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1 Introduction

Content Delivery Networks (CDNs) are increasingly responsible for the largest
share of tra�c in the Internet [26]. CDNs distribute popular content to caches in
many geographical areas to save bandwidth by avoiding unnecessary multihop
retransmission [27]. By bringing the content geographically closer to the user,
CDNs also reduce the latency of the services.

Four main stakeholders are interested in an e�cient operation of CDNs. End
users expect high quality content and fast and reliable access. The end users are
direct customers of content providers, which have similar objectives. To o�er
a good service to end users, content providers aim to provide high availability
of their content, which is achieved by replicating content to many geographical
areas. At the same time they try to limit their expenditures for content servers
and bandwidth o�ered by content delivery network providers. In order to ensure
an e�cient replication of the content, content delivery network providers have
a network of (globally) distributed interconnected datacenters at di�erent points
of presence (PoPs). The aim of content delivery network providers is to replicate
the content to the areas of interest, while limiting their capital and operational
expenditures for network and storage infrastructure. The content provider and
the content delivery network provider may be part of the same company. Finally,
Internet Service Providers (ISPs) are responsible for providing Internet access
and for delivering the content to the end users. ISPs aim to provide reliable and
high speed Internet access. They try to keep the load on the network low and
to reduce cost for connectivity with other ISPs.

While CDNs are able to handle the huge tra�c volume of highly demanded
services, such as Internet video, new challenges arise in mobile networks in to-
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1 Introduction

day’s Internet. The increasing number of mobile devices such as smart phones
and tablets, high de�nition video content and high resolution displays result
in a continuous growth in mobile tra�c. This growth in mobile tra�c is fur-
ther accelerated by newly emerging services, such as mobile live streaming and
broadcasting services. The steep increase in mobile tra�c is expected to reach
by 2018 roughly 60% of total network tra�c [26], the majority of which will
be video. To handle the growth in mobile networks, the next generation of 5G
mobile networks are designed to have higher access rates and an increased den-
si�cation of the network infrastructure.

With the explosion of access rates and number of base stations the back-
haul of wireless networks will become congested [27]. To reduce the load on
the backhaul the research community suggests installing local caches in gate-
way routers between the wireless network and the Internet, in base stations
and in end-user devices. A recent approach [28] proposes to augment spare
capacities on customer premise equipment (CPE) such as home gateways or
nano data-centers (NaDas) to assist content delivery, showing that there is a
high potential to save energy, although the capacity of home gateways is small
and the uplink is limited. The content is transported in a peer-to-peer manner
keeping the tra�c within the autonomous system (AS), i.e., the ISPs network.
The caches are organized in a hierarchy, where caches in the lowest tier are re-
quested �rst. The request is forwarded to the next tier, if the requested object is
not found. Another example for a hierarchical caching system with bandwidth
constraints are femto-caching architectures [29], where content is cached on
femto-basestations with small capacity but with considerable storage space. The
potential of these approaches highly depends on the number of caches available
and their capacity for content delivery.

Appropriate evaluation methods are required to optimally dimension the
caches dependent on the tra�c characteristics and the available resources. The
performance of hierarchical cache networks can be accurately determined by
analytic models developed in recent work [30, 31]. The models do not consider
constraints that limit the capability of caches to upload content, such as the
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bandwidth of the uplink. To account for a limited upload bandwidth of caches,
in this thesis, the hierarchical caching system is modeled as loss system, con-
sisting of a server for each of the caches.

To further increase the overall backhaul capacity, current concepts consider
multiple connections to the Internet, thereby sharing and aggregating available
backhaul access link capacities. Recently proposed approaches are based on of-
�oading thresholds to share access links among neighboring users. Each user
should only share its access link for bandwidth o�oading when having spare
capacity, in order to avoid negatively a�ecting the own Internet connections. It
is hard and non-intuitive to determine the threshold settings for fair and e�ec-
tive operation of a bandwidth sharing system. Therefore, in this thesis, a partial
bandwidth sharing environment with o�oading policy is investigated using an
analytic model. A direct application of the model is the aggregation of backhaul
bandwidth by connecting neighboring access links.

The objectives of this monograph can be summarized as follows. The �rst goal
is to provide a thorough understanding of the nature of today’s content delivery
networks and their distribution of resources on AS level. This knowledge allows
to assess the costs produced by current content delivery approaches and to esti-
mate their optimization potential. Furthermore, we use this knowledge to design
tra�c management mechanisms that reduce costly inter-domain tra�c and use
spare resources in the backhaul to improve the overall system performance. The
second goal is to analyze the performance of hierarchical cache networks with
limited capacity, in order to assess their potential to support content delivery.
The �nal objective is to evaluate the performance of backhaul bandwidth ag-
gregation systems. A detailed description of the scienti�c contribution in this
monograph is given in the following.
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Figure 1.1: Cartography of scienti�c contributions of the author on performance
evaluation of content delivery networks. The content of references pre-
sented in this monograph is depicted in bold.

1.1 Scientific Contribution

This section summarizes the contribution of this monograph to the �elds of hi-
erarchical content delivery networks and the analysis of bandwidth aggregation
systems. An overview of the content of the studies is given and their relations
are explained.

Figure 1.1 classi�es the publications according to the investigated topic on the
x-axis and the investigation methodology on the y-axis. The investigated top-
ics are the characterization of content delivery networks on AS-Level, caching
systems and bandwidth aggregation systems. The methods comprise real-world
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1.1 Scienti�c Contribution

Internet measurements, simulations and analysis. The studies may overlap dif-
ferent areas in both dimensions or only cover a single aspect and method, which
means that a single subject is investigated using di�erent methods or may com-
prise AS aware and caching mechanisms at the same time.

The �rst major contribution of this monograph is a characterization of con-
tent delivery networks on AS level. In order to characterize the server infras-
tructure of CDNs, a distributed measurement architecture is necessary, due to
the location based server assignment in CDNs. Typically distributed measure-
ment platforms such as PlanetLab are used for that purpose. These measurement
platforms may not re�ect the perspective of an end user, since they are hosted
in research networks and not in ISP networks. To achieve a better view on the
YouTube CDN from the perspective of end users in access networks, we use a
commercial crowdsourcing platform to recruit regular Internet users as mea-
surement probes, c.f. [10]. Thus, we increase the coverage of vantage points for
the distributed measurement of the YouTube CDN. To evaluate the impact of
the measurement platform and the coverage of their vantage points, we per-
form the same measurements using PlanetLab nodes and crowdsourcing users
and compare the obtained results. The results show that distributed measure-
ments in PlanetLab are not capable to capture a globally distributed network,
since the PlanetLab nodes are located in National Research and Education Net-
works (NRENs) where the view on the Internet is limited. The models derived
from the measurement results can be used for performance analysis and opti-
mization of content delivery mechanisms. In particular the models are used to
assess the overall potential of approaches using home routers to support content
delivery. In order to determine the amount of home routers available to support
content delivery in ASs, we evaluate the Internet Census Dataset, which con-
tains a complete scan of the IP address space, c.f. [15]. The evaluation shows
that autonomous system size is highly heterogeneous, where the 10 largest au-
tonomous systems already contain 30% of the active IP addresses. To model the
tra�c �ow of P2P networks across ISPs in the Internet, we use measurements
of live P2P networks and the actual AS topology of the Internet provided by
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1 Introduction

Caida.org. Thus, we estimate P2P tra�c characteristics and the emerging tran-
sit costs. Measurements of live P2P networks contain the location of peers in the
Internet. We use inferred AS paths to calculate the real AS paths between peers
in the P2P networks and de�ne three peer selection strategies that decide which
peer is connected to which other peer, c.f. [13]. The analysis of the optimization
potential of P2P networks shows that the transit tra�c is reduced especially in
large ISPs by locality aware peer selection. By estimating the potential of ISPs
to optimize their revenue, we �nd that especially for small ISPs the potential to
reduce transit costs is high using local peer selection.

As second major contribution, we evaluate the performance of a tiered
caching architecture with bandwidth constraints analytically and by means of
simulation. We provide a versatile simulation framework for evaluating hier-
archical caching systems allowing to consider di�erent features including the
home router sharing probability, bandwidth constraints and the AS topology.
We use the inferred AS paths to calculate the real AS paths and assess the tran-
sit cost savings by hierarchical caching systems, c.f. [7, 17]. We develop a method
to accurately assess the system performance of tiered caching architectures with
bandwidth constraints analytically. To consider the upload bandwidth the sys-
tem is modeled as loss system consisting of a server for each of the caches.
The exact stationary distribution of the loss system is too complex to evaluate.
Approximating the arrival rate of requests at the cache allows us to e�ectively
assess the loss probability by using a simple form of the Erlang formula for a
loss system, c.f. [15]. Even for tra�c with highly heterogeneous request rates
the approximation re�ects the system performance. By comparing uncoordi-
nated caching strategies using an overlay with optimal content placements in
parameter studies, we �nd that the overall system performance can be further
increased by more than 10% if an optimal content placement is used. The poten-
tial to increase the e�ciency of the CDN is especially high if only a small or no
ISP cache is available.

The third major contribution presented in this monograph considers the ag-
gregation of backhaul bandwidth to further increase the overall system capacity
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1.2 Outline of Thesis

by using spare bandwidth resources. In a �rst step a two dimensional Markov
model is developed to seamlessly evaluate the performance of systems between
partitioning and complete sharing dependent on the threshold settings, c.f. [3].
The results show that, in contrary to the prevailing opinion, a complete sharing
system can perform worse than a partitioned system if the load on the links is
highly heterogeneous. In order to extend the model to the case of more than
two links an approximation of the state probabilities using �xed point iteration
is used, c.f. [16]. This is highly relevant for praxis, since in densely populated ar-
eas far more than two access links are available for aggregation. By summing up
the interaction between the systems in two o�oading rates, them-dimensional
Markov chain is reduced to one dimension to achieve feasible computational
complexity. Bandwidth sharing systems are designed to increase the through-
put of systems that are currently overloaded by using spare bandwidth of under-
utilized links. In such situations the load on the links is highly heterogeneous.
By considering an outer and an inner composite system, we are able to apply
the method to the case of heterogeneous load, which is crucial to assess the
full potential of the approach. Our results show that an overloaded system can
highly bene�t, by receiving multiples of its own capacity, from spare bandwidth
of underutilized cooperating systems. Finally, we evaluate the robustness of the
mechanism against free riders by prioritizing links and �nd that altruistic users
may only lose slightly more bandwidth than in normal operation. This is impor-
tant, since a bandwidth sharing system that is running an ine�cient o�oading
policy may be exploited by free riders that claim spare bandwidth by o�oading
tra�c, but do not share any of their own bandwidth.

1.2 Outline of Thesis

The remainder of this monograph is structured as follows. Chapter 2 shows
the principles and recent developments of content delivery networks and char-
acterize their resources on AS level by performing and evaluating distributed
measurements. In order to characterize P2P networks on AS level, we analyze
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1 Introduction

a measurement study and identify the number of peers per swarm available
in each AS and investigate the performance of di�erent peer selection strate-
gies. We compare the capabilities of a crowdsourcing platform and a PlanetLab
testbed for distributed active measurements. To get a global view on the num-
ber of resources available in each AS we evaluate the Internet Census Dataset,
which contains a complete scan of the IP address range. The models derived
are used to characterize the tra�c in P2P networks and to develop optimization
strategies to reduce inter-domain tra�c and transit costs.

In Chapter 3 we analyze hierarchical caching systems. To this end, we in-
troduce models for hierarchical caching systems, content popularity and tra�c
models and give an overview on existing analytical models. We describe the sim-
ulation framework developed to evaluate hierarchical caching systems and give
numerical examples studying the impact of caches on transit tra�c. Finally, we
provide an analytic model for hierarchical caching systems considering band-
width constraints of the caches and show the impact of limited bandwidth on
the overall system performance.

In Chapter 4 we analyze the performance of bandwidth aggregation systems.
We �rst give an overview on bandwidth aggregation approaches and study ex-
isting performance models for bandwidth aggregation systems. We de�ne the
system model and give analytic results of reference systems. We then provide
analytical models for bandwidth aggregation systems with two links and multi-
ple links and show their potential in numerical examples. We extend the analyt-
ical models to support imbalanced load in order to determine the full potential
of bandwidth aggregation systems, which is achieved when spare bandwidth
can be reused. Finally, we study the fairness of the system and provide results
with general service times. Chapter 5 summarizes this monograph and draws
conclusions.
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2 Characterization of Content

Delivery Networks on

Autonomous System Level

In the last decade content delivery has shifted from the host-centric to the
information-centric network (ICN) paradigm. To enable e�cient tra�c manage-
ment, ICN suggests addressing of content. Addressing content instead of physi-
cal hosts allows utilizing local resources. To enable addressing, ICN implements
naming of information (or content) with unique identi�ers. This allows caching
content in the network on available storage on routers. Since the tree-like struc-
ture of the routers unfolds on the path to the end users, the replication of the
content scales with its demand.

While in the past a large fraction of the total Internet tra�c was carried
by peer-to-peer (P2P) networks [32], the largest fraction of Internet tra�c is
now carried by content delivery networks (CDNs) [26], which follow the ICN
paradigm.

In case of P2P networks, peers contribute to the delivery of content by serving
chunks of data. To enable exchange of data, a tracker keeps track of the peers
sharing chunks of a �le. For every �le which is exchanged within the network,
P2P networks form a separate, mesh-based overlay. P2P networks are still re-
sponsible for a large fraction of Internet tra�c. In CDNs the content provided
by a content provider is replicated to caches deployed in data-centers in many
di�erent geographic locations. Content requests are redirected to the closest
cache location that can serve the content.

9



2 Characterization of Content Delivery Networks on Autonomous System Level

Autonomous systems (ASs) are individual parts of the Internet controlled of
one or more network operators on behalf of a single administrative entity. To be
connected to remote ASs in the Internet, ISPs acquire transit providers or agree
on peering relationships. Transit provider charge transit fees for inter-domain
tra�c, which is tra�c routed to di�erent ASs. The problem is that a high amount
of costly inter-domain tra�c can be caused by both content delivery concepts,
P2P and CDN.

The inter-domain tra�c caused by P2P networks is especially high, if the ex-
change of data among peers is uncoordinated. The tra�c originating from CDNs
is highly asymmetric and thus also produces a large amount of inter-domain
tra�c [33]. Reducing the tra�c carried by CDNs and the load put on ISP net-
works has high potential to reduce energy consumption and cost for content
delivery and transit. In order to develop tra�c management mechanisms, aim-
ing to reduce inter-domain tra�c and to optimize content delivery, it is crucial
to understand the current situation of CDNs and the number and distribution
of available resources.

In this chapter, we show the principles and recent developments of content de-
livery networks and characterize their resources on AS level by performing and
evaluating distributed measurements. The models derived are used for tra�c
characterization and to develop optimization strategies to reduce inter-domain
tra�c and transit costs.

To characterize P2P networks on AS level, we analyze a measurement study
and identify the number of peers per swarm available in each AS and investi-
gate the performance of di�erent peer selection strategies. As key performance
indicators we determine the tra�c volume and the tra�c costs of ISPs.

For the characterization of CDNs on AS level, a distributed measurement ar-
chitecture is necessary to identify the server resources, due to the location based
server assignment of CDNs. Typically, distributed measurement platforms such
as PlanetLab are used for that purpose. The problem is that these measurement
platforms may not re�ect the perspective as consumer, since they are hosted
in National Research and Education Networks (NRENs) and not in ISP net-
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2.1 Evolution and Structure of Content Delivery Networks

works. We compare the capabilities of a crowdsourcing platform and a Plan-
etLab testbed for distributed active measurements of CDNs.

Recent approaches [28] suggest to use resources on customer premise equip-
ment (CPE) such as home routers or network attached storage to support con-
tent delivery while saving energy. The potential of such peer assisted content
delivery approaches depends on the number of subscribers in the ISPs network.
To get a global view on the number of resources available in each AS, we eval-
uate the Internet Census Dataset, which contains a complete scan of the IP ad-
dress range.

The models derived from the measurement results are used for performance
analysis and optimization of content delivery mechanisms. In particular the
models serve as input for the optimization strategies for peer selection and the
evaluation of hierarchical CDNs in realistic parameter studies in Chapter 3.

The content from this chapter is published in [10, 13, 15]. Section 2.1 describes
the evolution and structure of content delivery networks. We present measure-
ments and models of CDNs in Section 2.2. In Section 2.3 two approaches for dis-
tributed active measurements are compared towards their capability to probe
servers in CDNs and the global CDN of YouTube is characterized. The applied
methodology to characterize P2P tra�c and to estimate its transit costs is de-
scribed in Section 2.4. We discuss lessons learned in Section 2.5.

2.1 Evolution and Structure of Content Delivery
Networks

This section describes the background on tra�c exchange among ISPs and CDNs
and presents related work. We start with an introduction in ISP relations and
charging models. We provide the basic ideas of content delivery network struc-
tures and their evolution. We brie�y describe the structure of the YouTube video
CDN. Finally we evaluate the Internet Census Dataset to assess the potential of
peer assisted CDNs.

11



2 Characterization of Content Delivery Networks on Autonomous System Level
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Figure 2.1: Autonomous system topology with a P2P network.

2.1.1 ISP Relations and Charging Models

The Internet is a network of autonomous systems, which are individual parts of
the Internet operated by ISPs. On a technical level, the tra�c exchange between
ASs is controlled by the Border Gateway Protocol (BGP) [34]. Commercial rela-
tions between ISPs determine the routing policies con�gured via BGP.

An ISP must buy transit services to access parts of the Internet it neither
owns nor can access by its customers. Hence, to route tra�c between ASs, ISPs
engage in business relationships. These business relationships are usually not
open for public but they can be abstracted into three common types [35]. The
relationship between two ASs can be transit, peering or sibling. A transit link
is present if the customer AS pays the provider AS for transit service, i.e., the
provider forwards the tra�c of the customer and its customers.

Figure 2.1 shows an AS topology with ASs interconnected with inter-domain
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2.1 Evolution and Structure of Content Delivery Networks

links. AS 1 is a transit provider for AS 2 and AS 3, which means that AS 2 and
AS 3 are charged by AS 1 for forwarding their tra�c. If a peering link is present
the ASs have an agreement that they exchange each others tra�c and the tra�c
of their customers, without paying each other. ASs of similar size often have
peering agreements where the tra�c is expected to be balanced. In Figure 2.1
AS 7 has a peering agreement with AS 1, such that neither of the ASs is charged
for the tra�c transported between them. Sibling links are between ASs that
provide transit for each other, e.g., for connection backup if a transit provider
fails. These relations are de�ned in business agreements and kept secret, but
they can be inferred by analyzing the routing between autonomous systems.
These relations lead to a hierarchical structure of the Internet, where all tier-1
ASs not having providers are interconnected with peering links. Stub ASs belong
to small ISPs that do not provide transit for other ASs.

As peering links and sibling links are the same in terms of money �ow, we
consider sibling links as peering links in this manuscript. For the same reason
most datasets available do not contain sibling links. Hence, we only consider
transit and peering inter-domain links from now on.

2.1.2 Evolution of Content Delivery Networks

The drawback of simple client-server architectures for content distribution is
their limited scalability. P2P networks scale, since clients do not only use re-
sources but also provide resources. Most P2P tra�c today is transported using
the BitTorrent P2P �le-sharing protocol. BitTorrent is based on multi-source
downloads between the users. All the users, i.e., peers, sharing the same �le
belong to a swarm, c.f., Figure 2.1.

To join the swarm, a peer requests addresses of other peers at an index server
called tracker. In the standard BitTorrent algorithm the tracker uses random
peer selection to select a subset of peers that are in the swarm. Then, the joining
peer tries to establish a neighbor relation to the peers it got from the tracker and
collects all peers which accepted the request in its neighbor set. The peer signals
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interest to all neighbors which have parts of the �le it still needs to download.
To which neighbor a peer is willing to upload data is decided by the choking
algorithm, which is explained in [36].

The problem of P2P networks is their uncoordinated exchange of data among
peers, which produces expensive inter-domain costs. Implementations of mech-
anisms that reduce the inter-domain tra�c for BitTorrent and other content
distribution overlays, e.g., by trying to keep the tra�c within the AS (intra-
domain), are under discussion in the IETF working group on application layer
tra�c optimization (ALTO) [37]. However, P2P networks also have legal issues
being targeted by rights holders over the involvement with sharing copyrighted
material. P2P networks transfer data from one user to another without using an
intermediate server. These legal issues are not present in CDNs, since content
providers are fully in charge of the copyrights of the content.

While the amount of tra�c transported over P2P networks remained about
the same, the tra�c transported by CDNs has increased exponentially [26] in
the last years. The number of users watching videos on demand has massively
increased and the bandwidth to access videos is much higher. Furthermore, the
increased bandwidth enables web services to be interactive by using dynamic
server- or client-side scripts. The appearance of dynamic services and the in-
creasing quality of multimedia content raises user expectations and the demand
on the servers. To bring content in high quality to end-users with low latency
and to deal with increasing demand, content providers replicate and distribute
the content on caches, deployed in geographically distributed data centers, to get
it close to end-users. To enable the distribution of the content CDN providers
run a network of globally interconnected data centers that are located at di�er-
ent Points of Presence (PoP), c.f., Figure 2.2.

The global expansion of the CDNs also changes the structure of the Internet.
Google has set up a global backbone which interconnects Google’s data centers
to important edge points of presence. Since these points of presence are dis-
tributed across the globe an located at Internet exchange points (IXPs), Google
can o�er direct peering links to access networks with many end users consum-
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Figure 2.2: Content delivery network.

ing the content. Thus, access ISPs save transit costs, while Google is able to o�er
services with low latency. To bring content even closer to users, ISPs can deploy
Google edge cache nodes inside their own network to serve popular content,
including YouTube videos [38].

To select the closest server for a content request and to implement load bal-
ancing, CDNs use the Domain Name System (DNS). The redirection of requests
for load balancing and server selection is depicted in Figure 2.3 for the YouTube
CDN. Typically a user watches a YouTube video by visiting a YouTube video
URL with a web browser. The browser then contacts the local DNS server to
resolve the hostname. Thereafter, the HTTP request is directed to a front end
web server that returns an HTML page including URLs for default and fallback
video servers. These URLs are again resolved by DNS servers to physical video
servers, which stream the content. The last DNS resolution can happen repeat-
edly until a server with enough capacity is found to serve the request. Thus,
load balancing between the servers is achieved [39].

The next generation of content delivery networks try to bring content even
closer to users by using resources in home networks or mobile network cells

15



2 Characterization of Content Delivery Networks on Autonomous System Level

(1) GET watch?v=videoID 

HTML page 

(2) GET embedded object 
Type = “application/x-shockwave-flash“ 

(3) GET videoplayback?... 

Redirect 

SWF Player 

(4) GET videoplayback?... 

FLV file 

YouTube front-end web server: 
www.youtube.com 

YouTube front-end web server 

YouTube cache server: 
…v3.lscache8.c.youtube.com  

YouTube cache server: 
…tc.v1.cache5.c.youtube.com  

C
o
n
te

n
t 

lo
o
k
-u

p
 

C
o
n
te

n
t 

d
o
w

n
lo

a
d

 

a
n

d
 p

la
y
b
a

c
k
 

User PC 

Figure 2.3: Redirection of requests in the YouTube CDN.

for caching. A recent approach [28] proposes to augment spare capacities on
customer premise equipment (CPE) such as home routers to assist content de-
livery, showing that there is a high potential to save energy, although the ca-
pacity of home routers is small and the uplink is limited. The content is trans-
ported locally in a P2P manner keeping the tra�c within the AS. Another ex-
ample are femto-caching architectures [29], where content is cached on femto-
basestations with small capacity but with considerable storage space. The re-
sulting content delivery network forms a hierarchy, as depicted in Figure 2.2,
with local caches in the access network in tier-1, edge caches or caches at the
IXP in tier-2 and the data center of the content provider which holds the whole
content catalog in tier-3. The potential of these approaches highly depends on
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the number of local caches available and their capacity for content delivery. In
order to assess the number of home routers available in an AS, which can be
equipped with caches, we characterize the Internet subscriptions on AS Level.

2.1.3 Characterization of Internet Subscriptions on AS
Level

The performance of systems using resources provided by end-users, e.g., on
home routers, depends on the capacity and number of devices available. To as-
sess the potential of a hierarchical CDN, which uses the home routers provided
with Internet subscriptions, the number of active subscribers in an AS has to
be known. Hence, the goal is to identify the number of home routers with ac-
tive Internet subscriptions in each AS. Assuming that the number of active IP-
addresses is correlated to the number of subscribers in an AS, we use the Internet
Census Dataset to determine the distribution of active IP-addresses on ASs.

We use the Internet Census Dataset [40] to determine the number of active
IP-addresses for each AS in the Internet. The Internet Census Dataset provides
a scan on the active IP-addresses in the Internet based on a full probing of the
entire IPv4 Internet. The scan was conducted from June to October 2012 by in-
fecting several hundred thousand unprotected devices on the Internet to form
the so called carna botnet. The botnet functioned as distributed port scanner
that transfered the results to a central server.

In the ICMP ping scan more than 420 million replied to requests more than
once. The service probe data reveals open ports on devices which is used to
infer the type of device. The Internet Census Dataset was validated forensically
in [41] by aligning the probes of the botnet with the tra�c captured at the UCSD
Network Telescope1, which is a large darknet, i.e., IP addresses that are inactive,
thus not accepting connections. The raw logs of the carna botnet erroneously
reported that a large number of IPs in the darknet were active, likely due to the
presence of HTTP proxies. However, according to [41], only about 3% of the host

1https://www.caida.org/projects/network_telescope/
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probe and port scan logs are potentially a�ected by this problem. Una�ected by
this issue are the logs based on ICMP pings and actual responses from the target
hosts, which are used in our study. In [42] the scope of the dataset is taken into
perspective and show that, although there are some qualitative problems, the
measurement data seems to be authentic.

We use an IP to ASN mapping to derive the autonomous system number for
each IP-address. There are di�erent services that provide an IP to ASN map-
ping. The whois-service can be used to get the current ASN for an IP-address.
To enable an e�cient evaluation we used the MAXMIND GeoLite ASN database
[43], which is updated every month and can be downloaded and used as a lo-
cal database. The results of the MAXMIND GeoLite ASN database were cross
checked with results obtained from whois, which showed no di�erences.

The ICMP ping scan discovered a total of 598,180,914 IP-addresses. The ser-
vice probe scan discovered 244,000 IP-addresses that listen to port 9100 and are
identi�ed as print servers, and 70.84 million IP-addresses of web-servers that
listen to port 80. Assuming that most network functions do not reply to ICMP
ping requests and neglecting di�erent network functions, this results in 88.1% of
IP-addresses assigned to end-user devices. Since the Internet Census the num-
ber of Internet users increased, which also has to be considered. According to
[44] there is a 7% annual increase in �xed-broadband subscriptions in the past
three years.

Figure 2.4 shows the cumulative share of active IP-addresses in the au-
tonomous systems ranked in descending order. The 100 largest autonomous sys-
tems make up 2/3 of active IPs and more than 85% of the IPs are active in only 1%
of the autonomous systems. The 10 largest autonomous systems already contain
30% of the active IPs.

Figure 2.5 shows the number of active IP-addresses per AS ranked in descend-
ing order. The top 5 ASs are shown in table 2.1. The AS with most active IP-
addresses is ChinaTelecom with almost 60 million active IPs, followed by an-
other Chinese provider. The largest AS in the US is Comcast on rank three. The
largest Korean and German providers are ranked 4 and 5 with more than 18 mil-
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Figure 2.4: Cumulative share of active IPs in ASs ranked in descending order.

Table 2.1: Rank of top 5 provider with most active IP-addresses.
rank r ASN provider # active IPs

1 4134 ChinaTelecom 59,824,824
2 4837 China-Network-Communication-Group 27,776,643
3 7922 Comcast 20,227,918
4 4766 KoreaTelecom 18,502,963
5 3320 DeutscheTelekomAG 18,476,519

lion active IPs. The number of active IP addresses can be approximated with a
power law with slope 1.5 that drops a little for low ranks. This shows that the
distribution of active IP addresses on ASs is highly heterogeneous. That means
the potential of approaches leveraging spare resources on home routers highly
depends on the AS.
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Figure 2.5: Rank of Internet providers with number of active IPs per AS.

2.2 Measurements and Models of Content Delivery
Networks

This section describes measurements and models of content delivery networks.
We �rst give an overview on measurements and models of the currently most
popular P2P overlay network BitTorrent, which is still responsible for a large
portion of Internet tra�c [26, 45]. In Section 2.2.1 we give an overview on mea-
surement studies of live BitTorrent networks and show di�erent approaches to
reduce costly tra�c discussed in the ALTO working group of the IETF. We sum-
marize related work in the �eld of distributed active measurements of CDNs and
give a short introduction in the principles of crowdsourcing in Section 2.2.2.

2.2.1 Measurements and Models of BitTorrent Networks

The measurements and models for the distribution of peers on ASs indicate the
distribution of hosts on the Internet and help to identify groups that are in-
terested in the same content. This information can be used for tra�c models
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and to optimize CDNs on AS level. As basis of our methodology for modeling
inter-ISP BitTorrent tra�c in Section 2.4, the results in [46] are revisited. The au-
thors provide measurements of a large number of live BitTorrent swarms taken
from popular index servers such as The Pirate Bay, Mininova, and Demonoid.
Using the IP addresses of the peers, the authors associate every peer with its AS
and estimate the potential of ALTO mechanisms based on the di�erentiation
between local peers (peers in the same AS) and remote peers located in other
ASs. In contrast, we consider the actual Internet topology in this work, i.e., the
inter-ISP relations, the ISP classi�cation in the Internet hierarchy, and the AS
paths between the peers in order to estimate the optimization potential of ALTO
mechanisms.

The authors of [47] use the peer exchange protocol (PEX) in order to measure
the neighbor set of all peers participating in a number of live BitTorrent swarms.
Based on this information, they model the graph topology of the swarms and
compare the structure to random graphs. They also investigate clustering of
peers within ASs and countries, but do not focus on inter-AS relations and AS
paths between peers as we do in this chapter.

In addition, there are measurement studies that examine and model distinct
features of BitTorrent networks. In [48], a single swarm was measured for �ve
months with a focus on the download times of the peers. Additional parameters
such as the peer inter-arrival times in the swarm, their upload capacity and their
online time are considered in [49]. The authors of [50] investigate these parame-
ters also in multi-swarm scenarios. Finally, [51] measures 4.6 million torrents to
provide an overview of the entire BitTorrent ecosystem with its di�erent com-
munities and index servers. While the distribution of peers in the Internet is also
studied in this chapter, none of these works focuses on the location of the peers
in the Internet and the AS paths between the peers, which is a major aspect of
this chapter.

Various mechanisms to reduce the inter-ISP tra�c generated by BitTorrent
and other P2P applications are currently being investigated. Besides caching of
BitTorrent tra�c [52–54], which might involve legal issues, changing standard
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BitTorrent algorithms is a promising approach. The authors of [55] propose to
use an oracle service provided by the ISP guiding the peers in their peer selection
process. The evaluation uses a Gnutella network and shows that intra-AS tra�c
is increased signi�cantly without a negative impact on the overlay graph. Sim-
ilar approaches are proposed for BitTorrent. Bindal et al. [56] reduce the inter-
ISP tra�c by modifying the neighbor set of the BitTorrent peers, which can be
done at the tracker or enforced by the ISPs using deep packet inspection. Their
simulations use a uniform peer distribution over ASs and show a high optimiza-
tion potential of this approach. The authors of [57] propose to use iTrackers to
guide the peers and formulates an optimization problem to �nd the best neigh-
bor sets. Finally, Oechsner et al. [58] propose to change the choke algorithm
of BitTorrent to further reduce inter-ISP tra�c and evaluate it via simulations
in homogeneous scenarios. The BitTorrent plugin Ono [59] uses the servers of
CDNs as landmarks and estimates the proximity of two peers by the similarity
of the CDN re-direction behavior.

The authors of [60] investigate analytically the capabilities of a P2P-based
content distribution network and the impact of locality. In contrast to our work,
they use tra�c characteristics which arise from software updates and do not
consider AS relationships. A set of evaluations of ALTO mechanisms uses sce-
narios inspired by measurements of live BitTorrent swarms [61–63]. The studied
scenarios consider heterogeneous peer distributions where some ASs contain
more peers of a speci�c swarm than others. Nevertheless, they do not take into
account inter-AS relations and the AS paths between two peers. This is di�er-
ent in our study. Using the AS a�liation of peers and the data obtained from
Caida.org, we infer the actual paths of the BitTorrent connections in the Inter-
net. In addition, we focus on the inter-ISP relations and investigate to which
degree sel�sh ISPs pro�t from recommending their peers to preferentially use
connections to peers located in lower tier ASs.
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2.2.2 Measurements of Content Delivery Networks

In contrary to P2P networks, which can be characterized by the distribution
of peers, CDNs are characterized by their distribution and structure of cache
servers. There already exist a number of publications which study the struc-
ture of CDNs. Much focus is put on the YouTube CDN and its selection of video
servers, as it is the most popular CDN for video content. A distributed active
measurement platform is necessary for these evaluations, since the CDN mech-
anisms consider the client locations, both geographical as well as in terms of
the connected access network. Recently, the physical server distribution of Net-
Flix’s CDN was mapped in [64], using a DNS crawler and exploiting the naming
scheme of the cache servers. In [65], two university campus networks and three
ISP networks were used to investigate the YouTube CDN from vantage points
in three di�erent countries.

While the view of �ve di�erent ISPs on a global CDN is still narrow, the au-
thors of [66] used PlanetLab to investigate the YouTube server selection strate-
gies and load-balancing. They �nd that YouTube massively deploys caches in
many di�erent locations worldwide, placing them at the edge of the Google au-
tonomous system or even at ISP networks. The work is enhanced in [39], where
they uncover a detailed architecture of the YouTube CDN, showing a 3-tier phys-
ical video server hierarchy. Furthermore, they identify a layered logical structure
in the video server namespace, allowing YouTube to leverage the existing DNS
system and the HTTP protocol.

However, to assess the expansion of the whole YouTube CDN and its cache
locations in access networks, the PlanetLab platform, which is located solely in
NRENs, is not suitable, since it does not re�ect the perspective of end users in
ISP access networks. Therefore, a di�erent distributed measurement platform
is used in [67] which runs on end user equipment and thus implies a higher
diversity of nodes and re�ects the perspective of end user in access networks.
However, the number of nodes that was available for the measurement is too
small to obtain a global coverage of vantage points

To achieve both, the view of access networks and a high global coverage with
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a large number of measurement points, the participation of a large number of
end users in the measurement is necessary. Bischof et al. [68] implemented an
approach to gather data from P2P networks to globally characterize the service
quality of ISPs using volunteers.

In contrast to this we propose using a commercial crowdsourcing platform
to recruit users running a specially designed measurement software, and there-
with, act as measurement probes. Crowdsourcing is an emerging service in the
Internet that enables outsourcing jobs to a large, anonymous crowd of users [69].
So called Crowdsourcing platforms act as mediator between the users submit-
ting the tasks, the employers, and the users willing to complete these tasks, the
workers. All interactions between workers and employers are usually managed
through these platforms and no direct communication exists, resulting in a very
loose worker-employer relationship. The complexity of crowdsourcing tasks
varies between simple transcriptions of single words [70] and even research
and development tasks [71]. Usually, the task descriptions are much more �ne
granular than in comparable forms in traditional work organizations [72]. This
small task granularity holds in particular for micro-tasks, which can be com-
pleted within a few seconds to a few minutes. These tasks are usually highly
repetitive, e.g., adding textual descriptions to pictures, and are grouped in larger
units, so called campaigns. In comparison to other approaches using volunteers,
this approach o�ers better scalability and controllability, since the number and
origin of the participants can be adjusted using the recruiting mechanism of the
crowdsourcing platform.

2.3 Content Delivery Network Characterization by
Distributed Active Measurements

Today the world’s largest video CDN is YouTube. Since Google took over
YouTube in 2006 the infrastructure of the video delivery platform has grown to
be a global CDN. By measuring its characteristics, conclusions can be drawn in
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order to develop tra�c management mechanisms that handle the huge amount
of tra�c the YouTube CDN puts on access networks. Due to YouTube’s load-
balancing and caching mechanisms the YouTube video server selection is highly
dependent on the location of the measurement points. Hence, we need a glob-
ally distributed measurement platform to perform active measurements to un-
cover the location of YouTube servers. The problem is that probes disseminated
from PlanetLab nodes origin solely from National Research and Education Net-
works (NRENs). This may not re�ect the perspective of access ISPs which have a
di�erent connection to the YouTube CDN with di�erent peering or transit agree-
ments. To achieve a better view on the YouTube CDN from the perspective of end
users in access networks, we use a commercial crowdsourcing platform to re-
cruit regular Internet users as measurement probes. This complementary view
can help to gain a better understanding of the characteristics of Video CDNs.
To evaluate the impact of the measurement platform and the coverage of their
vantage point, we perform the same measurements using PlanetLab nodes and
crowdsourcing users and compare the obtained results.

The measurements conducted in the PlanetLab and via crowdsourcing are
described in Section 2.3.1. In Section 2.3.2 we provide details on the measure-
ment results and their importance for the design of distributed network mea-
surements.

2.3.1 Distributed Active Measurement Setup

To assess the capability of crowdsourcing for distributed active measurements
we conduct measurements with both PlanetLab and the commercial crowd-
sourcing platform Microworkers [73]. We measure the global expansion of the
YouTube CDN by resolving physical server IP addresses for clients in di�erent
locations.
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Description of the PlanetLab Measurement

PlanetLab is a publicly available test bed, which currently consists of 1173 nodes
at 561 sites. The sites are usually located at universities or research institutes.
Hence, they are connected to the Internet via NRENs. To conduct a measure-
ment in PlanetLab a slice has to be set up which consists of a set of virtual
machines running on di�erent nodes in the PlanetLab test bed. Researchers can
then access these slides to install measurement scripts. In our case the measure-
ment script implemented in Java extracted the server hostnames of the page of
three predetermined YouTube videos and resolved the IP addresses of the phys-
ical video servers. The IP addresses of the PlanetLab clients and the resolved IP
addresses of the physical video servers were stored in a database. To be able to
investigate locality in the YouTube CDN, the geo-location of servers and clients
is necessary. For that purpose the IP addresses were mapped to geographic coor-
dinates with MaxMinds GeoIP database [74]. The measurement was conducted
on 220 randomly chosen PlanetLab nodes in March 2012.

Description of the Crowdsourcing Measurement

To measure the topology of the YouTube CDN from an end users point of view
who is connected by an ISP network we used the crowdsourcing platform Mi-
croworker [73]. The workers were asked to access a web page with an embedded
Java application, which automatically conducts client side measurements. These
include, among others, the extraction of the default and fallback server URLs
from three predetermined YouTube video pages. The extracted URLs were re-
solved to the physical IP address of the video servers locally on the clients. The
IP addresses of video servers and of the workers client were sent to a server
which collected all measurements and stored them in a database.

In a �rst measurement run, in December 2011, 60 di�erent users of Mi-
croworkers participated in the measurements. Previous evaluation have shown
that the majority of the platform users is located in Asia [75], and accordingly
most of the participants of there �rst campaign were from Bangladesh. In or-
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der to obtain wide measurement coverage the number of Asian workers par-
ticipating in a second measurement campaign, conducted in March 2012, was
restricted. In total, 247 workers from 32 di�erent countries �nished the mea-
surements successfully, identifying 1592 unique physical YouTube server IP ad-
dresses.

2.3.2 Measurement Results and Their Implications

In this section we show the results of the distributed measurement of the global
CDN. The obtained results show the distribution of clients and servers over dif-
ferent countries. Using a crowdsourcing platform, we derive accurate models
for the distribution of cache servers on ASs, which are required for the per-
formance evaluation and optimization of CDNs. Furthermore, the mapping on
autonomous systems gives insights to the coverage of the Internet.

Distribution of Vantage Points on Countries

To investigate the coverage of measurement points we study the distribution of
the PlanetLab nodes and Crowdsourcing workers. Figure 2.6a shows the distri-
bution of PlanetLab nodes on countries over the world. The pie chart is denoted
with the country codes and the percentage of PlanetLab nodes in the respective
country. Most of the 220 clients are located in the US with 15% of all clients.
However, more than 50% of the clients are located in West Europe. Only few
clients are located in di�erent parts of the world. The tailored distribution to-
wards western countries is caused by the fact that the majority of the PlanetLab
nodes are located in the US or in West Europe.

Figure 2.6b shows the geo-location of workers on the crowdsourcing platform.
In contrast to PlanetLab, most of the 247 measurement points are located in Asia-
Paci�c and East-Europe. Every �fth participating worker is from Bangladesh
(BD) followed by Romania (RO) and the US with 10%. This bias is caused by
the overall worker distribution on the platform [75]. This can be in�uenced to
a certain extent by limiting the access to the tasks to geographical regions.
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Figure 2.6: Distribution of measurement points on countries in a) PlanetLab and b)
Crowdsourcing platform.

Distribution of Identified YouTube Servers on Countries

To investigate the expansion of the YouTube CDN we study the distribution of
YouTube servers over the world. Figure 2.7a shows the location of the servers
identi�ed by the PlanetLab nodes. The requests are mainly directed to servers
in the US. Only 20% of the requests were directed to servers not located in the
US.

The servers identi�ed by the crowdsourcing measurement are shown in Fig-
ure 2.7b. The amount of requests being directed to servers located in the US
is still high. 44% of clients were directed to the US. However, in this case the
amount of requests resolved to servers outside the US is higher. In contrast to
the PlanetLab measurement many requests are served locally in the countries
of clients. Furthermore, the decrease of 80% to 44% of request being directed to
the US shows a huge di�erence.

Hence, network probes being overrepresented in the US and Europe leads to
a limited view of the content delivery network and the Internet. This shows the
impact of di�erent locations of measurement points on the view of the CDN. It
also demands a careful choice of vantage points for a proper design of exper-
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Figure 2.7: Distribution of physical YouTube servers on countries accessed from a)
PlanetLab nodes and b) workers of a crowdsourcing platform.

iments in distributed network measurements. Although both sets of measure-
ment points are globally distributed the fraction of the CDN which is discovered
by the probes has very di�erent characteristics.

The amount of servers which is located in the US almost doubles for the Plan-
etLab measurement. While 44% of the requests are resolved to US servers in the
Crowdsourcing measurement, nearly all requests of PlanetLab nodes are served
by YouTube servers located in the US. Although less than 15% of clients are in
US, requests are frequently directed to servers in the US. That means that there
is still potential to further distribute the content in the CDN.

Coverage of Autonomous Systems with YouTube Servers

To identify the distribution of clients on ISPs and to investigate the expansion
of CDNs on autonomous systems we map the measurement points to the corre-
sponding autonomous systems.

Figure 2.8 shows the ASs of YouTube servers accessed by PlanetLab and
Crowdsourcing nodes. The autonomous systems were ranked by the number
of YouTube servers located in the AS. The empirical probability P (k) that a
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Figure 2.8: Distribution of YouTube servers on autonomous systems from PlanetLab
and Crowdsourcing perspective.

server belongs to AS with rank k is depicted against the AS rank. The number
of autonomous systems hosting YouTube servers that are accessed by PlanetLab
nodes is limited to less than 30. The top three ranked ASs are AS15169, AS36040
and AS43515. AS15169 is the Google autonomous system which includes the
Google backbone. The Google backbone is a global network that reaches to
worldwide points of presence to o�er peering agreements at peering points.
AS36040 is the YouTube network connecting the main datacenter in Mountain-
View which is also managed by Google. AS43515 belongs to the YouTube site
in Europe which is administrated in Ireland. Hence, two thirds of the servers
are located in an autonomous systems which is managed by Google. Only few
requests are served from datacenters not being located in a Google AS. The rea-
son that request from PlanetLab are most frequently served by ASs owned by
Google might be a good interconnection of the NRENs to the Google ASs.

The YouTube servers identi�ed by the crowdsourcing probes are located in
more than 60 autonomous systems. Hence, the YouTube CDN is expanded on
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a higher range of ASs from the crowdsourcing perspective compared to Plan-
etLab. Again the three autonomous systems serving most requests are the ASs
managed by Google, respectively YouTube. However, the total number of re-
quests served by a Google managed AS is only 41% as opposed to almost 70% in
the PlanetLab case. Hence, in contrary to the PlanetLab measurement, requests
are served most frequently from ASs not owned by Google. Here, caches at lo-
cal ISPs managed by YouTube could be used to bring the content close to users
without providing own infrastructure. This would also explain the large number
of identi�ed ASs providing a YouTube server. The results show that the Plan-
etLab platform is not capable to measure the structure of a global CDN, since
large parts of the CDN are not accessed by clients in NRENs.

2.4 Tra�ic Characterization of Peer-to-Peer
Networks

In order to evaluate the transit costs produced by overlay networks we charac-
terize the tra�c of the largest P2P network BitTorrent on AS-Level. This helps us
to estimate the potential to reduce inter-domain tra�c produced by overlay net-
works and to develop tra�c optimization mechanisms. These mechanisms can
also be applied to the overlay networks used in hierarchical CDNs. To model
the BitTorrent tra�c �ow across ISPs in the Internet, we use measurements of
live BitTorrent swarms and the actual AS topology of the Internet provided by
Caida.org. Thus, we estimate BitTorrent tra�c characteristics and the emerging
transit costs. In addition, we de�ne peer selection strategies that decide which
peer in a swarm is connected to which other peer and we estimate the transit
costs for these strategies. This helps us to assess the optimization potential of
overlay networks and the revenue of ISPs transit services.

The applied methodology to characterize BitTorrent tra�c and to estimate
transit costs is described in Section 2.4.1. In Section 2.4.2 we describe the nu-
merical examples of this study and their importance for ISPs.
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2.4.1 Method for Modeling BitTorrent Tra�ic Flow and
Revenue of ISPs

In this section we describe the method to estimate transit costs of ASs. First, we
show how the AS a�liation of peers is obtained. Second, we explain how AS
paths are inferred from AS relations and how to classify the ASs. We describe
di�erent BitTorrent peer selection strategies determining the connection among
peers in the Internet. Finally we introduce the transit cost model.

AS A�iliation of Peers

In order to know where peers are located and where BitTorrent swarms generate
costs for ISPs, we need to know how the swarms are distributed over the Internet
and in which ASs the peers are located. For that purpose, we use the dataset of
BitTorrent movie torrents “Mov.” provided by the authors of [46]. A snapshot
of all available movie torrents on Mininova.org was taken. The swarm sizes
and peer distributions were recorded by distributed measurements. The data set
consists of �les with AS number and number of peers pairs for each BitTorrent
swarm. Hence, they provide information for each swarm on how many peers
are located in which AS. The measurement took part in April 2009 and recorded
126 050 swarms. Peers of 8 492 ASs are present in the swarms.

AS Relations, Paths and Classification

To be able to estimate the transit costs produced by peers exchanging data in Bit-
Torrent swarms, we need to know the AS paths that connect the peers. Datasets
with complete AS paths would be very large and are not available to our knowl-
edge. Hence, we infer AS paths from AS relationships. We use the AS relation-
ship dataset from Caida.org [76]. The dataset contains AS links annotated with
AS relations. Each �le contains a full AS graph derived from RouteViews BGP
table snapshots. For our estimations we use the dataset from January 2011. The
dataset consists of transit and peering relations.
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Table 2.2: Classi�cation of autonomous systems.

Type Classi�cation #ASs
Tier-1 AS has no providers 11
Large ISP AS customer tree ≥ 50 337
Small ISP AS customer tree< 50 and ≥ 5 1770
Stub AS customer tree< 5 36289

We implement the algorithm described in [77] in Java to infer the AS paths
between any two peers based on the AS relationship dataset. The authors devel-
oped a breadth �rst search algorithm which infers shortest paths conforming to
the AS path constraints. The algorithm has runtimeO(N ·M) for �nding all pair
valid shortest AS paths of the graph, whereN is the number of AS relations and
M is the number of ASs. The algorithm’s input parameter is the source AS α.
For every destination AS β the algorithm returns a set of paths P(α, β), which
connect α and β.

Further on, we want to obtain results dependent on the AS size and type of
business. Therefore we classify the ASs into stub, small ISP, large ISP and tier–
1. For that purpose, we use a dataset from [78], which provides information
about the number of customers and providers for each AS number. This dataset
is from November 2011 and is used to classify the ASs according to the size of
their customer tree. Table 2.2 lists the di�erent AS types and their classi�cation.
Tier-1 ASs are the largest ASs building the core of the Internet. Tier-1 ASs do
not have providers. In their dataset 11 tier-1 ASs are identi�ed. If an AS has a
customer tree that contains at least 50 nodes, it is classi�ed as a large ISP. An AS
is classi�ed as small ISP if its customer tree has less than 50 but at least 5 nodes.
Most ASs are stub ASs, which have a customer tree that is smaller than 5.

BitTorrent Neighbor Set Creation

The BitTorrent neighbor set of a peer de�nes the data exchange with other peers
in BitTorrent swarms. Neighbors are the peers in the swarm which are con-

33



2 Characterization of Content Delivery Networks on Autonomous System Level

nected to a peer. It has to be noted that the measurements in [46] do not reveal
the real composition of the neighbor sets of the swarms. Further on, neighbor
sets are randomly generated and di�er for every peer, which makes them hard to
capture. Hence, we estimate the composition of the neighbor sets in three sim-
ple ways, random, locality and sel�sh-ISP. The number of peers in the swarm is
the swarm size S. The number of neighbors is denoted asN withN ≤ S−1. In
the standard BitTorrent implementation a client can connect to up to 40 peers,
so we set the maximum size of the neighbor set to Nmax = 40. Hence, the
neighbor set for each peer in a swarm with size S has size

N = min(Nmax, S − 1) . (2.1)

We add peers to the neighbor set until it containsN neighbors according to the
following algorithms.

a) random In the random selection strategy we add random N peers of the
swarm to the neighbor set. In the standard BitTorrent algorithm the selection of
neighbors is also random. Hence, with this selection strategy we try to estimate
the tra�c and costs produced by the standard BitTorrent algorithm.

b) locality In the locality algorithm we sort the AS paths connecting two
peers by the number of AS hops. Then we add the peers according to the sorted
set of increasing AS paths until N peers are in the neighbor set. Note that �rst
the peers located in the same AS, i.e., zero AS hops, are added. This selection
algorithm is used to optimize the swarm by minimizing AS hops between peers
and thereby potentially reducing latencies. Hence, the motivation for this algo-
rithm is to optimize the swarm from the overlay’s point of view. In practice, such
a selection could be realized e.g. with an iTracker [57], a database which maps
IP-addresses to autonomous system numbers, or other ALTO mechanisms.
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c) selfish-ISP The sel�sh-ISP selection algorithm tries to select as many peers
from customer ASs as possible. Until the neighbor set contains N peers it �rst
adds peers from paths starting with provider-to-customer links, then peers of
the same AS, then paths starting with peering links and �nally customer-to-
provider links. This selection algorithm is used to maximize the revenue of ISPs.
This is achieved by the sel�sh-ISP strategy by selecting preferentially peers that
are connected by customers and avoiding peers at providers. In practice an ISP
must be able to control the neighbor set. Hence, ALTO mechanisms for sel�sh-
ISP selection must be controllable by the ISP. One approach is that the ISP pro-
vides an information service to guide the peer selection, such as an oracle [55]
or an information service [79].

Cost Model

To be able to estimate the costs for ASs arising from transit services, we need to
know how much tra�c is generated and how much providers charge customers
for forwarding the tra�c. We consider a snapshot and assume instantaneous
tra�c rates, i.e., the �le-size of the download can be neglected. For simplicity we
make assumptions on how much tra�c is generated in each swarm, depending
on the the number and location of peers.

Assumption 1. The tra�c generated by a peer is equally shared among its neigh-
bors.

Assumption 2. All peers generate tra�c at the same rate.

Assumption 3. The tra�c between ASs is equally shared among the paths that
connect them.

In practice, tra�c rates are allocated by BitTorrent’s choke algorithm, which
takes into account the upload and download speed of the other peers. Further
on, tra�c is generally not shared among di�erent AS paths. But, since we con-
sider the aggregated tra�c of a large number of swarms, we argue that these
assumptions are reasonable and the results do not change signi�cantly.
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Tra�ic Amount We use the above assumptions to estimate the tra�c gener-
ated by the BitTorrent swarms. Assumption 1 implies that the tra�c sent by a
given peer p1 is equally distributed among its N neighbors. Hence, the tra�c
p1 sends to a neighbor p2 is

T (p1, p2) =
1

N
. (2.2)

Assumption 2 implies that the tra�c originating in a given AS α is proportional
to the number of peers located in this AS. Let S be the set of all swarms, then
the tra�c of all swarms that is sent from AS α to AS β can be calculated by

T (α, β) =
∑
s∈S

∑
α∈s,
p1∈α

∑
β∈s,
p2∈β

T (p1, p2) . (2.3)

The set of AS paths connecting AS α with β obtained by the AS inference
algorithm is given by P(α, β). Assumption 3 implies that the tra�c between α
and β and later the costs are shared equally among the paths in P(α, β). Hence,
we can calculate the tra�c on a path P ∈ P(α, β).

T (P ) =
1

|P(α, β)| · T (α, β), P ∈ P(α, β) . (2.4)

Next we can calculate the link load L(α, β) on the link between two directly
connected ASsα and β. We useα↔ β ∈ P as notation for a direct link between
α and β on the path P . The link load is the sum of the load on all paths sharing
the link α↔ β.

L(α, β) =
∑

P |α↔β∈P

T (P ) . (2.5)

As we consider each AS in a swarm as source AS, the outgoing AS tra�c
equals the incoming AS tra�c. Therefore, we only consider the outgoing AS
tra�c as inter-AS tra�c. The in- and outgoing tra�c for AS α is the sum of all
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loads on links connecting α.

in(α) = out(α) =
∑

β|∃P,α↔β∈P

L(α, β) . (2.6)

In the following we estimate the transit costs. The transit costs are weighted
by the link loads de�ned in this section.

Transit Costs

The business relationships between ISPs de�ne the exact transit costs, but they
are part of the private contracts between the ISPs. Hence, we develop a simple
model for the arising transit costs. It is common that peering ASs exchange their
tra�c and the tra�c of their customers without charging. Hence, we assume no
costs for peering links. The amount a customer pays a provider for transit for a
speci�c volume of tra�c is unclear, so we set it to one cost unit, i.e., 1. That is
not the case in practice, but as we have a large number of ASs and swarms, we
get a qualitatively good estimation.
The costs of an ASα are increased, if it acts as customer of an AS β. The costs are
increased by one unit weighted by the amount of tra�c on the link connecting
α and β, i.e., L(α, β) from Equation (2.5). Let P(α) be the set of providers of α,
and let C(α) be the set of customers of α. Then we can calculate the costs of AS
α emerging in all swarms as follows.

costs(α) =
∑

β∈P(α)

L(α, β) . (2.7)

In the same way we can calculate the revenues for all AS links and swarms,
where α acts as provider.

revenues(α) =
∑

β∈C(α)

L(α, β) . (2.8)
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Figure 2.9: Ratio of peers per ISP class aggregated over all swarms in the measure-
ment set.

The balance is the di�erence between revenues and costs.

balance(α) = revenues(α)− costs(α) . (2.9)

2.4.2 Numerical Results and Their Implications

In this section we present the numerical results obtained by applying our
methodology to the measurement data and describe their importance for ISPs.
First we show how the peers are distributed over the di�erent ASs. Then we
characterize the tra�c emerged by BitTorrent swarms and investigate the im-
pact of locality and sel�sh-ISP peer selection algorithm. Finally, we estimate the
transit costs arising by the BitTorrent swarms and investigate the potential of
ISPs to maximize their balance by the peer selection algorithms.
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Figure 2.10: CDF of the number of peers per swarm depending on the di�erent ISP
classes.

Distribution of Peers in the Internet Hierarchy

In the following we describe how peers of BitTorrent swarms are distributed
over the Internet. Figure 2.9 shows the distribution of peers over the di�erent
tiers. The peers of all torrents are considered. Most of the peers are in large ISPs,
where 40 % of all peers are located. In small ISP and stub ASs a similar amount
of 29 % and 31 % of the peers is located, respectively. Only very few peers are
located in tier-1 ASs, which is less than 1 % of all peers in all swarms. Hence,
the access to peers by tier-1 ASs is negligible. That means that tier-1 ASs barely
have an impact on ALTO mechanisms that control only the local peers.

Figure 2.10 shows the cumulative distribution function (CDF) of peers per
swarm. We summed up the number of peers being in the same tier for each
swarm and calculated the CDF. The probability that at least one peer in a small
ISP is existing in a swarm is highest. Only about 2 % of the swarms do not contain
any small ISP peer. About 57 % of the swarms contain stub AS peers and more
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Figure 2.11: CDF of the maximum number of peers in same AS per swarm depend-
ing on the tier.

than 60 % contain peers from large ISPs. The probability to �nd more than one
peer of non tier-1 ASs is about 45 % for small ISPs and a bit higher for large ISPs
and stub ASs. There are less than 10 % of the swarms which contain a peer from
tier-1. Finding more than one peer of tier-1 ASs in one swarm is very unlikely.
Few swarms have a very large number of peers, with the maximum of 9467 peers
of one distributed over all large ISPs.

As soon as at least two peers are in the same AS, they can exchange data
locally. This cannot be derived from Figure 2.10, since peers can be located in
the same tier, but not in the same AS. In Figure 2.11 we calculate the cumulative
probability of the maximum number of peers in a swarm located in the same AS.
As soon as the maximum number of peers in one AS is at least 2, data can be ex-
changed by the peers locally. Figure 2.11 shows that the probability to exchange
tra�c locally is low and that large ISPs have the greatest potential. In about 15 %
of the large ISPs, peers �nd neighbors being located in the same AS. For small
ISP and stub ASs the chance to �nd peers of the same swarm in the same AS
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is about 10 % and 12 % respectively. Hence, considering all ASs the potential for
local neighbor selection is relatively small, intra-AS tra�c is only generated in
15 % and less of non tier-1 ASs. But there are a few swarms with many peers gen-
erating a lot of tra�c, which have a very high potential for tra�c optimization.
The AS with the most peers in one swarm is a large ISP containing 3372 peers
of one swarm. The dataset contains 42 swarms with more than 1000 peers in a
single AS. In tier-1 ASs there is barely no chance to connect to a local neighbor.

Tra�ic Characteristics for P2P Guidance Strategies

In this subsection we characterize the tra�c produced by BitTorrent swarms.
Further on we investigate the potential of ALTO techniques to optimize the
swarm in terms of load on the network and AS path length. First we look at
the tra�c characteristics of the standard BitTorrent algorithm and in the fol-
lowing we compare the di�erent selection strategies. The number of AS hops
is the number of ASs on the AS path connecting two peers without regarding
the source AS. The number of hops are weighted by L(α, β), i.e. the amount of
tra�c and the number of concurring AS paths, see Equation (2.5). Figure 2.12
shows the amount of tra�c on AS paths with length in AS hops for the dif-
ferent selection strategies. The median is about 2 AS hops if peers are selected
randomly. Most tra�c is on paths with two or three AS hops without selection
strategy. Paths are up to 10 AS hops in the investigated swarms.

If we use the local selection strategy, the probability for shorter AS paths is
higher, compared to random and sel�sh selection. If local peer selection is used,
about 20 % of the tra�c can be exchanged in the same AS, i.e. with no AS hop,
which is twice as much as for the other strategies. Random and sel�sh selection
have a median of two AS hops, whereas paths have two or less AS hops in about
80 % with local selection strategy. Sel�sh selection has no considerable potential
to reduce the AS path length.

Figure 2.13 shows the amount of inter-AS tra�c produced by BitTorrent
swarms. We estimate the outgoing tra�c of each AS with out(α) in Equa-
tion (2.6), i.e. the load produced by all peer-to-peer connections on the links
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Figure 2.12: Distribution of AS path lengths weighted by the amount of tra�c.

connecting α normalized by the number of neighbors and the number of paths
sharing the links. The outgoing tra�c of each BitTorrent swarm and each AS
is calculated and summed up for the di�erent AS types. For each AS type Fig-
ure 2.13 depicts the sum of outgoing tra�c normalized by the overall total out-
going tra�c produced by random selection of all AS types. The peer selection
strategy is coded in the di�erent levels of grey. Independent of the selection
strategy, most of the tra�c is at large ISPs. Less than half of large ISP tra�c is at
small ISPs. The tra�c going out of all the stub ASs is in total a similar amount
as the tra�c going out of the 11 tier-1 ASs. Hence, most tra�c is going out of
tier-1 ASs on a per AS basis.

We use the outgoing tra�c as a measure for the load on the network. Fig-
ure 2.13 depicts the outgoing tra�c for the di�erent selection strategies depen-
dent on the AS type. Locality selection reduces the amount of emerging inter-AS
tra�c in every AS type. Especially large ISPs have a high potential to take load
of inter-AS links by selecting local peers. Sel�sh peer selection reduces the traf-
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Figure 2.13: Total outgoing AS tra�c for di�erent peer selection strategies.

�c going out of tier-1 ASs, probably because less customers use them as transit
providers and route their tra�c to customers or keep it local. Apart from that
sel�sh selection does not reduce the load on the network signi�cantly.

Figure 2.14 shows the cumulative distribution function of the outgoing AS
tra�c grouped by the AS type. The outgoing tra�c is normalized by the overall
outgoing AS tra�c of the random peer selection strategy. AS mention before
tier-1 ASs have most outgoing tra�c on a per AS basis. Further on we observe
that the outgoing tra�c decreases with size of the AS. Also noticeable is that
with the locality peer selection algorithm we get less outgoing tra�c, especially
for large ISPs. The di�erence is not very big for a single AS, but the large number
of ASs makes a big di�erence in the total outgoing AS tra�c.

Transit Costs

We estimate the transit costs emerged by BitTorrent tra�c for the di�erent ISPs
and show the potential to save costs and maximize revenues of the peer selection
algorithms. We use the overall revenues for random selection, i.e., the sum of
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Figure 2.14: CDF of the outgoing AS tra�c grouped by AS size.

total revenues of all AS types, to normalize the values derived in this section.
As the overall total balance is zero, the overall total revenues equal the overall
total costs. As described in Section 2.4.1 every customer/provider AS α on an
AS path connecting peers is charged by ±L(α, β).

Figure 2.15 shows the cumulative distribution function of transit costs, as cal-
culated in Equation (2.7), for the ASs grouped by AS types. Hence, the amount
ASs pay providers for transit services. The costs are normalized by the overall
revenues of random selection. tier-1 ASs do not have providers and therefore no
transit costs. Local peer selection reduces the transit costs, regarding the overall
distribution of costs, for all non tier-1 AS types. Costs of large ASs, i.e., ASs that
have many customers and forward a lot of tra�c, tend be higher.

Figure 2.16 shows the cumulative probability of revenues, see Equation (2.8),
of the ASs grouped by AS type. Tier-1 ASs achieve highest revenues. They have
the largest customer tree which pay for transit services. ASs with a smaller cus-
tomer tree get less revenues. The di�erence between the selection strategies is
small for every single AS, but the large number of ASs makes a big di�erence
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Figure 2.15: Cumulative probability of normalized transit costs for di�erent peer
selection strategies. The transit costs are grouped by AS types.

in the total revenues and further total balance, as we explain in the next para-
graph. However, we observe that stub ASs, small and large ISPs tend to have
lower revenues using locality selection compared to random selection. In con-
trast revenues increase with higher probability for sel�sh-ISP selection in large
intervals, in particular from 10−8 to 10−4 for stub and small ISPs. This was the
aim of the sel�sh-ISP selection strategy. Tier-1 ISPs are loosing revenues if selec-
tion strategies are used. Hence, peer-to-peer guidance and sel�sh-ISP selection
are not bene�cial for tier-1.

The total balance overall measured BitTorrent swarms is calculated by sub-
tracting costs from revenues of each AS. Figure 2.17 depicts the total balance
depending on the AS size. The total balance is normalized by the overall rev-
enues of random selection. The balance is calculated for the standard BitTorrent
peer selection, the locality-aware and sel�sh strategy. For all three strategies,
tier-1 and large ISPs have a positive balance and small ISP and stub ASs have a
negative balance. This corresponds to the expectation, since tier-1 and large ISPs
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Figure 2.16: Cumulative probability of normalized revenues for di�erent peer selec-
tion strategies. The revenues are grouped by AS types.

have many customers whereas small ISPs and stub ASs have many providers.
Hence, small ASs have to pay for the transit provided by large ASs.

To highlight the e�ect of the peer selection strategies on the balance of the
ASs, we investigate the savings over random selection. Comparing the local
strategy with the standard strategy, we notice that small ASs save costs by se-
lecting local neighbors, resulting in less revenues by the large ASs. Figure 2.18
shows the savings over random selection achieved by using locality and sel�sh-
ISP selection. The savings are calculated by subtracting the total balance with
selection strategy from the total balance of the random selection strategy. The
savings are normalized by the overall revenues of random selection. tier-1 ASs
loose most revenue when local selection is used, which is 10 % of the overall
total revenue. The tra�c is kept locally and less tra�c is forwarded by tier-1
ASs to reach remote destinations. Hence, the transit services of tier-1 ASs are
avoided which results in less revenues. Large ISPs also gain less when local peer
selection is used. Small ISPs and stub ASs gain from local peer selection, since
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Figure 2.17: Total balance of transit costs and revenues normalized by the overall
revenue for random peer selection.

they save costs for transit services by avoiding long AS paths. 10 % of the overall
total costs are saved by stub ASs, hence they have the highest potential to pro�t
from selecting peers by locality.

The only way to increase the prospect on higher pro�t for large ISPs is using
the sel�sh strategy. But also small ISPs have a high potential to maximize their
revenues being sel�sh. Thus, large and small ISPs are in a win-win situation,
since they can connect to their plenty customers and do not have to pay for
transit services by avoiding connections to providers. This is where tier-1 ASs
loose, since less of the ISPs use them as provider in the sel�sh strategy. Thus,
a tier-1 AS cannot be more sel�sh than in the random selection strategy. Hav-
ing only few or no customers, stub ASs have poor capabilities to be sel�sh but
avoiding providers also gives them a small advantage over random selection.

47



2 Characterization of Content Delivery Networks on Autonomous System Level

tier−1 large ISP small ISP stub

−0.1

−0.05

0

0.05

0.1

0.15

to
ta

l 
s
a
v
in

g
s
 /
 o

v
e
ra

ll 
rn

d
. 
re

v
e
n
u
e
s

 

 

locality
selfish−ISP

Figure 2.18: Total savings of locality and sel�sh-ISP selection strategy over random
peer selection normalized by the overall revenue for random selection.

2.5 Lessons Learned

In this chapter we characterize content delivery networks on AS level. For that
purpose we summarize related work and use measurements conducted on the
distributed platform PlanetLab and a crowdsourcing platform. To assess the po-
tential of content delivery approaches that use local resources, we determine
the number of active IP-addresses from the Internet Census dataset.

First, we provide a comprehensive overview on content delivery network con-
cepts and their evolution. We brie�y describe the structure of the YouTube CDN
and describe the concept of the next generation of hierarchical CDNs, which
use local resources to support content delivery. In order assess the number of
local resources available in each AS, we analyze the Internet Census Dataset to
derive the distribution of IP-addresses on ASs. To this end, we use a mapping
of IP-addresses to AS numbers. we �nd that the distribution of IP-addresses is
highly heterogeneous showing that 30% of the active IPs belong to the 10 largest
ASs. This means that the potential of approaches that use resources on home
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routers highly depend on the ISP network.
Second, we propose the usage of crowdsourcing platforms for distributed net-

work measurements to increase the coverage of vantage points. We evaluate
the capability to discover global networks by comparing the coverage of video
server detected, using a crowdsourcing platform as opposed to using the Planet-
Lab platform. To this end, we use exemplary measurements of the global video
CDN YouTube, conducted in both the PlanetLab platform as well as the crowd-
sourcing platform Microworkers. Our results show that the vantage points of
the concurring measurement platforms have very di�erent characteristics. We
show that the distribution of vantage points has high impact on the capability
of measuring a global content distribution network. The capability of Planet-
Lab to measure a global CDNs is rather low, since 80% of requests are directed
to the United States. Our results con�rm that the coverage of vantage points
is increased by crowdsourcing. Using the crowdsourcing platform we obtain a
diverse set of vantage points that reveals more than twice as many autonomous
systems deploying video servers than the widely used PlanetLab platform.

Finally, we investigate where in the Internet BitTorrent tra�c is located and
which ISPs bene�t from its optimization. We use measurements of live Bit-
Torrent swarms to derive the location of BitTorrent peers and data provided
by Caida.org to calculate the actual AS path between any two peers. Our re-
sults show that the tra�c optimization potential depends heavily on the type
of ISP. Di�erent ISPs will pursue di�erent strategies to increase revenues. Our
results con�rm that selecting peers based on their locality has a high potential
to shorten AS paths between peers and to optimize the overlay network. In the
observed BitTorrent swarms twice as much tra�c can be kept intra-AS using
locality peer selection. Thus, the inter-AS tra�c is almost reduced by 50 % in
tier-1 and in large ISPs.

Based on the results obtained in this chapter, we develop models that describe
the characteristics of CDNs and the number of active subscribers in ISP net-
works. The models allow us to analyze the performance of tra�c management
mechanisms in realistic scenarios.
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Hierarchical Caching Systems

Content Delivery Networks (CDNs) do not only carry a lot of tra�c among the
data-centers but also put huge loads on Internet Service Provider (ISP) networks
that provide access to a high number of end-users consuming the content. Re-
ducing the tra�c carried by CDNs and the load put on ISP networks has high
potential to reduce energy consumption and cost for content delivery. A com-
mon approach is to cache frequently requested content in or close to access net-
works to serve the content with low latency and few hops to save resources on
the path. The content centric networking architecture proposes content caches
on routers on the network path. Caches have a limited capacity to store con-
tent, which means that content items stored in the cache need to be replaced
if a newly requested item has to be stored herein. The key performance metric
to optimize content delivery is the cache hit rate, which is the rate of requests
that can be served by the cache directly in consequence of a cache hit, i.e., the
content is stored in the cache at time of the request. If the content is not stored
in the cache, the request produces a cache miss and has to be forwarded to the
next repository.

A recent approach [28] proposes to augment spare capacities on customer
premise equipment (CPE) such as home routers or nano data-centers (NaDas)
to assist content delivery, showing that there is a high potential to save energy,
although the capacity of home gateways is small and the uplink is limited. The
content is transported in a peer-to-peer manner, keeping the tra�c within the
AS. Requests are �rst directed to the overlay of home gateways or NaDas, and is
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only forwarded to a cache of the content delivery network, if the target object is
not found in the overlay. In this way, a hierarchy of caching systems is formed,
in which the requests that cannot be served in one tier, i.e. the miss stream, is
forwarded to the next tier in the hierarchy. Another example for a hierarchi-
cal caching system with bandwidth constraints are femto caching architectures
[29], where content is cached on femto-basestations with small capacity but with
considerable storage space. The potential of these approaches highly depends on
the number of caches available and their capacity for content delivery. Our goal
is to evaluate the performance of hierarchical content delivery networks using
a high number of distributed caches with limited capacity and to assess their
potential to reduce inter-domain tra�c.

The performance of hierarchical cache networks can be accurately deter-
mined by analytic models developed in recent work [30, 31]. The models do not
consider constraints that limit the capability of caches to upload content such
as the bandwidth of the uplink. To consider the upload bandwidth the system is
modeled as loss system consisting of a server for each of the caches. The exact
stationary distribution of the loss system is too complex to evaluate. In [80] the
system is analyzed under large system asymptotic where simpli�cations occur.
We use a di�erent approach by approximating the arrival rate of requests at the
caches. This allows us to e�ectively assess the loss probability by using a simple
form of the Erlang formula for a loss system. Even for tra�c with highly het-
erogeneous request rates the approximation re�ects the system performance.
To determine the number home gateways available to assist content delivery
we rely on the insights gained from the characterization of Internet subscrip-
tions on AS level in Chapter 2. In order to assess the potential of hierarchical
caching systems to reduce inter-domain tra�c, we use the model for transit
tra�c described in Chapter 2.

Our contribution is three-fold. First, we provide a versatile simulation frame-
work for evaluating hierarchical caching systems allowing to consider di�erent
features including the home router sharing probability, bandwidth constraints
and the AS topology. Second, we use the inferred AS paths to calculate the real
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AS paths and assess the transit cost savings by hierarchical caching systems.
Finally, we develop a method to accurately assess the system performance of
tiered caching architectures with bandwidth constraints analytically.

The content of this chapter is published in [8, 15, 17, 20]. Section 3.1 gives
an overview on related work on the performance evaluation of caching systems
and describes tra�c models and analytic methods, which are relevant for the
evaluation of hierarchical caching systems. We describe the simulation model
in Section 3.2 and discuss the results derived to assess the potential to save inter-
domain tra�c in Section 3.2.2. In Section 3.3 we describe our method to evalu-
ate the performance of hierarchical caching systems with bandwidth constraints
and give analytic results. Numerical examples derived by analysis and simula-
tion are given in Section 3.3.3. Finally, Section 3.4 summarizes this chapter and
presents the lessons learned.

3.1 Background and System Description

In this section we introduce content popularity and tra�c models used to eval-
uate the performance of contents delivery networks. We describe the systems
model for hierarchical caching systems. We present a representative set of cache
eviction policies and provide an overview of recent e�orts in modeling the per-
formance of isolated and interconnected caches.

3.1.1 System Model for Hierarchical Caching Systems

Modern content delivery networks use a tree-like structure of content caches to
deliver content e�ciently. Since the tree-like structure of caches spreads on the
way to the end user, the content replication scales with the content demand.

To model tree-like content delivery networks, we consider a set of caches Γ

that is organized in a tiered caching architecture as depicted in Figure 3.1. Each
cache in Γ has a certain cache capacityC , which speci�es the number of content
items it can store.
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Figure 3.1: System model.

If complete �les are considered as transport unit, �le size can have an impact
due to bin-backing problems. However, content delivery networks and coding
schemes for video streams are segmenting data into small chunks in the kB
range. Therefore, we simply assume objects of �xed size corresponding to data
chunks. Consider that the methods can also be applied to content with varying
�le size, if the sums are weighted accordingly.

Tier-1 caches have capacity C1i , i ∈ {1, ..., n1} and tier-2 caches have ca-
pacity C2i , i ∈ {1, ..., n2}. Here we assume that the cache capacity of all tier-1
caches is equal and use the convention C1 = C1i ,∀i. This is for example the
case if the caches are deployed by a provider on customer premise equipment.
If the caches are set up by end-users the cache capacities may vary. Each tier-
1 cache i has a speci�c average upload throughput ρ1i . Content items are re-
quested from a catalog with size N . Each item m ∈ {1, 2, . . . , N} is requested
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Table 3.1: Notation of the paper.
param. description default
N catalogue size 1e6
n1 number of tier-1 caches 1e4
n2 number of tier-2 caches 1
C1 tier-1 cache capacity 8
C2 tier-2 cache capacity 1e4
ρ1 tier-1 cache upload bandwidth 0.8Mbps
λm arrival rate of requests for object m
bm bit rate of object m
dm duration of object m

with rate λm. The total arrival rate of requests is λ =
∑N
m=1 λm.

The arrival rate of requests for an item can then also be expressed with the
probability pm that item m is requested:

λm = pmλ ,where
N∑
m=1

pm = 1 . (3.1)

3.1.2 Content Popularity and Tra�ic Model

In order to evaluate the performance of content delivery networks, the arrival
process of objects needs to be speci�ed. The standard approach to characterize
the pattern of object requests arriving at a cache is the Independent Reference
Model (IRM) [81]. The IRM makes the following assumptions:

Assumption 1. Users request objects from a catalogue with �xed size N .

Assumption 2. The object popularity does not vary over time, i.e., the probability
pm that an itemm, 1 ≤ m ≤ N is requested, is constant.

Assumption 3. The probability pm that an item is requested, is independent of
all past requests, generating an i.i.d request process.
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The IRM ignores temporal correlations in the request process. In practice the
request rate of an object increases in a short period of time. This e�ect is referred
to as temporal locality and can have a strong positive impact on the e�ciency
of caching.

To account for temporal locality the request process can be modeled as re-
newal process [31]. In the renewal tra�c model the request process for every
content m is described by an independent process with assigned inter-request
time distribution. In this case the request process for each content is stationary.

Stationary request processes also result in a static content popularity, which
is a very strong assumption. In practice the popularity of contents to be cached
can be extremely dynamic over time. In modern content delivery networks, such
as YouTube, a high number of new contents is uploaded every single day. While
some contents are active only a few days after publishing, e.g. news, other con-
tents, such as songs, remain popular over a long period of time. Hence, the con-
tent popularity is highly dynamic and can have a high impact on the e�ciency
of caching, since the variation of the request rates happens on time scales which
are comparable or even smaller than the churn time of caches.

To cover non-stationary macroscopic e�ects related to dynamic content pop-
ularity the Shot Noise Model (SNM) is proposed in [82]. It represents the overall
request process as the superposition of a potentially in�nite population of in-
dependent inhomogeneous Poisson processes, which are referred to as shots.
Analytic models for LRU caches under SNM tra�c can be developed using the
Che approximation.

The analysis of non-LRU caches is very di�cult under SNM tra�c. In order to
analyze the impact of dynamic content popularity on non-LRU cache, [83] pro-
pose a tra�c model based on a Markov modulated Poisson Process. The Markov
modulated Poisson process describes an ON-OFF process for a given contentm.
The ON and OFF periods are exponentially distributed. During an ON period
the request rate for an item λm is constant. The model allows simple analysis if
the OFF period is set much larger than the cache eviction time. This makes the
probability negligible that an item m is still in the cache at the end of its OFF
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period. An ON period in the ON-OFF tra�c model plays exactly the same role
as a (rectangular) shot in the SNM tra�c model. The authors show in [83] that
the cache e�ciency under the SNM tra�c model can be predicted with high
accuracy by adopting a �xed-size content catalogue, and modeling the arrival
process of each content by a renewal process with a speci�c inter-request time
distribution.

The popularity of objects is modeled by a Zipf-like law, which is frequently
observed for di�erent types of content distributed in the Internet, including
video [84, 85]. The Zipf law states that the probability to request the object with
rank r, i.e., the r-th most popular object, is proportional to r−α. The exponent
α has a high impact on the cache performance and ranges between 0.65 and 1
depending on the system and the type of object [86, 87].

3.1.3 Caching Strategies

In the following we give a representative set of caching strategies. The caching
strategy decides which object in the cache is evicted if a newly requested item
has to be stored in the cache.

• RANDOM: The simplest way to choose an item to make room for a new
object is by random.

• LFU: The Least Frequently Used policy evicts the least frequently used
item. It stores the most popular items in the cache. LFU performs optimal
under IRM tra�c.

• LRU: If a newly requested item is not in the cache, it is stored in the cache.
The Least Recently Used item is evicted if the cache is full. A well known
problem of LRU caches is cache pollution, which occurs if objects are
replaced by less frequently requested items or items that are requested
only once.

• q-LRU: If a newly requested item is not in the cache, it is stored in the
cache with probability q. The Least Recently Used item is evicted if the
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cache is full. The probability ob being stored in the caches is higher for
frequently requested objects, which prevents cache pollution. [31]

• k-LRU: In the k-LRU policy k−1 virtual caches storing only object hashes
precede the actual cache k. An object is only stored in cache i, if it is found
in its preceding cache i−1. The eviction policy of the caches is LRU. The
virtual caches function as �lters to prevent cache pollution. [31]

• SG-LRU: Score Gated LRU caching strategies attributes a store to each
object. A newly requested object is only stored in the cache if it has a
higher score that the bottom object. The score functions can be based on
statistics of past requests approaching the LFU policy if the memory is
large. [88]

• LRL: If the capacity of caches is limited to serve requests due to band-
width or processing constraints, requests for an item are blocked al-
though the item is stored in the cache. The Least Recently Lost strategy
evicts the object for which a request was least recently or never blocked.
[89]

In a system of interconnected caches, such as the hierarchical caching system
described in Section 3.1.1, requests that cannot be served at one cache or in one
tier produce a miss and are forwarded to the next tier. In this way the requests
traverse a route towards the repository which stores all objects, until they �nally
hit the target. The following replication strategies for cache networks decide
how the object is replicated on the route traversed by the request [31, 90]:

• LCE (leave-copy-everywhere): the object is sent to all caches on the back-
ward path.

• LCD (leave-copy-down): the object is sent only to the cache preceding
the one in which the object is found.

• LCP (leave-copy-probabilistically): the object is sent with probability q to
each cache on the backward path.
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3.1.4 Performance Models for Hierarchical Caching
Systems

A vast amount of studies on performance models for hierarchical caching sys-
tems have been conducted recently. Table 3.2 gives an overview on the literature
on performance evaluation of caching systems. The table shows di�erent cat-
egories, considering the caching strategy, the cache topology, the request pro-
cesses, caching constraints and the methods used for performance evaluation
and optimization. In the following we describe the performance models in more
detail.

Analytic Performance Models for Caching Systems

To analyze the performance of isolated and interconnected caches, many works
leverage the Che approximation [30], which provides a decoupling technique for
LRU caches. The requests are generated according to the IRM, which assumes
identically and independently distributed requests of a set of objects. It is shown
in [86, 93] that the model also applies in more general conditions. The model
also provides accurate results for a high number of objects with varying �le
sizes. In [31] the model is extended, to analyze advanced caching strategies like
k-LRU, where objects have to pass a certain number of k − 1 virtual caches to
be stored in the actual cache. The virtual caches replace objects according to
LRU and store only meta information. The IRM assumptions are generalized in
order to apply to e�ects of temporal locality in the request process. The model
for LRU can be further extended to evaluate the performance of general cache
networks [31, 92]. Further caching strategies with limited memory, like W-LFU
and Geometrical Fading, are investigated in [88]. The Sliding Window strategy
applies the LFU approach to the frequency of requests in a limited time frame.
Geometrical Fading scores recent requests with a factor that decreases according
to a geometric sequences with the number of intermediate request.
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Table 3.2: Overview on literature on performance evaluation of caching systems.
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Evaluation of Caching Systems with Dynamic Content Popularity

Only few studies have investigated the e�ects of dynamic content popularity.
The renewal tra�c model, which generalizes the IRM, allows capturing tem-
poral locality in the tra�c [31]. However, the request process generated by the
renewal tra�c model is still stationary.

To cover non-stationary macroscopic e�ects related to dynamic content pop-
ularity, a Shot Noise Model (SNM) is proposed in [82]. As already mentioned, for
LRU caches analytic models based on the Che approximation can be developed
under SNM tra�c. To allow analysis of non-LRU policies the ON-OFF model is
proposed in [83] using an on-o�-modulated Poisson process. In [95] the analysis
under SNM tra�c is further extended for caches with small population, such as
base-stations, home routers or set-top boxes.

Evaluation of Caching Systems with Limited Capacity

The analytic models described above do not consider the service time of re-
quests, which is limited by the bandwidth of the uplink of the cache. In this
monograph we consider a tiered caching architecture, where the upload band-
width of the caches is highly limited. In order to evaluate hierarchical caching
systems for di�erent content demand models considering social and temporal
dynamics, di�erent caching and resource selection policies, we develop a sim-
ulation framework, which is described in detail in Section 3.2. The paper clos-
est to this works is [28], which proposes the NaDa approach and develops an
optimal content placement on NaDas. The performance of the approach is eval-
uated with traces only. To evaluate the performance analytically, considering
bandwidth constraints, the system can be modeled as loss system consisting
of a server for each of the caches. The exact stationary distribution of the loss
system is too complex to evaluate due to the high number of feasible content
placements. In [80] the system is analyzed under large system asymptotic where
the number of NaDas goes to in�nity and simpli�cations occur.

In order to evaluate the system for a �nite number of NaDas, we use a dif-
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ferent approach by approximating the arrival rate of requests. This allows us
to e�ectively assess the loss probability by using a simple form of the Erlang
formula for a loss system, c.f., Section 3.3.

To optimize the content placement adaptively, [89] propose Least-Recently-
Lost (LRL) replacement, which tries to optimize the loss rate in the �rst tier.
A di�erent approach is proposed by [94] which allocates bandwidth resources
instead of content copies proportionally to the content popularity.

3.2 Simulative Evaluation of Hierarchical Caching
Systems

We develop an event-based simulation framework to evaluate the performance
of content delivery networks. The results derived from the simulative evaluation
are used to validate the analytic models. The simulation framework further al-
lows considering complex system characteristics in the performance evaluation
that are not covered by the analytic models, such as the transit costs charged on
inter-domain links.

In the following we describe the simulation model and investigate the bene-
�t of overlays networks in hierarchical caching systems. We use the model for
transit tra�c, c.f. Section 2.4.1, to assess the potential to save costs produced by
inter-domain tra�c.

3.2.1 Simulation Model

The parameters considered in the content delivery simulation framework are

a) the resource distribution,

b) the caching and content placement strategy,

c) the resource selection strategy,

d) the content demand,
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e) the AS-Topology.

Other considered parameters that are not relevant for this monograph, are

a) the social network of users,

b) the video bitrate and chunk-size distribution,

c) and the application and QoE.

In the following we brie�y describe each of the parameter sets and provide mod-
els.

Resource Distribution

The resource distribution determines how video streaming sources are dis-
tributed among autonomous systems. The number and size of autonomous sys-
tems is speci�ed. The size of an autonomous system is given by the number
of end-users located in it. In literature, the distribution of end-users on ASs is
characterized as heterogeneous [46]. We use a geometric distribution as a basic
model for number of end-users in the ASs. A more detailed model is developed
using the Internet Census dataset, c.f. Section 2.1.3. Video streaming sources can
be a) data centers of the content provider, b) edge caches of the content provider,
c) caches hosted by the ISP, d) home router / NaDas, or e) end-user devices. For
each video streaming source the AS-location and its capacity is speci�ed. The
capacity is given by the number of items that can be cached. The size of the item
catalogue is also speci�ed in this parameter set.

The cache resources can have bandwidth constraints speci�ed by the mean
and the standard deviation of the upload bandwidth. If the upload bandwidth
of a cache is limited, the service time of an object is calculated according to
the available bandwidth and the object size. The service times of the objects
served by a cache are updated if the upload bandwidth changes or if an object
request arrives or is completed. Requests are blocked by a cache if the available
bandwidth is below a certain threshold, or if the cache is busy serving a request.
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Caching and Content Placement Strategy

The caching and content placement strategy determines in which video stream-
ing source which video item is placed and when. The content placement strategy
is de�ned by the caching strategies of the individual caches. In a distributed ap-
proach each cache decides based on the information it has, which items to cache.
Thus, the availability of items in ASs might for example be increased. If global
knowledge of the item demand is assumed, optimized content placement strate-
gies such as hot warm cold can be used. Each caching strategy is further de�ned
by its speci�c parameters according to Section 3.1.3.

Resource Selection Strategy

The resource selection strategy determines from which cache instance an item
is streamed when requested. The simplest resource selection just selects a ran-
dom resource. In hierarchical content delivery networks, resources in tier-1 are
selected �rst, by default. Other resource selection strategies that try to optimize
di�erent metrics were implemented. E.g., local resource selection tries to save
inter-domain tra�c by prioritizing caches in the order: home router / NaDa in
the same AS, ISP managed cache in the same AS, edge cache of content provider,
data center of content provider.

Social Network of Users

The social network of users determines the friendship relationships between
users. A basic model only de�nes the number of users in the system. The num-
ber of friends of the user can be modeled by a power-law or geometric distribu-
tion. A more detailed model speci�es the friendship graph which consists of a
node for each user and edges between users with friend relationships. Friend-
ship graphs have typical properties, such as a heavy-tailed in and out degree
distribution. In literature are di�erent models for generating graphs with these
properties. A model used to generate social network graphs with varying size
and density is the forest �re model [96]. We further specify the feed size as pa-
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rameter that represents the news feed of social network platforms. The news
feed is updated in sharing events. Videos which are on the news feed of a user
are watched with higher probability. Categories are de�ned by specifying the
probability that a user is interested in a particular category.

Tra�ic and Popularity Model

The content demand determines the request rates of the video items. Di�erent
demand models are implemented in the simulation that reach from basic models
that only consider the popularity distribution of the items, to detailed models
that consider temporal, spatial and social dynamics, c.f. Section 3.1.2.

The arrival process of video requests is speci�ed by the inter-arrival time of
video requests. The request rate depends on the time of day and is generally
lower at night. The day is divided in short time slots, where the arrival rate does
not change signi�cantly, so that the arrival process can be assumed as quasi
stationary. In these time slots the arrival process is modeled as Poisson-process.
The parameter lambda of the arrival process depends on the popularity of the
item and the time of day. The probability of sharing a watched video is given by
the sharing probability.

Autonomous System Topology

In order to estimate the amount of inter-domain tra�c and transit costs pro-
duced, and AS topology with AS paths can be speci�ed. The AS paths connect
the caches and data centers providing the content with the users consuming the
content. For that purpose the AS paths are inferred from AS relationships as in
Section 2.4.1. Assuming that the number of users is proportional to the num-
ber of IP addresses in an AS, we use the results of the Internet Census Dataset
evaluation in Section 2.1.3, to determine the distribution of users on ASs.

Finally, Simulation parameters are speci�ed that de�ne the random number
seed, the simulation time and the parameter study.
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Performance Metrics

Of the total number of n object requests to a cache, the objects of k requests are
stored in the cache and can potentially be served by the cache. Due to bandwidth
constraints some of the k requests may be blocked, such that only k′ ≤ k of the
n object requests are served by the cache. To assess the performance of content
delivery networks several metrics are considered:

a) Cache hit rate phit: The ratio of requests to a cache that �nd the object in
the cache (cache hit) to the total number of requests to the cache

phit =
k

n
. (3.2)

b) Cache serve rate pserve: The ratio of requests to a cache that �nd the object
in the cache and that are not blocked due to bandwidth constraints to the
total number of requests to the cache

pserve =
k′

n
. (3.3)

c) Cache contribution: The share of all requests that is served by a cache.

d) Inter-domain tra�c: The share of requests by users in an AS that cannot
be served by a cache in the same AS.

The content delivery simulation framework is implemented in MatLab. The
simulation is event-based including two major events. First, the WATCH event,
which is processed when a user watches or consumes a video item. Second, the
SHARE event, which simulates a sharing action of a user, where the video is
posted on the news feeds in the social network. Figure 3.2 shows the process
diagram of a WATCH event. The process of a WATCH event starts by select-
ing a video according to the speci�ed demand model. A video identi�er vid is
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WATCH 

getVideo() selectResource() 

updateCache()   

  

rand()<pshare 

addEvent 
(SHARE) 

addEvent 
(WATCH) 

Yes 

No 

Figure 3.2: Proccess diagram of a WATCH event.

returned. In the next step a cache or data center is selected according to the re-
source selection strategy that holds the item with vid. The download of the item
from the selected resource is recorded in the statistics. The cache identi�er cid

is returned and the cached items are updated according to the caching strategy
speci�ed in the parameters. The user then decides to share vid with probability
pshare. In this case a SHARE event is queued. Finally, the next WATCH event is
queued according to the tra�c and popularity model.

A SHARE event puts a given vid, or a random video according to the user’s
interest on top of the news feed of the user’s friends. The user’s friends are
determined by the social graph. The simulation is initialized with a WATCH
event for each user.

The simulation framework is open source and available on github1.

1https://github.com/pettitor/content_delivery
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3.2.2 Numerical Examples and Impact on Transit Costs

To evaluate the performance of a CDN supported by home routers, two scenarios
are simulated. The �rst scenario simulates requests to a CDN with caches or-
ganized in a tree structure and compares isolated caches to cooperating caches
to assess the bene�t of the overlay. The second scenario adds an AS topology
with peering and transit links to evaluate the inter-domain tra�c saving poten-
tial. As described in Chapter 2, a transit link exists between a customer ISP and
its transit provider, if the customer ISP pays the transit provider to forward its
tra�c destined to parts of the Internet that the customer ISP does not own or
cannot reach.

Within tier-1, the caches are placed on shared home routers. These caches are
referred to in the following as home routers (HRs). The cache capacity of HRs is
speci�ed by C1 and their caching strategy is LRU. In this study C1 is set to four
(4) content items. We evaluate the performance dependent on the autonomous
system sizenuser, in terms of the number of end-users in the autonomous system.
The probability that an end-user enables the HR to shares contents is given by
pshare. The probability that a user requests certain content items depends on the
content’s popularity distribution, which is speci�ed by the Zipf exponent α.

Benefits of an Overlay

To evaluate the performance of the overlay, two cases are considered (a) the
tree case and (b) the overlay case. In the tree case (a), each user is assigned to
one shared HR in its AS. If a user shares its HR, it is assigned only to its HR. A
requested item is looked up in the assigned HR initially, i.e. in the tier-3 cache.
If the requested item is not found, the request is forwarded to the next tier. The
hierarchical caching strategy is leave-copy-everywhere, which means that the
video is cached in each cache on the look up path. In the overlay case (b), a
requested item is looked up in the HR of the user, if it is not found, it is looked
up in shared HRs in the same autonomous system using the overlay. If no tier-
3 cache in the AS contains the item it is looked up in tier-2 caches and �nally
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Figure 3.3: Hit rate of the overlay dependent on home router sharing probability.

in the data center of the content provider. The hierarchical caching strategy is
leave-copy-everywhere, too, with the constraint that the item is cached in the
tier-3 cache only, which was looked up �rst.

As the goal of this evaluation is to assess the potential of the overlay and to
identify success scenarios, the simulation model assumes that the upload rate
of caches is unlimited. However, in practice the upload rate limits the number
of requests that can be served by a cache, especially for smaller devices like
HRs. The evaluation uses a static and global popularity distribution. In practice
the item request process is dynamic and dependent on personal and regional
preferences. The simulation uses a catalog size ofN = 106. The results obtained
show the average of ten simulation runs with 106 requests and their respective
95% con�dence intervals.

Figure 3.3 shows the hit rate of the overlay dependent on the sharing proba-
bility for a constant ISP cache capacity of CISP = 0.01. In the tree case, where
each user is assigned to a HR as a tier-3 cache, the hit rate is independent of the
sharing probability. The hit rate is limited by the cache capacity of the HR. If HRs
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Figure 3.4: ISP cache contribution dependent on home router sharing probability.

are organized in an overlay, their hit rate increases with the sharing probability,
since requested content items are looked up in all HRs belonging to the over-
lay. This shows that an overlay highly increases the performance of a caching
system with a high number of small caches. Hence, the overlay highly bene�ts
providers and end-users. The hit rate increases with the size of AS nuser, as a
higher total cache capacity is available.

Figure 3.4 shows the ISP cache contribution dependent on the sharing prob-
ability for a constant ISP cache capacity of CISP = 0.01. In a tree structure
the sharing probability has no signi�cant impact on the ISP cache contribution.
This depends on the fact that the hit rate of tier-3 caches is low and indepen-
dent of the sharing probability. All remaining requests are forwarded to the ISP
cache and in case of a hit the ISP cache contributes. If the HRs are organized
in an overlay, the ISP cache contribution decreases, since more requests can be
served from the overlay. In this case the ISP cache also gets less e�cient, as it is
only requested for rare items that are not cached in the overlay. For large ASs
with a high number of end-users the ISP cache contribution approaches zero, if
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Figure 3.5: Inter-domain tra�c dependent on home router sharing probability.

at least every thousandth user shares its HR. In this case the ISP cache can be
shut down, which saves operating costs and energy. This shows that especially
large ASs can bene�t from an overlay.

Figure 3.5 shows the inter-domain tra�c dependent on the sharing probabil-
ity for an AS with nuser = 106 end-users. If no overlay is present the sharing
probability has close to no impact on the amount of requests served locally. In
this case the inter-domain tra�c can only be reduced by increasing the ISP cache
capacity. In the overlay case the number of requests served locally increases with
the sharing probability, which decreases the inter-domain tra�c. Dependent on
the ISP cache capacity a higher fraction of shared HRs is necessary to reduce
inter-domain tra�c.

Inter-Domain Tra�ic

The overlay is not only used to access content from HRs in the same AS, but also
from HRs in neighboring ASs. If the neighboring AS is a peering or customer
ISP, no transit costs are incurred. To assess the inter-domain tra�c saved, an AS
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topology is added to the simulation. The AS relationship dataset provided by
caida.org[97] of January 2015 is used and it speci�es peering and customer-to-
provider links of each AS. The data set consists of 46,172 ASs and 177,000 links.
To be able to process the simulation the topology is limited to RIPE NCC EU ASs.
The remaining subset still consists of 31,256 ASs and 77,382 links. The number
of users per AS is determined by evaluating the Internet Census Dataset[40],
which provides a scan on active IP addresses in the Internet. Assuming that the
number of users in an AS is proportional to the number of active IP addresses
and the probability of a user being in an AS is set accordingly. To save costly
inter-domain tra�c and to mitigate load on ISP caches, the following resource
selection policy is applied:

If an item is not found on enabled HRs in the same AS, it is requested from
other resources in the order:

a) HRs in peering ISP ASs

b) HRs in customer ISP ASs

c) ISP cache in local AS

d) ISP cache in peering ISP ASs

e) ISP cache in customer ISP ASs

f ) content provider

A policy designed to prioritize ISP caches to remote HRs did not have a signif-
icant impact on tra�c savings. The threshold θ speci�es the minimum number
of users an AS must have to host an ISP cache. If θ = ∞ no AS hosts an ISP
cache and content delivery is solely supported by HRs. To investigate the per-
formance of our approach, the impact of the HR sharing probability pshare on the
inter-domain tra�c and on the ISP cache contribution is studied. The share of
tra�c within the local AS, peering and customer-to-provider links is evaluated.
For the generation of content item requests a Zipf popularity distribution with
slope α = 0.99 was applied.
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Figure 3.6: Share of requests served locally dependent on sharing probability.

Figure 3.6 shows the share of requests served locally dependent on the HR
sharing probability. More than 20% of requests can be served locally, if the ISP
cache can store 1% of the catalog size. With an increasing threshold θ the number
of ASs hosting an ISP cache decreases and, thus, the share of requests being
served locally. If the number of shared HRs increases, more tra�c can be kept
locally. This e�ect is stronger for a lower ISP cache capacity. In case of θ =

∞ where no ISP caches are available, the sharing probability has the strongest
impact on inter-domain tra�c. For a high sharing probability the ISP cache size
has only little impact on the inter-domain tra�c.

Figure 3.7 shows the ISP cache contribution dependent on the HR sharing
probability. The number of requests an ISP cache can serve increases with its
capacity. As for the inter-domain tra�c, the sharing probability has a high im-
pact on the ISP cache contribution. For high sharing probabilities the ISP cache
contribution approaches zero. This means that ISP caches can be shut down, if a
su�cient amount of users would share their HRs. For a lower threshold θ more
ISP caches are deployed and the ISP cache contribution increases.
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Figure 3.7: ISP cache contribution dependent on sharing probability.

To study the requests served per domain, the HR sharing probability is set to
1% and the threshold θ to 100 users. Figure 3.8 shows the share of requests served
per domain. Almost none of these requests can be served by the personal HR.
This might depend on the fact that items are requested according to a global pop-
ularity distribution. If personal interests are considered in the demand model,
higher hit rates and contributions from personal caches are expected. Depen-
dent on the ISP cache capacity, 20 to 25% of requests can be served locally and
15 to 20% from neighboring ASs. Still about 2 out of 3 requests are served by
the content provider. This depends on the fact that with Zipf slope of α = 0.99

content item requests are highly heterogeneous. In practice, temporal and so-
cial dynamics of users’ interests will lead to temporal and local correlations in
requests, which improve the performance of local and personal caches.
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Figure 3.8: Share of requests served per domain.

3.3 Analysis of Caching Systems with Bandwidth
Constraints

To evaluate content delivery networks based on the number of available home
routers and their limited capacity, we de�ne a system model for a tiered caching
architecture. Tier-1 caches are on leaf nodes such as home routers, caches of
the content delivery network are in tier-2 and ultimately tier-3 is the content
provider. We use analytic models to calculate the e�ciency of the tiered caching
architecture.

3.3.1 Analytic Performance Models for Caching Systems

In the following we provide analytic models to evaluate the performance of a
tiered caching architecture. We use existing models for systems without band-
width constraints in order to determine baselines and upper bounds for com-
parison. We then show our approach to determine the hit rate of hierarchical
cache networks with bandwidth constraints.

75



3 Analysis and Optimization of Hierarchical Caching Systems

The Che-Approximation

We �rst consider the Che-approximation [30] for the simple case of a single
cache with LRU policy. Let C be the capacity of the single cache. TC(m) is the
cache eviction time of object m, i.e., the time needed before C objects, not in-
cludingm, are requested at the cache. Objectm is in the cache if the last request
for objectm is less than TC in the past. For Poisson arrivals, the probability that
an object m is in the cache equals the probability that the inter-request time
for object m is smaller than TC . Let Am be a random variable for the inter-
arrival time for requests of object m. The probability that Am is smaller than
TC is given by the cumulative distribution function, which is exponentially dis-
tributed:

phit(m) = pin(m) = P (Am ≤ TC) = 1− e−λmTC . (3.4)

Due to the memoryless property of the Poisson process the hit probability
equals the stationary probability that an item m is in the cache.

We de�ne the indicator function χm to determine if item m is in the cache.

χm =

1, m in cache ,

0, otherwise .
(3.5)

Following [31], we obtain for the cache capacity C :

C =
∑
m

χm , (3.6)

and

C = E

[∑
m

χm

]
=
∑
m

E [χm] =
∑
m

pin(m) . (3.7)

after averaging both sides.
TC is the only unknown in the above equation and can be determined by a
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�xed point iteration. Thus, the interaction among the contents is summarized
by the cache eviction time TC , which allows decoupling the dynamics of the
di�erent contents.

The overall hit probability is calculated by considering the probability pm of
requesting item m

phit =
∑
m

pmphit(m) . (3.8)

Analysis with Unlimited Bandwidth

We use the Che-approximation for the LRU cache hit rate to calculate the base-
line given by the cache hit rate of the tier-2 cache without tier-1 cache support
p′hit(2). The characteristic time TC2 depends on the capacity of the tier-2 cache
C2 and is determined by a �xed point approximation

phit(2,m) = pin(2,m) = 1− e−λmTC2 . (3.9)

The overall hit probability in tier-2 is calculated by considering the probability
pm of requesting item m

p′hit(2) =
∑
m

pmphit(2,m) . (3.10)

To calculate the maximum hit rate for LRU, we assume that tier-1 caches are
completely organized with the tier-2 cache, and the capacity of tier-1 caches is
added to the tier-2 cache capacity

p̂hit(m) = p̂in(m) = 1− e−λmT(C2+n1·C1) . (3.11)

It is practically not feasible to control the capacity of all tier-1 caches and
coordinate them with the tier-2 cache. To still bundle the capacity of the tier-2
caches, the caches can form an overlay.

If an overlay is used, the requests that cannot be served by the personal tier-1
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cache are forwarded to other tier-1 caches in the overlay, before they are for-
warded to the tier-2 cache.

For unlimited tier-2 cache bandwidth, we approximate the hit rate of the over-
lay by calculating the hit rate of a tandem network with two caches accord-
ing to [31]. The tandem network consists of the tier-2 cache and a cache that
has the sum of capacities of tier-1 caches. The miss stream of the consolidated
tier-1 cache is forwarded to the tier-2 cache. The replacement strategy in the
network is leave-copy-down that means that an item is only placed in a cache
if it is found in a higher tier cache. Thus only frequently requested items are
propagated to lower tier-caches, which makes them more e�cient. The Che-
approximation can be applied to tandem networks by determining pin(1,m) for
the tier-1 caches

pin(1,m) = 1− eλ(1,m)Tn1C1 . (3.12)

The hit probability is no longer equal to the probability that an item is in the
cache, as the cache miss stream arriving at the tier-2 cache is no longer Markov.
According to [31] the hit probability can then be determined by:

phit(1,m) = ((1− pin(1,m))phit(2,m) + pin(1,m))

· (1− eλ(1,m)Tn1C1 ) . (3.13)

The rate of the miss stream λ(2,m) arriving at the tier-2 cache can then be
determined as

λ(2,m) = (1− pin(1,m))λ(1,m) . (3.14)

The probability that an item is in the tier-2 cache is approximated assuming
exponentially distributed inter request times
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phit(2,m) = pin(2,m) = 1− eλ(2,m)TC2 . (3.15)

The total hit rate in tier-i is then calculated by considering the probability of
an item m being requested at tier-i cache p(i,m)

phit(i) =
∑
m

p(i,m)phit(i,m), i ∈ {1, 2} . (3.16)

The overall hit rate of the hierarchical caching system is then calculated by

p̄hit = phit(1) + (1− phit(1))phit(2) . (3.17)

3.3.2 Analytic Model with Bandwidth Constraints

The above hit rates only apply if tier-1 and tier-2 caches have unlimited band-
width, which is practically not feasible. Considering the home router scenario,
the bandwidth of tier-1 caches is limited depending on the subscription and the
availability of DSL. We use the throughput of the tier-1 caches ρ1 as parameter
to specify the upload bandwidth available on home routers.

The o�ered tra�c of itemm at tier-1 cache k can be calculated by the quotient
of the arrival rate per cache λm

n1
and the mean service rate, which is determined

by the bitrate bm and the duration dm and the link throughput ρ1 in case of
video contents

a(m, k) =
λm · bm · dm
n1 · ρ1(k)

. (3.18)

The total o�ered tra�c of item m is a(m) =
∑
k a(m, k).

The content placement in tier-1 is speci�ed by X : N × n1 7→
{0, 1}, X(m, k) = 1, if content m is placed at cache k, else 0.

According to [28] an optimal placement of items in terms of minimum loss
rate in the stationary case is achieved by the hot-warm-cold content placement.
Hot content with a(m) ≥ n1 is placed on each cache. Warm content is placed on
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ba(m)c caches. Cold content is not placed on any of the caches. The constraint
∀k,
∑
mX(m, k) ≤ C1(k) has to be met, such that the cache capacities are not

exceeded.
Since not every hit can be served by tier-1 caches because of their limited

bandwidth, we consider the loss rate pb(1,m), which is de�ned as the share of
requests of itemm that is not hit in tier-1 or is blocked if none of the tier-1 caches
storing the requested item has enough bandwidth left to serve the request.

Let νm be the number of tier-1 caches that hold item m

νm =

n1∑
k=1

X(m, k) . (3.19)

An item is not hit, if it is not placed in any tier-1 cache, i.e., if νm = 0. If an
item is placed in at least one of the tier-1 caches, i.e., νm > 0, we approximate
the blocking probability by the Erlang formula for a loss system with νm servers
with mean service rate µm = ρ1

bm·dm and arrival rate C1λm:

pb(1,m) =


a
νm
m
m!∑νm

k=0

akm
k!

, νm > 0

1, otherwise ,
(3.20)

where we approximate the o�er of item m with

am ≈
λm · C1

µm
. (3.21)

Note that here we assume that the arrival rate of requests of theC1 items stored
in the cache is equal to the rate of itemm. In order to calculate the exact station-
ary distribution of the blocking probability, the arrival rate of requests has to be
conditioned on the feasibility of the content placement, which is too complex to
evaluate. Refer to [80] for details.

The blocked requests are forwarded to the tier-2 cache and the arrival rate of
requests of item m at the tier-2 cache can be determined as
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λm(2) = λm · pb(1,m) . (3.22)

We determine the hit rate of the tier-2 cache phit(2) again by using the Che-
approximation for cache capacityC2 and arrival rates λm(2), assuming that the
miss stream of the tier-1 caches follows a Poisson process

pb(1) =
∑
m

pmpb(1,m) . (3.23)

The total rate of requests hit and served by tier-1 and tier-2 caches is then
determined by

phit = (1− pb(1)) + pb(1) · phit(2) . (3.24)

In order to assess the bene�t of the tiered architecture compared to a single
ISP cache, we de�ne the cache hit rate gain ω as the normalized di�erence of
the total hit rate phit and the cache hit rate of the tier-2 cache p′hit(2) without
tier-1 cache support

ω =
phit − p′hit(2)

p′hit(2)
. (3.25)

3.3.3 Numerical Examples

We evaluate the performance of tiered caching systems with bandwidth con-
straints in parameter studies. We validate the model via simulations, which al-
lows us to verify the accuracy of the analytical model and the validity of our
conclusions based on the model for a wide range of system parameters. Before
presenting numerical examples, we brie�y describe the event-based simulation.
The simulation framework used is implemented in Matlab and described in de-
tail in [8]. The results presented show the mean values of 8 runs with 95% con-
�dence intervals, each run simulating 105 requests in the stationary phase.

If not stated otherwise, in the remainder of this study, the catalogue size is

81



3 Analysis and Optimization of Hierarchical Caching Systems

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of tier−1 caches n
1

ca
ch

e 
hi

t r
at

e 
p hi

t

 

 
ρ

1
=0.8Mbps

ρ
1
=1.6Mbps

ρ
1
=∞

ρ
1
=∞ − LRU

simulation

analysis
C

1
=8

λ=1s−1

Figure 3.9: Comparison of cache hit rate for optimal placement with LRU policy.
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N = 1e6. The number of tier-1 caches is n1 = 1e4, each having a capacity of
C1 = 8. There is one tier-2 cache with default capacity C2 = 1e4. The tier-
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Figure 3.11: Cache hit rate dependent on the number of tier-1 caches for varying
request rates λ.

1 cache upload bandwidth is limited to 0.8Mbps, whereas the tier-2 cache has
unlimited upload bandwidth.

We �rst consider a scenario without tier-2 cache. In this case the caching
architecture only consists of tier-1 caches. We evaluate the cache hit rate de-
pendent on the number of tier-1 caches n1. Figure 3.9 shows the results for dif-
ferent upload bandwidth of tier-1 caches ρ1. The cache hit rate increases with
the number of tier-1 caches and their upload bandwidth. The analytic model
slightly overestimates the cache hit rate for �nite upload bandwidth of tier-1
caches. In the case of in�nite upload bandwidth, the results can be compared to
an LRU cache with capacity n1C1. In the optimal placement, the items that are
most frequently requested are placed on the caches, which explains the higher
hit rate compared to LRU. Hence, there is a high potential to increase the hit rate
of the system by using an optimal content placement. Furthermore, the results
show that it is important to consider bandwidth constraints in the analysis of
caching systems. If the bandwidth is limited to 1.6Mbps, the cache hit rate is
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Figure 3.12: Impact of the upload bandwidth ρ1 on the cache hit rate gain ω.

reduced by about 30% compared to the case of unlimited bandwidth.
To investigate the in�uence of the tier-2 cache on the cache hit rate, we vary

the tier-2 cache capacityC2. Figure 3.10 depicts the hit rate of the tiered caching
architecture dependent on the number of tier-1 caches for di�erent tier-2 cache
capacities. As baselines the cache hit rate p′hit(2) of a single tier-2 cache with
capacity C2 without tier-1 support is depicted. The overall hit rate increases
with the tier-2 cache capacity.

The performance of the caching architecture also highly depends on the over-
all request rate λ. Figure 3.11 shows the cache hit rate dependent on the number
of tier-1 caches for varying request rates λ. Due to the limited upload bandwidth
of tier-1 caches, more requests are blocked and forwarded to the tier-2 cache,
which reduces the total rate of requests hit and served by tier-1 and tier-2 caches.
If the request rate increases, more tier-1 caches are necessary to increase the
overall hit rate.

In order to evaluate the performance of the tiered caching architecture for a
medium sized ISP, we consider a high request rate λ = 100s−1 and a high tier-
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2 cache capacity C2 = 103. We study the impact of the upload bandwidth of
tier-1 caches on the cache hit rate gain ω. If the upload bandwidth of the caches
is low, a high number of tier-1 caches is necessary to improve the performance
of the caching architecture. The number of tier-1 caches necessary to gain hit
rate decreases with their upload bandwidth.

Hence, if no tier-2 cache or only a small tier-2 cache is available, the sys-
tem bene�t depends on the number and bandwidth of tier-1 caches available. In
larger ISPs where a large tier-2 cache is available and where the request rate of
items is high, the approach is only bene�cial if the number or upload bandwidth
of tier-1 caches is high enough.

3.4 Lessons Learned

To support content delivery networks, cache capacities on small data-centers
with limited upload capacities, such as home routers, can be used to reduce the
overall energy consumption and operation cost of the system. In this chapter we
evaluate the performance of hierarchical content delivery networks that have a
high number of caches with limited capacity in the lowest tier.

To this end, we �rst provide a comprehensive overview of literature on per-
formance evaluation of caching systems and show the state of the art of current
research. We describe the most relevant tra�c models and caching strategies
and introduce the Che approximation, which is a highly versatile method to
determine the e�ciency of caching systems.

We develop a simulation framework for hierarchical content delivery net-
works to evaluate the system characteristics that are not covered by the analytic
models. This allows us to evaluate the approach in terms of caching e�ciency
and inter-domain tra�c. The results show that an overlay is imperative for the
success of such an approach, especially for a high number of small caches. More-
over, by investigating the share of locally served content requests, the impact
for the network operator is quanti�ed. The results indicate that such a mech-
anism signi�cantly reduces the inter-domain tra�c and the contribution of an
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operator-owned cache. The ISP owned cache can be discontinued if at least ev-
ery thousandth user shares its home router for caching in large ISPs. The system
was prototyped in [7] showing the practicability of the approach.

We develop an analytical model based on the Erlang formula for loss systems
to evaluate the performance of hierarchical cache systems with small capaci-
ties and limited upload bandwidth. The results show that the e�ciency of the
overlay can be even further increased by more than 10% if an optimal content
placement is used. If the bandwidth is limited to 1.6Mbps the cache hit rate is
reduced by about 30%, which shows the importance of considering bandwidth
constraints in the analysis. There is a high potential to increase the e�ciency
of the content delivery network if only a small or no ISP cache is available. If a
larger ISP cache is available the bene�t of the approach highly depends on the
number of caches available and their upload bandwidth. In the considered case
at least 1000 tier-1 caches with more than 1.6Mbps upload bandwidth need to
be available in a system with a large ISP cache so that the hit rate gain is more
than 10%.
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Bandwidth Aggregation Systems

In 2015, mobile networks carried more than 40 exabytes of tra�c, which is ex-
pected to increase 8-fold towards 2020 [98]. To handle the growth and to reduce
the load on mobile networks, o�oading to WiFi has come to the center of in-
dustry thinking [99].

In contrast to strict o�oading, in which the Internet access link is switched
completely, e.g., from cellular to WiFi, current concepts such as BeWi�1 also
consider multiple connections to the Internet, thereby sharing and aggregating
available backhaul access link capacities. The question is which sharing policy to
apply for which system characteristics. In the case of BeWi�, which considers
access link sharing among neighboring users, each user should only share its
access link when having spare capacity in order to avoid negatively a�ecting
the own Internet connections. Therefore, two thresholds were introduced, i) a
support threshold until which utilization a user will o�er bandwidth to other
users, and ii) an o�oading threshold indicating from which utilization a user
can o�oad to supporting neighbors. It is hard and non-intuitive to determine the
threshold settings for fair and e�ective operation of a bandwidth sharing system.
In this work a partial bandwidth sharing environment with o�oading policy is
investigated using an analytic model. A direct application of the model is the
aggregation of backhaul bandwidth by connecting neighboring access links.

We develop a Markov model to analyze the bandwidth aggregation potential

1http://www.tid.es/research/areas/bewifi

87

http://www.tid.es/research/areas/bewifi


4 Performance Analysis of Bandwidth Aggregation Systems

of neighboring access links. The Markov model is limited to two access links,
which limits its applicability. It was shown in pilot studies that the technology’s
only limitation is the actual WiFi bandwidth available. In urban environments
there are far more than two access links available. As shown in [100], an av-
erage of 25 WiFi access points are visible in every scan in densely-populated
areas. In this case an assessment with the model previously proposed by the au-
thors is not possible, since it is limited to two access links. An extension of the
Markov model to m dimensions would require solving an equation system with
nm equations, which is computationally too complex. We extend the Markov
model to be applicable for two and more links using a �xed point approxima-
tion. This allows us to reduce the n-dimensional Markov chain to evaluate the
steady state probabilities e�ciently.

The contribution of this chapter is three-fold. First, the approximation us-
ing �xed point iteration can be used to seamlessly evaluate the performance of
systems between partitioning and complete sharing dependent on the thresh-
old settings. To achieve feasible computational complexity, the m-dimensional
Markov chain is reduced to one dimension by summing up the interaction be-
tween the system in two o�oading rates. Second, by considering an outer and
an inner composite system we are able to apply the method to the case of het-
erogeneous load, which is crucial to assess the full potential of the approach.
Bandwidth sharing systems are designed to increase the throughput of systems
that are currently overloaded by using spare bandwidth of underutilized links.
In such situations the load on the links is highly heterogeneous. Our results
show that an overloaded system can greatly bene�t, by receiving multiples of
its own capacity, from spare bandwidth of underutilized cooperating systems.
Third, we evaluate the robustness of the mechanism against free riders by prior-
itizing links and �nd that altruistic users may only lose slightly more bandwidth
than in normal operation. This is important, since a bandwidth sharing system
that is running an ine�cient o�oading policy may be exploited by free riders,
which are users that claim spare bandwidth by o�oading tra�c, but do not share
any of their own bandwidth.
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The content of this chapter is mainly taken from [3, 16]. Its remainder is struc-
tured as follows. Section 4.1 summarizes o�oading and bandwidth sharing sys-
tems and technologies. In Section 4.2, the model of a bandwidth aggregation
system is described in detail and results of the performance evaluation are re-
ported. In Section 4.3 the model is extended to consider imbalanced systems
loads, while this chapter is concluded with lessons learned in Section 4.4.

4.1 Background and System Description

In this section we describe di�erent bandwidth aggregation approaches in praxis
and present related work on the performance evaluation of bandwidth aggrega-
tion systems. In addition, we describe our system model of bandwidth aggrega-
tion systems with o�oading policy.

4.1.1 Bandwidth Aggregation Approaches

The principle of sharing or o�oading between multiple Internet access links
is already widely used by commercial services as well as research work. WiFi-
sharing communities like Fon2, Karma3, WeFi4, and Boingo5 o�er access to an
alternative Internet link (WiFi instead of mobile), which provides a faster ac-
cess bandwidth and reduces the load on stressed mobile networks. With respect
to this so called “WiFi o�oading”, the research community investigated incen-
tives and algorithms for access sharing [101], and ubiquitous WiFi access ar-
chitectures for deployment in metropolitan areas [102, 103]. Moreover, [104–
106] describe systems for trust-based WiFi password sharing via an online so-
cial network (OSN) app. WiFi sharing is not a legal vacuum and a �rst exem-
plary overview on Swiss and French rights and obligations was given in [107]
but must be treated with caution due to international di�erences and interim

2http://www.fon.com
3https://yourkarma.com/
4http://wefi.com/
5http://www.boingo.com/
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law revisions. The opposite concept to Wi� o�oading, i.e., WiFi onloading, is
presented in [108]. The idea is to utilize di�erent peaks in mobile and �xed net-
works to onload data to the mobile network to support applications on short
time scales (e.g., prebu�ering of videos, asymmetric data uploads).

An access link sharing concept, which goes beyond pure o�oading, is BeWi�,
which was developed by Telefonica [109] and builds on previous works about
backhaul capacity aggregation [110, 111]. BeWi� uses modi�ed access points,
which act as normal access points until their clients saturate more than 80% of
the backhaul capacity. Then, the access point will scan for close access points,
which will provide additional bandwidth if their utilization is below 70%. Back-
haul capacity and utilization are announced by each access point via beacon
frames. Instead of introducing a secondary WiFi radio, BeWi� uses time-division
multiple access (TDMA) and the 802.11 network allocation vector (NAV) to con-
nect to neighboring access points for bandwidth aggregation in a round robin
fashion with a weighted proportional fairness schedule.

Figure 4.1 shows a client-based and an access point solution for the band-
width aggregation proposed in [109]. The state of the art client-based system
proposes to use a TDMA based access strategy for accessing selected access
points in range in a round robin fashion, i.e., no concurrent data transmission
via di�erent frequencies is taking place. The system utilizes inband signaling, a
switching frequency of 100ms and requires less than 1.5ms for switching. Using
the standard 802.11 power saving feature, a client is able to notify its absence to
the access points it is connected to, so that they bu�er packets directed to it. A
client performing aggregation appears to be sleeping in all access points but the
one that is currently scheduled in the round robin cycle. The access-point-based
solution can be mapped to the client-based solution, if an access point acts as
access point to its clients, and as a client to neighboring access points.

From a technical perspective, bandwidth sharing and o�oading are enabled
by implementing handovers and/or multipath connections, which are well cov-
ered in research. [112–114] show the feasibility of multipath TCP for han-
dovers between mobile and WiFi networks in the current Internet and [115]
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(a) Client-based
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Figure 4.1: Client-based and access-point-based solution for bandwidth aggrega-
tion.

describes available features for mobile tra�c o�oading. Futhermore, [116] gives
an overview on approaches that enable mobility and multihoming.

4.1.2 Perfomance Models for Bandwidth Aggregation
Systems

Theoretically, bandwidth sharing between WiFi access points can be considered
as load sharing among systems. Generally load sharing systems can be classi�ed
in partitioning, partial sharing and complete sharing systems. Partitioning sys-
tems work completely independent from each other. Each system has its own
queue and bu�er space and processes only requests arriving at its queue. Com-
plete sharing systems have a shared queue and bu�er space. When processed,
a request in the shared queue is assigned to the system which is currently least
loaded.

Partial sharing systems have their own queues, but may o�oad requests to
other systems if they are overloaded, or process requests from other overloaded
systems. Di�erent partial sharing or complete sharing models have been in-
vestigated in literature. In [117] the bandwidth usage by di�erent services in
a broadband system in complete sharing and partial sharing mode with trunk
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reservation is investigated. Multidimensional Markov chains are used in [118–
120] to evaluate the performance of cellular network systems with di�erent ser-
vice categories. The blocking probability of a complete sharing system has been
approximated in [121]. This approximation is used in [122] to evaluate the per-
formance of mobile networks with code division multiplexing supporting elastic
services. However, none of the models can be used to seamlessly evaluate the
performance of systems between partitioning and complete sharing.

Thus, we develop a model based on a two dimensional Markov chain with
thresholds to study the transition of blocking probabilities of partitioned, par-
tial sharing, and complete sharing systems. This limits its applicability, since
the number of average WiFi access points visible to clients is much higher in
densely-populated areas. In densely-populated areas bandwidth of a high num-
ber of WiFi access points is aggregated. In this case an assessment with the
Markov model is not possible, since it is limited to two access links. An exten-
sion of the Markov model to m dimensions would require solving an equation
system with nm equations, which is computationally too complex. Therefore,
we extend the model to be applicable to multiple access links by utilizing a �xed
point approximation.

The �xed point approximation is used to reduce the m-dimensional Markov
chain to one dimension similar to [123, 124], where the approach is used for
analytic models for polling systems and the interference distribution in UMTS
networks, respectively. The underlying Markov chain highly di�ers from exist-
ing �x-point approaches, since it considers support and o�oading thresholds.
To the best of our knowledge this is also the �rst work that considers an inner
and an outer composite system to apply the �xed point analysis in heteroge-
neous load conditions.

4.1.3 System Model

For simplicity and mathematical tractability we make assumptions on the link
capacities and the service rates of bandwidth fractions. This allows analytic per-

92



4.1 Background and System Description

formance evaluation of bandwidth aggregation systems with o�oading policy
and understanding its characteristics.

Assumption 1. The switching time to another access link is zero.

In practice, TDMA is used to aggregate the bandwidth of two access points
operating on di�erent channels. During the time in which the client is switching
frequencies, it cannot send or transmit data. This time is called switching time
and for state of the art systems it is 1.5ms [109]. This switching time slightly de-
creases the e�ective throughput of the system. Signaling among the cooperating
access points is necessary to report the current load and the o�oading state. The
messages exchanged produce a signaling overhead, which can limit the perfor-
mance of the system. In practice APs announce their backhaul link capacity
through Beacon frames, as well as their available-for-aggregation throughput,
i.e. the part of their capacity that is not utilized by their clients [109]. However,
in [109] the aggregate throughput remains almost constant across the di�erent
experiments, indicating that the overhead of switching and signaling is �xed
and only slightly impacts the overall throughput.

Assumption 2. The wireless channels are clean.

Interference can limit the capacity of the wireless links. The e�ect of the chan-
nel quality on the aggregation capacity is evaluated in [109]. To account for a
bad channel quality in our model, the link capacity can be reduced accordingly.

Assumption 3. The service time of bandwidth fractions follows a negative expo-
nential distribution.

We model the load on m ≥ 2 access links as depicted in Figure 4.2. The
throughput of each Internet connection is limited by a bottleneck (either on
application side, on server side, or in the core Internet), such that single con-
nections will utilize a certain share of the access link bandwidth. Therefore, the
available capacity of a link c is divided into a number n of small atomic band-
width fractions of equal size. This means, c = n · ξ with a global constant ξ
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Figure 4.2: System model.

denoting the granularity of bandwidth allocation. Thus, di�erent capacities ci
are modeled by assigning di�erent ni to the links.

We consider the system in a short time frame, where the system load can
be considered stationary. Each access link is modeled as a multi-server block-
ing system, in which each server represents an available bandwidth fraction of
the link. Its utilization variations are modeled as a stationary process of singu-
lar and independent arrivals of tra�c bursts, i.e., bandwidth fraction requests.
This allows modeling an access link as M/M/n loss system [125]. We de�ne X
as the random variable of the number of occupied bandwidth fractions on each
backhaul link. It is modeled by a birth-death-process, in which bandwidth frac-
tions are requested with Poisson arrivals at rate λ and occupied for an negative-
exponentially distributed service time with globally normalized rate µ = 1.
Consequently, the load on each link is given by ρ = λ

n·µ = λ
n

. The probabil-

94



4.1 Background and System Description

ity that k bandwidth fractions are occupied in the considered M/M/n queue is
x(k) = P (X = k).

In the BeWi� approach (cf. Section 4.1.1), two thresholds are used, which
de�ne the bandwidth aggregation/o�oading policy. The support threshold α
indicates up to which percentage of utilization (i.e., number of own occupied
bandwidth fractions) the system will o�er bandwidth fractions to other sys-
tems. Furthermore, the o�oading threshold β with α ≤ β sets the percentage
of utilization above which the system will try to use bandwidth of other sys-
tems. According to these thresholds, a system can be in one of the following
three macro states:

a) support (0 ≤ X < bα · nc):
low utilization and o�ering bandwidth ,

b) normal (bα · nc ≤ X < bβ · nc):
normal operation ,

c) o�oading (bβ · nc ≤ X ≤ n):
high utilization and o�oading to other systems .

By applying the o�oading policies, di�erent Internet access links will collab-
orate and share tra�c. More details on the investigated scenarios are presented
in the following section.

Two bandwidth aggregation systems, i.e., systems o�oading between m ac-
cess links, will be analyzed. First, we consider a bandwidth aggregation system
with equal load on each access link. Moreover, a system in which one access link
has a di�erent load than the other m− 1 links is modeled. As reference system
we considered partitioned systems without o�oading.

4.1.4 Analysis of Reference Systems

We compare the bandwidth aggregation gain of multiple collaborating Internet
access links to a partitioned system without o�oading. The received bandwidth
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of each access link E[Xi] and the blocking probability pbi of each system i are
evaluated. The blocking probability gives the probability that the link is fully
utilized and a bandwidth request of an application cannot be entirely satis�ed.
In practice, if TCP is used on the access link, the Internet connections throttle
themselves and share the link equally. Depending on the used application and
its characteristics, the application performance can then su�er, which can result
in user dissatisfaction.

Partitioned and Complete Sharing Systems

For completely partitioned systems, i.e., m di�erent M/M/ni loss systems with
arrival rates λi, i ∈ {1, . . . ,m}, the received bandwidths E0[Xi] can be com-
puted individually for each access link by Little’s Theorem as

E0[Xi] =
λi
µ
· (1− pbi), (4.1)

in which we use the rate of accepted arrivals λi · (1 − pbi) and the globally
normalized service rate µ = 1.

The blocking probability of partitioned systems pbi follows from the Erlang-B
formula [125]

pbi =

(
λi
µ

)ni

ni!∑ni
k=0

(
λi
µ

)k

k!

. (4.2)

The performance Es[X] of a complete sharing system, i.e., a single M/M/n
loss system with n =

∑m
i=1 ni servers and an arrival rate of λ =

∑
i = 1mλi,

can be computed by the same formulae.

Approximations and Performance Metrics

An approximation p̃b of the blocking probability pb can be calculated by the
joint probability of a single system being fully occupied, while a separate single
system is above the support threshold α, i.e. could not help. If X1 and X2 are
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random variables for the number of jobs in system 1 and system 2, the joint
probability is

p̃b = P (X1 = n1, X2 ≥ α · n2) = P (X1 = n1) · P (X2 ≥ α · n2) . (4.3)

Moreover, we analyze the mean total number of occupied bandwidth fractions
E[X], which corresponds to the mean of total aggregated bandwidth. Following
the same argumentation as above, E[X] can be computed by Little’s Theorem
as

E[X] =
λ1 + λ2

µ
· (1− pb) =

λ1

µ
· (1− pb1) +

λ2

µ
· (1− pb2) . (4.4)

Finally, we take a look at the received bandwidth at each access link E[XAi ].
Thereby, XAi is a random variable for the number of bandwidth fractions (in
all systems), which are occupied by arrivals from system i. It is obvious that
E[XAi ] = E[Xi] = E0[Xi] for the partitioned system. In case of o�oading,
E[XAi ] can be calculated from the mean total number of occupied bandwidth
fractions by taking into account the share of accepted requests from each sys-
tem.

E[XAi ] =
λi(1− pbi)

λ1(1− pb1) + λ2(1− pb2)
· E[X] =

λi
µ
· (1− pbi) (4.5)

Nevertheless, it is the goal of bandwidth aggregation to cooperate in order
to use spare capacity on access links to increase the received bandwidth where
needed. Therefore, we can quantify the percentage of bandwidth gain for each
system as

ωi =
E[XAi ]− E0[Xi]

E0[Xi]
. (4.6)
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4.1.5 Simulation Description

A discrete-event based simulation using arrival and departure events is imple-
mented to validate the analytic model and to assess the system performance in
more general cases. Each of the m systems has a Poisson arrival process with
rate according to its load. The service time of bandwidth fractions is exponen-
tially distributed with mean 1. O�oading decisions are made according to the
the number of occupied bandwidth fractions in the systems with respect to the
support and o�oading threshold. Therefore, the simulation state holds the re-
quests being processed and the number of occupied bandwidth fractions for each
system.

4.2 Potential of Backhaul Bandwidth Aggregation

In order to investigate the system dynamics of bandwidth aggregation systems
with o�oading policy, we develop analytical models.

In Section 4.2.1 we introduce a Markov model for two links. The Markov
model is extended in Section 4.2.2 to be applicable for two and more links using
a �xed point approximation, allowing us to reduce the n-dimensional Markov
chain to evaluate the steady state probabilities e�ciently.

The models are used in Section 4.2.3 to study the characteristics of bandwidth
aggregation systems and to determine optimal threshold settings for the o�oad-
ing policy.

4.2.1 The Case of Two Systems

We �rst consider a scenario with two di�erent Internet access links. In the case
of two links, the actual system state can be described by two random variables
X1 and X2, which represent the number of occupied bandwidth fractions in
the respective access link. As the model components comprise the memoryless
property, a two-dimensional Markov process can be analyzed using standard
techniques of queueing theory.
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With the state probabilities

x(i, j) = P (X1 = i,X2 = j), 0 ≤ i ≤ n1, 0 ≤ j ≤ n2, (4.7)

i.e., the probability that i bandwidth fractions are occupied in system 1 and j
bandwidth fractions are occupied in system 2, the two-dimensional state tran-
sition diagram, presented in Figure 4.3, can be arranged. Two major areas are
visible. In the upper left part and the lower right part (white background), each
system operates independently in such way that all arriving requests are served
locally by this system. In the top-right and bottom-left parts (shaded in gray),
one of the links is in o�oading state and the other link is in support state. In
these cases, all tra�c arriving at the o�oading link will be served by the sup-
porting link. Thus, blocking only occurs when the other link cannot help, i.e.,
in states {(n1, j) : bα2n2c ≤ j ≤ n2} and {(i, n2) : bα1n1c ≤ i ≤ n1}.

Having the state probabilities, we calculate the blocking probability pbi of
each system i and the total blocking probability pb, which is the sum of blocking
probabilities of each system weighted by the probability that a request arrives
at each respective system

pb1 =

n2∑
k=bα2·n2c

x(n1, k), pb2 =

n1∑
k=bα1·n1c

x(k, n2) , (4.8)

pb =
λ1

λ1 + λ2
· pb1 +

λ2

λ1 + λ2
· pb2 . (4.9)

Since requests can be o�oaded from system 1 to system 2 in states (n1, k)

for k < bα2 ·n2c, the requests are not blocked and the state probabilites are not
added to the blocking probability pb1 . The same holds for states (k, n2) with
k < bα1 · n1c and pb2 .
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Figure 4.3: The state transition diagram.

4.2.2 The Case of Multiple Systems

The case, in which m Internet access links o�oad tra�c according to the pol-
icy de�ned via the support and o�oading thresholds, is more interesting, since
much more than two access links can be available in densely populated neigh-
borhoods and since the potential of the approach increases with the number of
links available for bandwidth sharing. We start with assuming that all access
links are equal (n = ni, ∀i ∈ {1, . . . ,m}) and face equal loads (λ = λi, ∀i ∈
{1, . . . ,m}) and policies (α = αi, β = βi, ∀i ∈ {1, . . . ,m}). First, we distin-
guish one access link, and merge the remaining m− 1 cooperating access links
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4.2 Potential of Backhaul Bandwidth Aggregation

into a composite system. This reduces the problem ofm systems to two systems.
Still, the complexity of the composite system prohibits creating and analyzing
the two-dimensional state transition diagram as it was done in [3]. Thus, we
apply a �xed point approach to analyze this system.Therefore, we model an ob-
served system, which will take into account o�oading to and supporting the
abstract composite system. For simplifying the notation, we de�ne the macro
state probabilities p1 (support), p2 (normal), and p3 (o�oad):

p1 =
∑

x(i), 0 ≤ i < bα · nc ,

p2 =
∑

x(i), bα · nc ≤ i < bβ · nc ,

p3 =
∑

x(i), bβ · nc ≤ i ≤ n .

(4.10)

In the support macro state, the arrival rate will be increased by λs, i.e., the ar-
rivals that are o�oaded by the composite system. λs can be computed as shown
in Equation (4.11) from the multinomial probability that j of the m − 1 links
in the composite system are in o�oading state, and k links in the composite
system can support

λs =

m−1∑
j=1

m−1−j∑
k=0

(m− 1

j

)(m− j − 1

k

)
p
j
3p
k
1p
m−j−k−1
2

jλ

k + 1
. (4.11)

The arrival rate is decreased by λo in the o�oading macro state when the
composite system can support the observed system, i.e., at least one of them−1

systems is in support macro state

λo = (1− (1− p1)m−1)λ . (4.12)

This gives new steady state equations for the observed system as described in
Equation (4.13). As all access links have equal load, and thus, show a homoge-
neous behavior, not only the state probabilities of the observed system, but also
of the m − 1 systems in the composite system are in�uenced. Thus, the state
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4 Performance Analysis of Bandwidth Aggregation Systems

probabilities of all m links can be obtained by computing the state probabilities
of the observed system. Therefore, we initialize the observed system with equal
state probabilities. Then, we iterate the o�oading and support and normalize
the state probabilities until a �xed point is reached:

x(i) =


x(i−1)(λ+λs)

i·µ , 0 ≤ i < bα · nc
x(i−1)λ
i·µ , bα · nc ≤ i < bβ · nc

x(i−1)(λ−λo)
i·µ , bβ · nc ≤ i ≤ n

n∑
i=0

x(i) = 1 .

(4.13)

For our modeled bandwidth aggregation system withm Internet access links,
we consider the blocking probability pb = x(n) ·(1−p1)m−1 of a link, which is
calculated by the probability that a request arrives when the link is fully loaded
(i.e., in state n) and none of the m− 1 other links can support.

Moreover, we take a look at the received bandwidth at each access link
E[XAi ]. Thereby, XAi is a random variable for the number of bandwidth frac-
tions (in all systems), which are occupied by arrivals from system i. It is obvious
thatE[XAi ] = E0[Xi] for the partitioned system. In case of o�oading between
m equal links,E[XAi ] = λ

µ
· (1−pb) is equal for all links and can be calculated

from the mean total number of occupied bandwidth fractions by taking into ac-
count the share of accepted requests. Finally, we also quantify the percentage of
bandwidth gain for each system as

ωi =
E[XAi ]− E0[Xi]

E0[Xi]
. (4.14)
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Figure 4.4: Blocking probability of two systems with equal load.

4.2.3 Numerical Examples and Threshold Se�ing

Using the model we aim to calculate numerical examples to evaluate the perfor-
mance of the system in di�erent scenarios. As parameters we study the load on
the reference system ρ1 and the load on the cooperating system ρ2. We consider
the blocking probability of the reference system pb1 and the normalized received
bandwidth of the reference system E[XA1 ]/n1. To validate our model and to
get a �rst assessment, we analyze the performance of systems with equal thresh-
olds and compare the analytic results with the results obtained from simulation
and those of simple reference systems. We consider the symmetric case with
even load ρ1 = ρ2 to investigate the impact of the o�oading thresholds and
to optimize them. We then consider the asymmetric case to analyze the perfor-
mance of systems with imbalanced load. We conduct parameter studies to �nd
system con�gurations where one of the systems can highly bene�t from o�oad-
ing, e.g. by being prioritized. Finally we run simulations with di�erent service
time distributions to assess the system performance in more general cases.

Figure 4.4 shows the blocking probability dependent on the system load of
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4 Performance Analysis of Bandwidth Aggregation Systems

two links with equal arrival processes. In this case the blocking probability is
equal for both systems. Both systems have n = 20 bandwidth fractions, and the
thresholds are set to α = 40% and β = 80%. The black line shows the result
based on the analytic model for a composite system as described in Section 4.2.1.
The markers show the mean of 8 simulation runs with 95% con�dence intervals.
The blocking probability increases with the load on the system as expected. The
results of the simulation match the analytical model with high con�dence.

For comparison the analytic result for the approximation p̃b, for partitioning
and for complete sharing, i.e., with combined arrival process and bandwidth
fractions, is plotted. The latter equals a system with a single link, double arrival
rate and double number of bandwidth fractions. Compared to partitioning the
composite system performs slightly better for low loads. For low system loads
the probability is high that one of the two systems has less than α · n active
jobs and can help if the other system is in an o�oading state. The load is taken
from the highly loaded system and the blocking probability is decreased. This
e�ect is negated for higher loads on the system, since the probability to be in a
support state, with less than α · n jobs, diminishes. If the systems cannot help
each other, their performance equals partitioning the systems.

To investigate its potential, the system is compared to a complete sharing
system. The red dash dotted line shows the result of a system with double arrival
rate and n′ = 2n = 40 combined bandwidth fractions. The blocking probability
is reduced by a magnitude. This e�ect is known as the economy of scale.

O�loading Thresholds

In the following we investigate the setting of the thresholds α and β to optimize
the performance of the system. Therefore we analyze the symmetric case with
ρ1 = ρ2 and vary the thresholds α and β. The number of bandwidth fractions
per system is again set to n = 20.

Figure 4.5 shows the blocking probability of the reference system pb1 depen-
dent on the load ρ1 for di�erent support thresholds α. The o�oading threshold
β is constant at 80% of the system capacity. For α = 5% a system only helps if
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Figure 4.5: Blocking probability pb1 dependent on thresholds α.

it is empty and is not processing jobs. The systems work almost isolated from
each other and thus the performance is equal to the performance of a single
system. By increasing the support threshold α the systems can o�er more help
when one of the systems is overloaded and decrease the blocking probability.
The support threshold α determines the amount of jobs that can be o�oaded.

Figure 4.6 shows the blocking probability of the reference system pb1 depen-
dent on the load ρ1 for di�erent o�oading thresholdsβ. The support thresholdα
is constant at 70% of the system capacity. The o�oading threshold β is increased
from 75% to 95%. Increasing the o�oading threshold has almost no impact on
the blocking probability. The e�ect on the blocking probability is small, since
the threshold β just shifts the point of time at which the system starts o�oad-
ing. The amount of jobs that can be o�oaded is not dependent on β. The reason
for the slight increase of the blocking probability with β is that there are less
chances to �nd the cooperating system in support state when β is high.

The previous results show that the performance of the system depends on
the amount of jobs that can be o�oaded, so the support threshold α needs to be
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Figure 4.6: Blocking probability pb1 dependent on thresholds β.

set as high as possible. Theoretically, the support threshold could be set to the
o�oading threshold α = β, so that a system would switch directly from sup-
port to o�oading mode. However, in practice this may lead to problems, since
the systems could switch unnecessarily frequently among the modes. This is
especially the case if mode switches result in a high signaling overhead or im-
ply expensive context switches. Therefore, a gap is left among the thresholds.
Hence, in order to prevent frequent mode switches, we set β−α to 10%. In order
to maximize the available bandwidth we can increase the support threshold α.
Figure 4.7 shows the blocking probability of the reference system pb1 dependent
on the load ρ1 with �xed gap β − α for increasing support thresholds α from
5% to 85%. The blocking probability decreases with increasing α, since more
bandwidth fractions are shared among the systems. However, the performance
of the system can also drop if the support threshold α is to high, which can be
seen in Figure 4.8. Figure 4.8 shows the bandwidth gain ω1, c.f. Equ. 4.5, of the
reference system for an equally loaded cooperating system with ρ2 = ρ1 and
an overloaded cooperating system with ρ2 = 2. If the cooperating system is
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Figure 4.7: Blocking probability pb1 dependent on thresholds α and β.
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Figure 4.8: Bandwidth gain ω1 dependent on thresholds α and β.

equally loaded the bandwidth gain is always positive. If the cooperating system
is overloaded, the bandwidth gain is negative, if the reference system is under-
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utilized. In this case an increasingα has a negative e�ect on the bandwidth gain,
since less bandwidth fractions are left for arrivals in the own system. To prevent
the system from being overloaded, we leave 30% of the capacity as bu�er for
peak periods and set the support threshold α to 70%. Hence, we set the support
threshold α to 70% and the o�oading threshold β to 80% in the following.

4.3 Backhaul Bandwidth Aggregation in Imbalanced
Load

To assess the full potential of the approach, we consider an inner and an outer
composite system. Thus, we are able to apply the method to the case of het-
erogeneous load in Section 4.3.1, which allows evaluating the gain in situations
where an overloaded system can use spare bandwidth of underutilized links Sec-
tion 4.3.2. This further allows us to evaluate the fairness of the system and its
robustness against free riders that try to exploit the system by receiving avail-
able bandwidth without contributing spare bandwidth to neighboring systems.

4.3.1 System Dynamics in Imbalanced Operation

Now, we consider the case ofm systems, in which one link is di�erent from the
other m− 1 links. Thus, we have the observed system with n1 servers, arrival
rate λ1, and thresholds α1, β1, and a composite system of m− 1 homogeneous
links with n′ = ni, λ

′ = λi, α
′ = αi, β

′ = βi, ∀i ∈ {2, . . . ,m}. This gives
two di�erent macro state probabilities p1, p2, p3 for the observed system and
p′1, p

′
2, p
′
3 for the systems in the composite system, respectively, which can be

computed analogously to Equation (4.10). The corresponding support rate λ1s

and o�oading rate λ1o of the observed system can then be computed as follows:

λ1s =

m−1∑
j=1

m−1−j∑
k=0

(
m− 1

j

)(
m− j − 1

k

)
p′j3 p

′k
1 p
′m−j−k−1
2

jλ′

k + 1
, (4.15)
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λ1o = (1− (1− p′1)m−1)λ1 . (4.16)

These rates of supported and o�oaded tra�c cannot be easily integrated into
the �xed point iteration of Equation (4.13) as they depend on the state probabil-
ities x′(i) of links in the composite system, which are in this case di�erent from
the state probabilities x(i) of the observed system. To obtain the x′(i) values,
we introduce an inner model. This means, we again distinguish one of them−1

links of the outer composite system, and merge the remainingm−2 links to an
inner composite system. Although this inner model resembles the case described
above in Section 4.2.2, the equations for the inner observed system cannot be
easily transferred, as the impact of the outer observed system cannot be ne-
glected. Therefore, depending on the macro state of the outer observed system,
the following support rate λ′s and o�oading rate λ′o can be derived for the inner
observed system:

λ′s =

p1

m−2∑
j=0

m−2−j∑
k=0

(
m− 2

j

)(
m− 2− j

k

)
p′j3 p

′k
1 p
′m−2−j−k
2

jλ′

k + 2
+

p2

m−2∑
j=0

m−2−j∑
k=0

(
m− 2

j

)(
m− 2− j

k

)
p′j3 p

′k
1 p
′m−2−j−k
2

jλ′

k + 1
+

p3

m−2∑
j=0

m−2−j∑
k=0

(
m− 2

j

)(
m− 2− j

k

)
p′j3 p

′k
1 p
′m−2−j−k
2

jλ′ + λ1

k + 1

(4.17)

λ′o = (1− (1− p1)(1− p′1)m−2)λ′ . (4.18)

In Equation (4.17), the support rate λ′s is computed for the case that the inner
observed system can support. The summations consider the cases that j links
want to o�oad and k links can support in the inner composite system. With
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Figure 4.9: Fixed point approach for system with imbalanced load.

probability p1, the outer observed system is also in support macro state, thus,
in total k + 2 systems can support (including the k systems from the inner
composite system and both the inner and outer observed systems) and share
the o�oaded tra�c jλ′. With probability p2, the outer observed system is in
normal macro state and will not interact. However, it is in o�oading macro
state with probability p3, which means that the o�oaded tra�c is increased to
jλ′ + λ1 and shared by k + 1 links. In contrast, the inner observed system can
o�oad if the outer observed system is in support macro state, or at least one of
the m − 2 links of the inner composite model can help, which is re�ected by
Equation (4.18).

Solving this system by a joint �xed point iteration for the outer and the inner
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Figure 4.10: Received bandwidth E[XA1 ]/n1 dependent on load of the other links
ρ′ form = 8.

system, i.e., iterating and normalizing in turns over both systems according to
Equation (4.13), will give the state probabilities x(i) and x′(i).

For the evaluation of this system, we will focus on the results for the outer
observed link, i.e., the link that is not equal to the other m − 1 links. For this
link we will investigate the blocking probability pb1 = x(n) · (1 − p′1)m−1,
the received bandwidth E[XA1 ] = λ1

µ
· (1 − pb1), and the bandwidth gain

ω1 =
E[XA1

]−E0[X1]

E0[X1]
.

4.3.2 Numerical Examples and Implications on Fairness

The cooperating system can bene�t if the load is heterogeneously distributed
among the systems, such that a system which is currently busy can o�oad to
an idle system.

To assess the potential of bandwidth aggregation ofm systems in imbalanced
load conditions, we study the load of the observed system ρ1 and set the load of
the other m− 1 systems to the same value ρ′, i.e., ρi = ρ′, ∀i ∈ {2, . . . ,m}.
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Figure 4.11: Bandwidth gain ω1 dependent on load of the other links ρ′ form = 8.

In the following we investigate how the load on the links in the composite
system ρ′ a�ects the throughput of the observed system form = 8 cooperating
systems. Figure 4.10 shows the normalized received bandwidth of the observed
system dependent on the throughput of the links in the composite system ρ′. In
case of ρ′ = 0.3 a lot of spare bandwidth is available for o�oading. If the ob-
served system is overloaded it can use the spare bandwidth and receives almost
400% of its capacity if its o�ered load is 400%. If the load ρ′ on the other links
is higher, less bandwidth is available, which limits the received bandwidth. Still,
the received bandwidth is above partitioning, although the links in the compos-
ite systems are overloaded with ρ′ = 1.1 if the observed system is even more
overloaded.

Figure 4.12 shows the bandwidth gain of the observed system ω1 dependent
on the number of cooperating systemsm for ρ′ = 0.3. Hence, in this case there
is a high potential to obtain spare bandwidth from the cooperating systems.
Depending on the number of cooperating systems the bandwidth gain of the
observed system is limited.
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Figure 4.12: Bandwidth gain dependent on load of the observed system in o� peak
operation (ρ′ = 0.3).

Figure 4.13 shows the bandwidth gain of the observed system ω1 dependent
on the number of cooperating systems m for ρ′ = 1.1. In this case the links in
the composite system are overloaded. This leads to a loss of up to 2% bandwidth
if the observed system is not overloaded itself. If the load on the observed system
is high, but low enough that it supports other systems, a tra�c burst is more
likely to block the system, since the overall load on the systems is higher than
in partitioning case.

To conclude, if the load on the other systems is low, an overloaded system can
highly pro�t from their spare bandwidth by gaining multiples of its own band-
width. The maximum bandwidth gain is limited by the number of cooperating
systems m. If the cooperating systems are overloaded, the received bandwidth
might be up to 2% lower in some cases, but this is compensated with multiples
of the base level bandwidth in high peak periods.

To prevent a system from being congested from an overloaded cooperating
system, it can be prioritized. One possibility of prioritizing is to decrease the
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Figure 4.13: Bandwidth gain dependent on load of the observed system in overload
operation (ρ′ = 1.1).

support threshold α, so that it still can o�oad to other systems, but shares less
bandwidth fractions to support. Figure 4.14 shows the bandwidth gain of the
observed system for three cases. The dotted line shows the blocking probability
if observed and other systems have equal support threshold α1 = α′ = 70%.
The solid line shows the case where the observed system is altruistic and keeps
its threshold at α1 = 70%, but interacts with egoistic cooperating systems with
support threshold α′ = 0%. The dashed line shows the egoistic case where the
observed system limits its support threshold to α1 = 0%, while the cooperat-
ing systems support up to α′ = 70%. The altruistic system su�ers from egoistic
cooperating systems by losing up to about 3% bandwidth while not being able
to gain bandwidth in high loads. Compared to that, the bandwidth gain in the
egoistic case is never negative. Hence, if a system is egoistic it always gains
more bandwidth. However, the gain compared to normal operation is not high,
and if each system would be egoistic no bandwidth can be shared. This would
mean completely partitioned systems which would not change the current sit-
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Figure 4.14: Bandwidth gain dependent on load of the observed system in unfair
operation (α1 6= α′).

uation without bandwidth sharing. On the other hand, if a system is the only
one sharing among only free riders, which corresponds to the altruistic case,
the situation is not worse, since only about 3% of the bandwidth are lost. Thus it
is a win-win situation if everybody contributes to the system and shares spare
bandwidth. This provides incentives for systems to contribute.

4.3.3 Simulation with Generally Distributed Service Times

To assess the system performance in more general cases we run simulations with
di�erent service time distributions. Figure 4.15 shows the blocking probability
of the reference system dependent on the load of the systems. The mean values
with 95% con�dence intervals of 8 simulation runs are plotted for the service
time distributions deterministic and hyper-exponential. The service times in the
deterministic process are constant. In the hyper-exponential process we use two
branches with probabilities 10% and 90%. For constant service times the blocking
probability does not di�er from the analytic model for high system loads. The
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Figure 4.15: Blocking probability dependent on the load of reference and cooperat-
ing system. Simulation with di�erent service time distributions.

blocking probability di�ers slightly from the analytic model for deterministic
service times in low system loads, showing higher blocking probabilities if the
load on the cooperating system is high. The reason for this has to be investigated
and is part of future work. In case of the hyper-exponential distribution the
service times are highly variant. Here the system which is highly loaded bene�ts
from lower blocking probabilities compared to the analytic model.

In Figure 4.16, which shows the received bandwidth of the reference sys-
tem dependent on the load, simulation results are plotted for deterministic dis-
tributed and highly variant hyper-exponential distributed service times. For de-
terministic service times the analytic model �ts the simulation results. If the ser-
vice times are highly variant the reference system receives only slightly more
bandwidth than in the model if it is overloaded. Hence, considering the avail-
able bandwidth the analytic model can be used to assess the system performance
with general service time distributions.
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Figure 4.16: Received bandwidth dependent on the load of reference and cooperating
system. Simulation with di�erent service time distributions.

4.4 Lessons Learned

In this chapter we investigate the potential of bandwidth aggregation ap-
proaches with o�oading policy. A direct application is the aggregation of back-
haul link bandwidth to increase the overall capacity and cope with the increas-
ing demand of tra�c.

To this end, we develop a Markov model that consists of an M/M/n loss sys-
tem for each link. The o�oading policy is modeled by introducing a support
and an o�oading threshold. In parameter studies we investigate the impact of
the threshold setting on the blocking probability and the received bandwidth.
The threshold settings implemented in the prototype BeWiFi with a support
threshold of 70% provides a good trade-o� between sharing spare bandwidth
and leaving capacity as bu�er for peak periods. Our results show that even if
the cooperating system is overloaded, only up to 1% of the bandwidth is lost in
o� peak periods. The received bandwidth of a system can exceed its capacity
signi�cantly if the cooperating system is underutilized.
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In practice the only limitation of bandwidth aggregation is the actual band-
width available. The available bandwidth increases with the number of access
links. In order to evaluate the performance of a system with multiple access links
that share their bandwidth, we approximate the steady state probabilities of a
multi-dimensional Markov chain using a �xed point iterative procedure.

The full potential of the bandwidth aggregation approach is reached when
an overloaded link can use the spare bandwidth of an underutilized link by ex-
ceeding its capacity signi�cantly. A joint �xed point iteration of an outer and
an inner composite system is used to derive the state probabilities in heteroge-
neous load conditions. In parameter studies we investigate the potential of the
mechanism depending on the number of access links and �nd that in case of un-
derutilized cooperating links, the bandwidth gain grows faster than linear with
the number of contributing access links. By prioritizing links, we show that the
mechanism is robust against free riders, as cooperative users are not punished
for sharing among only free riders, since only about 3% of the bandwidth is lost
in the considered case studies. In addition, if each system would be egoistic no
bandwidth can be shared and no one could pro�t. Thus the system provides
incentives to contribute to increase the overall system capacity.

Finally, we validate our model by simulation and consider deterministic and
hyper-exponential service time distributions to assess the system performance
in more general cases. Our results show that only if the service time is highly
variant and if one of the links is overloaded, only slightly more bandwidth is
received by the overloaded link than in the model. Hence, the analytic model
can also be used to assess the system performance with general service time
distributions.
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Content Delivery Networks (CDNs) e�ciently distribute content and save band-
width based on the Information Centric Networking paradigm by replicating
popular content to caches in many geographical areas. This allows CDNs to
carry the vast majority of Internet tra�c. However, the current developments
of wireless networks towards 5G with an increasing number of devices and in-
creasing data rates bring new challenges for content delivery, since the backhaul
capacity of access networks is not su�cient to transport the resulting data vol-
ume. Furthermore, there is a high number of spare resources available at the end
users premises which is not used e�ciently.

As a consequence current approaches suggest extending the CDNs by deploy-
ing local caches at the user premises, end devices or basestations. This forms a
content delivery network consisting of a hierarchy of caches at di�erent tiers
that scales with the number of users. Since there is a high number of caches on
user premises equipment, which has limited storage and bandwidth capacity, a
coordination of the caches is necessary for e�cient operation.

In this monograph we study the performance of hierarchical content delivery
networks with a high number of local caches with limited capacity. In Chapter 2
we �rst assess the Internet wide potential of such approaches by evaluating the
Internet Census Dataset and providing a distribution of active IP addresses on
autonomous systems, which is used to estimate the number of Internet subscrip-
tions. The evaluation shows that autonomous system size in terms of active IP
addresses is highly heterogeneous. The 10 largest autonomous systems already
contain 30% of the active IP addresses. Second, we use distributed active mea-
surements, which were conducted on a crowdsouring platform and the Planet-
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Lab platform, to discover the structure of current CDNs. The results show that
the vantage points of the concurring measurement platforms have very di�erent
characteristics. We show that the distribution of vantage points has high impact
on the capability of measuring a global content distribution network. Using the
crowdsourcing platform we obtain a diverse set of vantage points that reveals
more than twice as many autonomous systems deploying video servers than the
widely used PlanetLab platform. In order to assess the transit costs produced by
CDN and P2P tra�c, we develop a charging model of inter-domain tra�c using
data on the ISP business relations. Our results con�rm that selecting peers based
on their locality has a high potential to shorten AS paths between peers and to
optimize the overlay network. In the observed overlay network twice as much
tra�c can be kept intra-AS using locality peer selection. Thus, the inter-AS traf-
�c is almost reduced by 50% in large ISPs.

The analysis of hierarchical caching systems is presented in Chapter 3. We
develop a simulation framework for the evaluation of hierarchical caching sys-
tems and use the AS topology of the Internet to assess the inter-domain tra�c.
The results show that an overlay is imperative for the success of hierarchical
caching systems consisting of a high number of small capacity caches. More-
over, by investigating the share of locally served content requests, the impact
for the network operator is quanti�ed, showing that the inter-domain tra�c and
the contribution required of an ISP cache can be signi�cantly reduced by using
an overlay. Once at least every thousandth user contributes to the overlay shar-
ing spare resources in large ISPs, the ISP cache can be discontinued. In order to
evaluate the performance of caching systems with small capacities and limited
upload bandwidth, we develop an analytical model based on the Erlang formula
for loss networks. Our results show that the potential to increase the e�ciency
of the content delivery network is high if only a small or no ISP cache is avail-
able. If a larger ISP cache is available the bene�t of the approach highly depends
on the number of caches available and their upload bandwidth. This allows IPSs
to plan the number of local resources necessary to run a cost e�cient hierarchi-
cal caching system. CDN providers can use available resources more e�ciently
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by optimizing the content placement on caches.
To evaluate the potential to further increase the bandwidth available in access

networks, we analyze bandwidth aggregation systems in Chapter 4. An approx-
imation of a partial sharing scheme is presented, which is used to analyze the
performance of a system with multiple access links that share their bandwidth.
To achieve feasible computational complexity, them-dimensional Markov chain
is reduced to one dimension by summing up the interaction between the sys-
tem in two o�oading rates. A joint �xed point iteration of an outer and an inner
composite system is used to derive the state probabilities in heterogeneous load
conditions. In parameter studies we investigate the potential of the mechanism
depending on the number of cooperating systems. Our results show that the
bandwidth of an overloaded system can exceed its capacity multiple times if the
cooperating systems are underutilized. By prioritizing systems, we show that
the mechanism is robust against egoistic users that try to exploit the system and
thus provides incentives to contribute to increase the overall system capacity.

One of the major insights we gain from the model is that, in contrary to the
prevailing opinion, a complete sharing system can perform worse than a par-
titioned system if the load on the links is highly heterogeneous. Our results
show that if the cooperating systems are overloaded, a system with low load
might receive only marginally less bandwidth. However, this is compensated
with receiving multiples of the base level bandwidth in high peak periods. This
is a very promising result for bandwidth sharing systems, since the o�oading
policy results in a win-win situation if everybody contributes by sharing spare
bandwidth. This provides incentives for end users to participate and thus en-
ables fast deployment of bandwidth sharing mechanisms.

During the next few years it is expected to be a steep increase in mobile tra�c
and the number of mobile devices, which will put high loads on the backhaul of
access networks. The models developed in this monograph serve as useful basis
to design and evaluate mechanisms to further reduce the load on the backhaul by
improving content delivery and to e�ciently use spare resources in the backhaul
for caching and bandwidth aggregation.
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