) · ti · br (6)

E[Ewaste(Pm, P2, D, n)] = (7)

Etail ∗
D∑

i=P1

max(ti, t) +
E[Bwaste(P2, D, n)]

rdl
· Erx(rdl)

The abandonment probability pabd(j) is the probability that
a user abandons the video right before starting to watch
segment j. The algorithm starts by selecting the quality level
before the algorithm enters three interleaved loops. The first
loop iterates over the segments, which can be downloaded.
The loop begins at the first not yet buffered segment and ends
after the limiter is exceeded. The second loop also begins at
the first, not yet buffered segment and ends at the current
position of the first loop. The third loop iterates over the
buffered segments. Then the algorithm calculates the expected
buffer state for each combination. The expected buffer state is
determined using the expected buffer state of the download,
which downloads all previous segments, or the current buffer
state, if there is no previous download. The expected wasted
Energy depends on the abandonment probability pabd(j) and
the current buffer state, compare Equations 6 - 7. If there
are no constraint violations and the expected wasted energy
is less than the expected wasted energy of the stored buffer
state, this buffer state is stored. The algorithm saves one buffer
state per segment. The comparison is performed to the stored
buffer state, which download ends at the same segment. After
all combinations are evaluated, the algorithm performs a back
trace. Therefore, the algorithm starts at the stored expected
buffer state, which downloads the last segment. The next
expected buffer is searched, which ends before the buffer
state’s first downloaded segment. This process continues,
until the back trace reaches the current buffer. The traced
downloads are returned as schedule in reversed order together
with the determined quality level. The download schedule can
be incomplete, which should not affect the overall behavior,
because the schedule must be reevaluated after each download.
If there is no optimal download without adaptation or stalling,
the algorithm falls back by downloading the next segment at
the selected quality level.

Algorithm 1: Energy-Efficient Batch Adaptation (EE)
Data: P1, P2, buffersize
// buffersize is the maximum buffer size

Result: S, quali
1 En(P2) = 0
2 P1(P2) = P1 // first segment in buffer

3 P2(P2) = P2 // last segment in buffer

4 forall q = P1 to P2 do
5 if br(p) < minbw then
6 quali = q(p) // quality of last segment

which has lower bit rate than bandwidth

7 forall i = P2 +1 to P2 + buffersize // segments that

may be downloaded without overextending the

buffer size

8 do
9 forall j = P2 + 1 : i // subsets of consecutive

segments beginning with the next segment

10 do
11 forall k = P1 − 1 : j // segments of buffer

and subset

12 do
13 Ecur =

En(j) + E[Ewaste(P1(i), P2(i), k, i− j)]
// expected wasted energy when

downloading segments until j,

considering abandonment rate and

tail energy

14 Pminn = P1(j − 1)
15 forall l = P1(j − 1) : P2(j − 1) do
16 Pminn+ = (tl − (tl · enc/dl))
17 Pminn− = tail
18 if Ecurr < En(i) ∧ con(Pminn, j − 1, i−

j, tail, quali) == 0) // check if

expected wasted energy will be lower

compared to downloading one less

segment and if buffer and bandwidth

constraints are fulfilled

19 then
20 En(i) = Ecur

21 lastchange(i) = j
22 P2(i) = j − 1
23 P1(i) = Pminn

24 P − x(i) = i
// schedule segments P2 + 1 to j to

be downloaded as a batch

25 end = PLx + buffersize
26 while (end > PLx) do
27 S = (end− lastchange(end), S)
28 end = lastchange(end)



Figure 2. Video browsing session in which five videos are watched of which
three are abandoned early. At the beginning of a video the abandonment rate
is high, so the buffer is kept low to save data. The RRC state is turned off
frequently to save energy with EE.

As shown in Figure 2, the adaptation strategy does not
keep the same buffer size and the RRC transits to the lower
state for several times. The buffer fluctuates between 10 and
30 seconds. According to the audience retention, the buffer
is filled and depleted. During the depletion phase, the RRC
transits to the lower state. After a long tail duration, the
adaptation strategy continues the download to avoid stalling.
Another aspect of the buffer behavior is that the buffer stays
small during the first few seconds of playback. The audience
retention statistics usually possess high abandon probabilities
at the video’s beginning. Therefore, the first segments are
carefully downloaded. This approach shows the desired buffer
and RRC behavior, which potentially saves energy and traffic.

V. RESULTS

A. Methodology

We use user abandonment statistics from 21 popular videos
from six cooperating YouTube channels. We download the
corresponding videos as mp4-file in every available resolution.
We use three kinds of goodput traces: constant bandwidth,
real vehicular 3G traces [6], real vehicular LTE traces [7] We
simulate video streaming on application layer. We download
videos and decode them into their frame sequence using
ffprobe to determine the location of key frames which we
use as segment start in our simulation. We simulate a video
browsing session, where the user watches five videos in a row,
compare Figure 2. The probability that the user abandons the
video or skips ahead in the video is given through the viewer
abandonment statistic for the video he is currently watching.
We do not consider skipping back to a previous position of
the video since it is too difficult to determine from viewer
statistics. If a video is finished or abandoned, the next video
is selected randomly from the remaining pool of videos. Each
experiment was repeated 100 times. All confidence intervals
in the figures are given with 95% confidence.

Figure 3. Impact of the minimum buffer size on the frequency stalling events
for constant bandwidth.

Figure 4. Impact of the minimum buffer sized on energy and data saved for
constant bandwidth using an LTE interface.

B. Impact of Buffer Size

First, we investigate the impact of the buffer size on
QoS, energy consumption and data consumption for our new
algorithm. The minimum buffer size determines the lower
threshold that should never be underpassed to avoid stalling.
A minimum buffer size lower than 10 seconds leads to more
frequent stalling events, as can be seen in Figure 3. A larger
minimum buffer size also leads to higher average quality and
fewer quality switches. However, a higher min buffer means
that more data will be wasted in the case of an abandonment
event and more energy is used since idle periods cannot last
as long, compare Figure 4. We therefore use a balanced min
buffer size of 15 seconds to avoid too many stalling events.

The (maximum) buffer size defines how much video content
may be downloaded into the buffer at most before it is played.
In Figure 5,6 and 7 we see the impact of the buffer size on
energy consumption and wasted data. A large buffer of 80 s
means that we can download a lot of video content into the
buffer and then pause the download until the buffer is almost
depleted. This pause is very energy efficient since the idle
RRC state can be reached for a long period of time. However,
if the user abandons the video when the buffer is filled up,
a lot of data is wasted. This means that the buffer size is
a trade-of between energy and data. Since it depends on the
scenario whether data or energy is more valuable, we use three
parameters for the buffer size in the following: 30s, 50s, 80s.



Figure 5. Resourcefulness of KLU and EE in constant WiFi scenario

Figure 6. Resourcefulness of KLU and EE in vehicular 3G scenarios

C. Impact of Network on Saved Energy

Next, we investigate how much energy can be saved in
different scenarios. In a WiFi scenario (Figure 5) the consumed
energy can be reduced by about 25% with a large buffer. While
less data is wasted with EE than with KLU, data is usually
not limited in WiFi settings compared to other mobile settings
where data is limited through data plans. In conclusion, EE
leads to higher energy efficiency in a WiFi setting. In a 3G
scenario (Figure 6) EE leads to 10 − 12% of energy saved
when comparing a 30s buffer to an 80s buffer. In terms of
data, it becomes visible that especially for high buffer sizes,
EE is much more efficient than KLU since it makes use of
user abandonment statistics. In absolute numbers however, in
average only about 2MB are saved for each video that is
started. In contrast, savings are much higher in LTE networks
(Figure 7). For an 80s buffer, we can reduce the average
energy consumption by 35 − 40% and the wasted traffic by
about 50%. Here, the saved data is larger, but also only lies
between 3-6 MB which corresponds to 12-24 seconds of 720p
video content. From the energy perspective it makes the most
sense to use EE in LTE scenarios where it can result in much
longer battery time. Furthermore, it is visible that a large buffer
always increases the battery time significantly while the saved
data is insignificant. Even with a large buffer only little data
is wasted since the buffer is not filled up during scenes in the
video where many users abandon.

D. Performance in Terms of Application-Layer QoS

Next, we compare the QoS for KLU and EE in the LTE
scenario. The average playback quality is only about 1%
higher in KLU, c.f. Figure 8. With KLU the average number
of quality switches per hour lies between 7 and 50 depending
on the scenario and is about 50% - 100% higher than with EE.

Figure 7. Resourcefulness of KLU and EE in vehicular LTE scenarios

Figure 8. Application layer QoS for KLU and EE in a vehicular LTE scenario

The number of quality switches is within acceptable values for
both strategies. The number of stalling events is higher for EE
with 0.4 stalls per hour, but acceptable for mobile scenarios.
This is because KLU constantly stays at high buffer, while EE
has ON/OFF phases to conserve energy. An exception can be
observed for the subway scenario. In this scenario, the user
passes through many long tunnels where no connection to
the network is possible. If such a tunnel cannot be predicted,
stalling can only be avoided if the buffer is very high when we
enter the tunnel. So, only KLU with 80 s buffer size can avoid
some stalling events. Such scenarios are discussed in [30]
where first solutions for outage prediction and handling are
presented. We therefore recommend to choose a large buffer
to reduce the number of stalling events in these rare events.

To sum up the results, we see that EE is much more
resourceful than KLU while maintaining a similar QoS on
application layer. An exception is only observed in a scenario
with very bad connectivity where energy and data efficiency
are a secondary concern. When such a scenario is detected,
the player should switch to a conservative adaptation strategy
that maintains a high buffer such as KLU.

VI. CONCLUSION

The popularity of video streaming has increased consid-
erably on mobile devices in the past years. Consumers do
not only care about the quality of the content and the quality
of the service, but also about the energy efficiency and the
data efficiency of their device while they use the service. We
identified adaptation algorithms as a good point in the service
chain for optimizing the expected energy consumption and the
expected data consumption.

In this paper, we combine an adaptive streaming heuristic
and an energy efficiency scheme for video streaming using



user behavior statistics into a new adaptive streaming heuristic.
Furthermore, we extend the heuristic with a data efficiency
scheme by comparing the abandonment probability with tail
energy that can be saved to determine a schedule for down-
loading the next segments. We investigate the performance
of our heuristic by simulating a video session where users
watch five consecutive videos. Simulated users abandon videos
or skip through parts of a video based on viewer retention
statistics of real YouTube videos and users.

Our results show that being aware of the user behavior
and scheduling segment downloads efficiently can reduce the
energy consumption of the video download by about 25% in
WiFi networks and by 35−40% in LTE networks with a buffer
size of 80s. The wasted traffic that results from video segments
that are downloaded but never viewed can be reduced by about
50% in the latter scenario. The gain in terms of energy and
data comes at no cost in terms of quality and stalling compared
to the baseline KLUDCP, except for scenarios with very long
connection interruptions. For this case, we plan to investigate a
Markov Chain based adaptation algorithm that performs very
well in these situations [14] and possibly replace the KLUDCP
component of our heuristic. Furthermore, we plan to extend the
heuristic for 360-degree videos using head movement statistics
of videos to enable long term viewport prediction.
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