
Bayerische Julius-Maximilians-Universität
Würzburg

Institut für Informatik
Lehrstuhl für Verteilte Systeme

Prof. Dr.-Ing. P. Tran-Gia

Modeling and Optimization of Cluster
Tools in Semiconductor Manufacturing

Mathias Dümmler

Würzburger Beiträge zur
Leistungsbewertung Verteilter Systeme

Bericht 01/2004

Würzburger Beiträge zur

Leistungsbewertung Verteilter Systeme

Herausgeber

Prof. Dr.-Ing. P. Tran-Gia
Universität Würzburg
Institut für Informatik
Lehrstuhl für Verteilte Systeme
Am Hubland
D-97074 Würzburg
Tel.: +49-931-888-6630
Fax: +49-931-888-6632
email: trangia@informatik.uni-wuerzburg.de

Satz

Reproduktionsfähige Vorlage vom Autor.
Gesetzt in LATEX Palatino 9pt.

ISSN 1432-8801

Modeling and Optimization of
Cluster Tools in Semiconductor

Manufacturing

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades

der Bayerischen Julius–Maximilians–Universität Würzburg

vorgelegt von

Mathias Dümmler

aus
Kitzingen

Würzburg 2004

Eingereicht am: 21.11.2003
bei der Fakultät für Mathematik und Informatik
1. Gutachter: Prof. Dr.-Ing. P. Tran-Gia
2. Gutachter: Prof. Dr. John W. Fowler
Tag der mündlichen Prüfung: 09.02.2004

Danksagung

Ich möchte meinem Doktorvater und Betreuer dieser Arbeit, Herrn Prof.
Dr.-Ing. Phuoc Tran–Gia herzlich dafür danken, dass ich diese Arbeit an
seinem Lehrstuhl in einer Atmosphäre wissenschaftlicher Freiheit anferti-
gen durfte. Durch die fachlichen Diskussionen, die Möglichkeit zum Aus-
tausch mit nationalen und internationalen Kollegen auf Konferenzen, die
Kontakte zu Industrie und Forschung, sowie die hervorragende Ausstat-
tung und das kollegiale Klima an seinem Lehrstuhl waren hervorragende
Arbeitsbedingungen geschaffen.

My deepest gratitude and appreciation go to Prof. Dr. John Fowler, who
acted as a reviewer of this thesis and provided me with valuable com-
ments on my research.

An Dr. Alu Schömig geht mein Dank dafür, dass er mich während
meiner Zeit als Student am Lehrstuhl für Informatik III in die wunderbare
Welt der Modellierung von Fertigungssystemen eingeführt hat. Dr. Oliver
Rose danke ich für die gute Zusammenarbeit in der Arbeitsgruppe ”Leis-
tungsbewertung von Fertigungssystemen“sowie in einer Reihe von wis-
senschaftlichen und industriellen Projekten, weiterhin natürlich für die
zahlreichen gemeinsam verbrachten Dienstreisen.

Zu herzlichem Dank bin ich auch den Studierenden verpflichtet, die
mich als wissenschaftlichen Mitarbeiter unterstützt haben. Dazu gehören
vor allem die Diplomanden Markus Bohr und Matthias Schmid, die in
ihren Diplomarbeiten wesentliche Grundlagen für die vorliegende Arbeit
geschaffen haben. Christian Köhler, Heiko Niedermayer und Andreas
Reifert sei an dieser Stelle ebenfalls gedankt.

Meinen ehemaligen Kollegen am Lehrstuhl für Verteilte Systeme,
Dr. Notker Gerlich, Klaus Heck, Michael Menth, Dr. Michael Ritter,
Dirk Staehle, Dr. Kurt Tutschku, Dr. Norbert Vicari, Patricia Wilcox und
natürlich Frau Alt möchte ich für die gute Zusammenarbeit danken.
Dr. Kenji Leibnitz gilt besonderer Dank für die kritische Durchsicht des
Entwurfs dieser Arbeit.

i

Eine Arbeit wie diese wäre ohne vielfältige Kontakte und Gespräche
mit Kollegen im In– und Ausland nicht möglich gewesen. Viele Ideen
zu dieser Arbeit sind aus Diskussionen mit Mitarbeitern der Infineon
Technologies AG entstanden. Herzlichen Dank daher an Jörg Domaschke,
Dr. Hermann Gold und Hans–Jürgen Wimberger. Furthermore, collabo-
rations and discussions with Dr. Frank Chance and Dr. Jennifer Robinson
have contributed to my work as a researcher.

Meinen Eltern schulde ich tiefen Dank dafür, dass sie mich während
der Studien– und Promotionszeit stets unterstützt haben. Patricia
Buschmann danke ich für ihre Liebe und Aufmunterung während der
letzten Monate meiner Promotionsarbeit.

ii

Contents

1 Introduction 1

2 Semiconductor Manufacturing and Cluster Tools 5
2.1 Overview of Chip Manufacturing 6
2.2 Wafer Fabrication . 7

2.2.1 Processing Steps . 7
2.2.2 Manufacturing Environment 11
2.2.3 Transportation . 14

2.3 Cluster Tools . 15
2.3.1 Benefits of Cluster Tools 17
2.3.2 Cluster Tool Components 18
2.3.3 Cluster Tool Configuration and Modes of Operation 26

3 Performance Modeling of Cluster Tools 29
3.1 Literature Review . 32

3.1.1 Analytical Models . 32
3.1.2 Simulation Models 42
3.1.3 Comparison of Analytical and Simulation Ap-

proaches . 49
3.2 CluSim . 51

3.2.1 Objects in CluSim . 51
3.2.2 Simulation Run . 55
3.2.3 Simulation Results 55
3.2.4 Sample Model . 56
3.2.5 Case Studies . 58

4 Scheduling of Cluster Tool Activities 63
4.1 Problem Description . 65

4.1.1 Gantt Charts . 66
4.1.2 Fundamental Periods 66

iii

Contents

4.1.3 Active Schedules . 68
4.1.4 Robotic Flow Shops 68
4.1.5 Regions of Operation 70

4.2 Literature . 70
4.3 Deadlocks . 75

4.3.1 Deadlock Detection 75
4.3.2 Deadlock Resolution 77
4.3.3 Deadlock Avoidance 78

4.4 Scheduling Approaches Implemented in CluSim 79
4.4.1 Objective Functions 80
4.4.2 Exhaustive Search . 82
4.4.3 The Heuristic StepByStep Scheduler 86

4.5 Discussion . 92

5 Work Load Distribution in Pools of Cluster Tools 95
5.1 Problem Description . 96
5.2 Genetic Algorithms . 99

5.2.1 The Basic Idea . 99
5.2.2 Outline of the Basic Genetic Algorithm 100

5.3 Implementation of the Optimization Approach 106
5.4 Case Studies . 109

5.4.1 Case Study 1 . 109
5.4.2 Case Study 2 . 114

5.5 Discussion . 115

6 Concluding Remarks 117

A Input File Grammar for CluSim 121

B Endura Model 125

List of Figures 129

List of Tables 131

List of Algorithms 132

Bibliography 135

Index 147

iv

1 Introduction

1

1 Introduction

After the dramatic worldwide economical downturn in the year 2001,
a recovery of the semiconductor industry was expected following some
positive press releases of the major players in the beginning of the sec-
ond quarter of 2002. However, at least for the providers of semiconductor
manufacturing equipment, the year 2002 brought a ”double dip”, i.e., an-
other downturn in revenue. After a decrease of 41 percent in revenue in
2001 to USD 28 billion, manufacturers of semiconductor equipment re-
ported sales to decline another 31 percent to a total of USD 19.7 billion
of new chip manufacturing, testing, and assembly equipment in 2002,
cf. (Tracy 2003). The reduced spending of the semiconductor manufactur-
ers is implied, among other things, by the severe conditions of the overall
economy, geopolitical uncertainties, and local incidents with global im-
plications, like the outbreak of SARS in parts of Asia.

Figure 1.1: Worldwide Semiconductor Market (Sources: WSTS for Histor-
ical Data until 2002, InStat for Forecast)

Current forecasts are slightly more optimistic, predicting an increase of
8 percent in revenue in the worldwide semiconductor market in 2003 to
USD 168 billion in total, cf. (Gartner, Inc. 2003), and improved quarterly
results for the equipment suppliers, cf. for example (Applied Materials,

2

Inc. 2003). Figure 1.1 shows a chart of the worldwide annual revenue in
the semiconductor market.

One of the few constants in semiconductor business is the ongoing ef-
fort to reduce costs and to increase productivity at the same time. Strong
growth in the industry is not expected until the year 2004, so investments
in new manufacturing equipment have been reduced to a minimum in
the past. Engineers try to get the most out of the equipment by planning
the resources more carefully, optimizing the operations, and putting more
intelligence into the control of the manufacturing process. Improving op-
erational processes has been identified to be among the most promis-
ing opportunities to reduce costs in semiconductor fabrication facilities,
cf. (Schömig and Fowler 2000).

Producing semiconductors requires a very cost–intensive and sophisti-
cated manufacturing environment. With the size of the structures built on
a semiconductor chip decreasing, the production costs are increasing at
the same pace. Semiconductor production in a modern fab requires sev-
eral hundreds of machines, with prices reaching several millions of USD
per machine. On a single silicon disc, called wafer, up to several hun-
dreds of chips are located. The small structural sizes of several microm-
eters make the wafers very sensitive to even smallest particles polluting
the wafer surface. A single dust particle can render a wafer unusable.

Having the above as a background, this monograph focuses on the per-
formance modeling and optimization of a particular class of equipment
in semiconductor manufacturing, the so called cluster tools. Cluster tools
have been identified as a high–potential cost saver, cf. (Singer 1995) and
(Bader et al. 1990). By integrating a series of processing steps, transporta-
tion, and control into a single cluster tool, the risk of contamination is
reduced, leading to an improved yield. Additionally, the floor space re-
quired in the semiconductor fab and the need for human intervention are
reduced, and transportation is simplified.

Since cluster tools are complex and expensive machines, it is essential
to have a thorough understanding of the performance characteristics of
these tools. Hence, in this monograph it is shown which approaches for
modeling the performance of cluster tools are available and how these

3

1 Introduction

performance models can be used in the planning and control of a semi-
conductor fab. Furthermore, the aim of this monograph is to show areas
where the operation of cluster tools can be improved by optimizing the
procedures within a cluster tool, as well as possibilities for a better inte-
gration of the cluster tools into the control of the overall wafer fabrication.

The actual physical and chemical processes taking place in a cluster
tool are not considered in detail in this monograph. For the purpose of
this study, it is sufficient to represent these processes by process duration
and potential pre– and post–processing timing constraints. Other process
parameters like temperature and vacuum levels are not considered.

This monograph is organized as follows. Chapter 2 provides an intro-
duction into the manufacturing of semiconductors. A summary of the
manufacturing process is presented, and the special role of cluster tools,
which are in the focus of this monograph, is explained. Chapter 3 gives an
overview of approaches for performance modeling of cluster tools. These
approaches can be divided into analytical and simulative approaches. In
Chapter 4, methods for scheduling the processes within a single cluster
tool are presented. Whereas Chapter 4 is dedicated to single cluster tools
in isolation, Chapter 5 contains studies with the goal of optimizing the
operation of pools of cluster tools by intelligently distributing the work
load among the cluster tools. Chapter 6 summarizes the results presented
in this monograph and gives directions for future research.

4

2 Semiconductor
Manufacturing and Cluster
Tools

5

2 Semiconductor Manufacturing and Cluster Tools

In this chapter, the steps required for transforming silicon, the raw ma-
terial of wafer manufacturing, into integrated circuits are described. It is
explained how cluster tools are applied during this manufacturing pro-
cess, and the benefits of using cluster tools as compared to other tool types
are specified.

2.1 Overview of Chip Manufacturing

Integrated circuits manufactured in today’s chip manufacturing facilities
(or short: fabs) consist of millions of transistors, resistors, and capacitors
on a single silicon chip of only a few square centimeters in size. The man-
ufacturing sequence necessary to produce these highly miniaturized inte-
grated circuits consists of five basic steps: wafer preparation, wafer fabri-
cation, probe, assembly, and test, cf. (Schömig and Fowler 2000).

Since the focus of this monograph will be on the application of cluster
tools in the second step, the wafer fabrication, the other steps will be de-
scribed only briefly. Wafer preparation consists of the processes required
to produce raw wafers out of the semiconductor raw material, that in
most of the cases is silicon. Wafers are thin, usually round slices of a semi-
conductor material. The diameters of a wafer in mass production usually
range from six to twelve inch (150 to 300 mm), smaller diameters down
to one inch are possible as well. A single wafer can contain up to several
hundreds of integrated circuits. In order to make the raw wafers ready for
processing in the fabrication step, additional treatment like polishing and
edge grinding is required.

During probe, taking place immediately after the fabrication step, the
individual circuits or dice on a wafer pass a series of tests and dice failing
a test are marked, e.g., by red ink dots.

The individual dice are now separated by sawing the wafer using a
diamond saw and are sorted. The good dice are provided with a package,
and the chip is connected to the inner leads of the package. This step is
called assembly. After sealing the package and final testing, the chip is
ready for shipping. The four steps transferring the wafer into the final
chip are displayed in Figure 2.1.

6

2.2 Wafer Fabrication

Figure 2.1: Production Steps (Schömig and Fowler 2000)

2.2 Wafer Fabrication

As already indicated, the focus in this monograph is on the application
of cluster tools in the second step of the chip manufacturing process, the
wafer fabrication process. This step is often termed as the front end part
of semiconductor manufacturing, as opposed to the back end, consisting
of testing and packaging.

2.2.1 Processing Steps

Independently of the variations of the semiconductors produced in to-
day’s fabs, such as the chip structure or the basic material, the wafer fab-
rication process generally consists of repeatedly applying four basic sub–
steps:

1. Layering,

2. Patterning,

3. Doping,

4. Heat treatments.

7

2 Semiconductor Manufacturing and Cluster Tools

Figure 2.2: Formation of Metal Gate MOS Transistor (Zant 1996)

8

2.2 Wafer Fabrication

This sequence of chemical and physical processing steps is performed
repeatedly to build the required chip structure on the silicon wafer. Fig-
ure 2.2 displays the steps required to build a metal gate Metal Oxide Semi-
conductor (MOS) transistor. The individual steps will now be described
briefly.

Layering

During a layering step, thin layers of an insulating, semi–conducting or
conducting material are added to the wafer surface (see steps 1, 5, 7, and
10 in Figure 2.2). The layers are added using oxidation or deposition. Oxi-
dation is used to form a dielectric silicon dioxide layer on the semiconduc-
tor, for example to protect the surface from contamination. This operation
is often performed in tube furnaces.

Deposition can be performed in the form of chemical vapor deposition
(CVD), evaporation, and sputtering, in order to form various other layers
of semiconductors, conductors or dielectrics.

Evaporation is the oldest deposition method used in semiconductor
manufacturing. It takes place in an evacuated chamber by heating the
metal to be deposited to a temperature that allows atoms or molecules to
escape from the solid evaporation source.

Sputtering, or physical vapor deposition (PVD) is also performed in
vacuum chambers. Argon gas is ionized and accelerated towards the tar-
get material that is to be deposited. The energy of the argon atoms is
enough to separate atoms or molecules from the target. The particles form
a cloud within the chamber, and some of these particles will land on the
wafer surface.

Chemical vapor deposition (CVD) is the most common deposition
technique. CVD is performed in chambers with atmospheric pressure
(APCVD) as well as at lower pressure (LPCVD). In the CVD chamber,
the wafers are heated and a vapor containing the atoms or molecules re-
quired on the wafer surface is introduced into the chamber. After the re-
quired thickness of the layer is reached, the vapor is extracted again from
the chamber.

9

2 Semiconductor Manufacturing and Cluster Tools

Patterning

In the patterning steps (see steps 2, 4, 6, 8, and 11 in Figure 2.2), parts of
the layer created during the previous layering step are removed to form
the required geometrical structures, e.g., holes or islands, on the wafer
surface. The patterning processes are usually termed photolithography or
masking and are comparable to photography, however on a microscopic
scale.

Figure 2.3: Pattern Transfer During Photolithography Step (Zant 1996)

During photolithography, the desired horizontal structures are trans-
ferred from a photomask to the surface layer. This is done by first forming
a light–sensitive layer of photoresist on the wafer surface. The surface is
then exposed to light through the photomask (see step ”Alignment and
Exposure”in Figure 2.3). The photoresist areas of the surface not exposed
to light can be removed with chemical solvents whereas the portions of
the photoresist that are exposed to light change their chemical conditions
and become resistant to these chemicals (see step ”Development”in Fig-
ure 2.3).

Etchants now remove those parts of the wafer’s surface that are not

10

2.2 Wafer Fabrication

protected by the photoresist (see step ”Etch”in Figure 2.3). The final step
is to remove the photoresist from the wafer surface (see step ”Photoresist
Removal”in Figure 2.3).

Doping

To give the wafer surface the desired electronic properties, either thermal
diffusion or ion implantation is performed during the doping step. The
goal is to create conductive regions and so called N–P junctions, i.e., sep-
arations between regions with a surplus of electrons (N–type) and regions
with a surplus of holes (P–type).

In so–called diffusion tubes, the wafer, for example a P–type wafer, is
exposed to a concentration of dopant atoms, e.g., N–type dopants. Those
atoms diffuse into the holes in the wafer surface generated during the
photolithography step, creating N–type islands within the P–type region.

Since structure sizes in integrated circuits become smaller and smaller,
there is a limit on the applicability of the diffusion technique. Ion implan-
tation facilitates doping of wafers with smaller feature sizes. With this
technique, dopant atoms are shot on the wafer surface with high energy,
enter beneath the surface and rest there, creating islands of the required
conductivity.

Heat Treatment

The heat treatment step consists of heating the wafer to temperatures of
about 500 to 1000 degrees Celsius. This treatment is necessary to repair
disruptions of the crystal structure caused for example by ion implan-
tation and is performed either by thermal techniques or using infrared
radiation.

2.2.2 Manufacturing Environment

If the wafer is contaminated during a single processing step, e.g., due
to a microscopic dust particle, a single die or the whole wafer may be

11

2 Semiconductor Manufacturing and Cluster Tools

rendered useless. With structure sizes on the wafers being 0.3µm or less in
size, a human hair with a diameter of 100µm covers more than a hundred
transistors. As a rule of thumb, particles that are 10 times smaller than the
smallest structure on the wafer can cause defects on the wafer.

Four major types of contamination can be distinguished, cf. (Zant
1996):

• Particles
Particle contamination can be caused by a human hair, a dust par-
ticle, a smoke particle, a fingerprint, etc.

• Metallic ions
Most chemicals present in wafer fabs contain atoms of metals in
ionic form, so–called mobile ionic contaminants (MICs). In semi-
conducting materials, these ions are highly mobile, causing the con-
ductivity of the semiconductor to be modified in an undesired way.

• Chemicals
Trace chemicals present in chemicals or water used during the
wafer fabrication process can cause unwanted chemical effects on
the wafer’s surface.

• Bacteria
Bacteria can contribute both to particle contamination and metallic
ion contamination, if they are located on the wafer. They are intro-
duced into the manufacturing environment, e.g., by exhaled air.

Due to the sensitivity of the wafer to particulate and molecular contam-
ination, wafer fabrication takes place in a clean room environment. Access
to the clean room is strictly controlled, only special clothing is allowed,
and the air is constantly circulated and filtered. With these precautions, it
is possible to achieve conditions where only a small number of particles
remains in a cubic foot of air. Clean rooms are classified according to Ta-
ble 2.1. As an example, for producing 64 Megabit chips, a clean room of
class 0.1 is required.

12

2.2 Wafer Fabrication

Table 2.1: Classification of Clean Rooms (Zant 1996)

Class Particle Size Number of Particles
in µm per ft3 of Air

100,000 0.5 - 4 500 - 100,000
10,000 0.5 - 4 60 - 10,000
1,000 0.5 - 4 6 - 1,000
100 0.2 - 0.5 100 - 700
10 0.1 - 0.5 10 - 120
1 0.1 - 0.5 1 - 12
0.1 < 0.1 < 1

Two other important approaches for reducing the risk of contamination
are creating mini–environments and increasing the amount of automa-
tion. In a mini–environment, i.e., a part of the fab physically separated
from the surrounding, for example by metal walls, the environmental
conditions can be more easily controlled and measured. Using automa-
tion, the amount of human intervention during the manufacturing pro-
cess can be reduced. One way of implementing both approaches is the
use of cluster tools, as will be explained later in this chapter.

Besides minimizing the contamination of the air, it is important to con-
trol the quality of the applied chemicals, the air temperature, and the hu-
midity.

The measures required to maintain a clean room environment of the
desired class make a wafer fab very expensive to maintain. The larger
the floor space of the fab, the higher the cost for circulating and filtering
the air. Therefore, one measure to reduce the cost of operating a fab is
to reduce floor space, which again can be implemented by integrating
several processing steps into a single machine.

13

2 Semiconductor Manufacturing and Cluster Tools

2.2.3 Transportation

Since the processing steps presented in the previous sections require dif-
ferent machines and equipment, the wafers have to be transported be-
tween the individual steps. Usually, a set of 25 wafers is transported in
a carrier or cassette. This set is called a lot. Depending on the number of
layers and the layout of the fab, up to several hundreds of transportation
activities of a wafer occur during the whole fabrication process. Figure 2.4
shows the layout of a wafer fab where the machines are grouped in dif-
ferent rooms according to the process step they perform (e.g., diffusion
tools are placed in rooms ”Diffusion 1”, ”Diffusion 2”and ”Diffusion 3”).
The arrows indicate the paths a wafer has to follow in the case of a very
simple integrated circuit fabrication with only a small amount of layers.

Figure 2.4: Transportation of a Wafer During Processing (Atherton et al.
1990)

14

2.3 Cluster Tools

In modern fabs, most of the transportation is performed by automated
material handling systems. But even in the most recent fabs, the human
operator still plays an important role, as the term semiconductor manu-
facturing (Latin ”manus”= ”hand”) implies. For example, several inspec-
tion activities can only be performed by humans, and some transporta-
tion between consecutive processing steps is done by manually carrying
the wafers from machine A to machine B.

2.3 Cluster Tools

Cluster tools have gained significant importance in the fabrication of
semiconductor chips during the last decade. Especially in modern 300mm
fabs, i.e., facilities producing wafers with 300mm in diameter, they are
an integral part of the production process. Besides their application in
semiconductor manufacturing, cluster tools play an increasingly impor-
tant role in the production of flat panel displays.

According to the SEMI E21–96 standard, a cluster tool is an ”... in-
tegrated, environmentally isolated manufacturing system consisting
of process, transport, and cassette modules mechanically linked to-
gether”(SEMI 1996).

In a cluster tool, several processing steps required to produce a semi-
conductor chip are integrated into a single piece of equipment. The driv-
ing force behind that integration is the need to guarantee the performance
of a process solution at a low cost–of–ownership, cf. (Singer 1993).

Cluster tools cover almost all types of processes in a wafer fab. Cur-
rent applications include photolithography, etching, chemical and physi-
cal vapor deposition, cleaning, thermal processing, and photoresist strip.

As an example, Figure 2.5 shows a cluster tool configured to perform
the processes required during a deposition step. Load Lock A is used to
load a lot of wafers into the cluster tool. An aligner integrated into the
load lock brings each wafer into a defined orientation before it is inserted
into the first process chamber. The first process step is a cleaning step in
chamber ”Clean / Degas”, followed by, if required, an etching step taking

15

2 Semiconductor Manufacturing and Cluster Tools

place in the chamber label ed with ”Soft Sputter”. Then, the actual depo-
sition takes place in one of the three chambers ”CVD”, ”PVD (hot)”, or
”PVD (cold)”, according to the wafers’ recipe. The final process is rapid
thermal processing (RTP), where the wafer is heated to a target temper-
ature for a short period of time. The wafer is then transferred into Load
Lock B where it cools down to environmental temperature.

Figure 2.5: Deposition Cluster Tool (Brooks Automation 2002)

Since the early applications of cluster tools, a lot of effort has been
invested in the standardization of the mechanical interfaces, cf. (SEMI
2002a) and (SEMI 2002b), and the communication between the individual
components of a cluster tool, cf. (SEMI 2002c). This has led to the possi-
bility of a best–of–breed approach when configuring a cluster tool for a
specific application: it is possible to compose a cluster tool of components
from different vendors and to choose the process module that provides
the best performance for the required operation, cf. (Bader et al. 1990)
and (Huntley 1990).

16

2.3 Cluster Tools

Although the communication among the cluster components follows
non–proprietary standards, a lot of the know–how of the vendors, espe-
cially in the area of scheduling the cluster tool operations, is still propri-
etary and kept secret. Thus, optimization and adaptation of the logical
control of a cluster tool is often impractical for the user or can only be
achieved in close cooperation with the hardware vendor.

2.3.1 Benefits of Cluster Tools

Using cluster tools in the manufacturing process has several advantages
as compared to non–integrated tools, cf. (Singer 1995). Basically, by com-
bining sensitive processing steps and ensuring increased control of the
processing conditions within the cluster tool, yield and process perfor-
mance is significantly improved.

Since the processing steps and the respective process chambers are en-
capsulated in a ”mini–environment”within the wafer fab, it is easier to
control the physical conditions in the cluster tool. Therefore, the proba-
bility of contamination is reduced and some of the causes for defects can
be eliminated, which is of special importance in multi–step procedures
requiring different chemical and physical processing steps.

By integrating metrology equipment, e.g., microscopes, into a cluster
tool, it is possible to repeat specific processing steps if the measurement
indicates that the process result is not within specification. This kind of
loop can then be performed without human intervention and without re-
moving the wafer from the cluster tool.

As indicated earlier, providing the clean room environment neces-
sary to produce integrated circuits requires cost–intensive precautions.
Through the integration of several processing steps together with the
transportation equipment into a single piece of equipment, the expensive
clean room space required to perform a sequence of processing steps can
be significantly reduced and the productivity per square foot of fab space
is increased.

A cluster tool can be regarded as a ”mini–fab”within the fab, having its

17

2 Semiconductor Manufacturing and Cluster Tools

own transportation system and controller. Whereas in a non–integrated
environment, different machines have to compete for shared resources
like operators and transportation systems, in a cluster tool the resources
and the sequence of process steps is regulated by the cluster tool con-
troller. Thus, it is possible to reduce the transportation and waiting times
between processing steps to a minimum and to guarantee a certain maxi-
mum time for performing a sequence of steps.

From economical point of view, an important property of this kind of
equipment is that the modularity allows to use a cluster tool to produce
a series of generations of end–products. If a new generation of products
requires modified processing equipment, it is possible to exchange only
the respective process chambers while still using the mainframe, trans-
portation, and remaining process chambers of the cluster tool. When us-
ing cluster tools with redundant process chambers, operations can still be
continued if one of the redundant chambers fails.

Finally, the need for human intervention is reduced to a minimum. If
at all, an operator is usually only required to load a lot of wafers into the
cluster tool’s load lock.

2.3.2 Cluster Tool Components

In the following paragraphs, the individual components of a cluster tool
are presented, their functions are defined, and the interfaces to other com-
ponents are described.

Mainframe

The mainframe (sometimes also called transport module) is the central
component of the cluster tool. It contains the transport mechanisms that
move the wafers from the load locks to the individual process chambers.
Figures 2.6 and 2.7 display two types of mainframes.

Basically, we can distinguish between mainframes with linear and ra-
dial layout. The layout defines the topology of the transport mechanisms.
Two simple layouts can be seen in Figure 2.8.

18

2.3 Cluster Tools

Figure 2.6: Mainframe Type 1 (Brooks Automation 2002)

Figure 2.7: Mainframe Type 2 (Brooks Automation 2002)

Typically, cluster tools are built around one mainframe, but more com-
plex types with two or even more mainframes are available as well, like
the one in Figure 2.9.

19

2 Semiconductor Manufacturing and Cluster Tools

Figure 2.8: Simple Types of Cluster Tools

Figure 2.9: Cluster Tool with Two Mainframes

Process Chambers

The process chambers or process modules responsible for performing the
actual material processing are attached to the mainframe.

20

2.3 Cluster Tools

The different functions that can be implemented in a process cham-
ber are chemical and physical processes, inspection, and pre– or post–
processing. The processes for which process chambers are available in-
clude CVD, PVD, etch, sputtering, photolithography, metrology, but also
steps that prepare the wafer for processing like preheating, aligning, cool
down, and degas. It is also possible to use a process chamber as a ”park-
ing”station for wafers if they need to wait for a resource to become avail-
able.

Commonly, only single wafers are processed in a process chamber. But
for some processes, there exist chambers that can perform batch process-
ing, i.e., they can process more than one wafer in parallel. Also available
are index modules that perform a sequence of process steps. Figure 2.10
shows the mentioned chamber types attached to a mainframe.

Figure 2.10: Chamber Types

Depending on the kind of process performed in a process chamber,
the chamber is also responsible for generating the environmental con-
ditions. Some processes, for example, require a vacuum (like etching
and CVD), others, like photolithography, can be performed under non–
vacuum conditions. If the process environment differs from the condi-
tions in the mainframe, the chamber will also adapt the chamber condi-

21

2 Semiconductor Manufacturing and Cluster Tools

tions if a wafers is loaded into or from the chamber.
Figure 2.11 displays the individual phases that occur during the pro-

cessing of a wafer in a process chamber, together with examples for the
respective times.

Figure 2.11: Process Steps and Times in a Process Chamber (Kawamura et
al. 1998)

Load Locks

The load locks (also known as product storage or cassette module) are
the interfaces of the cluster tool to the manufacturing floor. A cluster tool
has at least one load lock.

A lot of wafers that has to be processed in a cluster tool is placed into
the load lock by an operator or by the material handling system. The load
lock is then isolated from the outside environment by closing the external
door and the required conditions (for example, vacuum) are generated; in
some cases, the wafers are taken from the cassette and are placed into slots
within the load lock, cf. (Paré et al. 2002). Then, the internal door to the
mainframe is opened and the transport system can start picking wafers
from the load lock and transferring them into the process chambers.

22

2.3 Cluster Tools

In some cluster tool types, there exists one load lock where wafers are
taken from and loaded into the cluster tool and another one where the
finished wafers are placed. In any case, the load lock has to be adjusted to
the outside conditions, e.g., by venting the load lock, before the lot can be
taken from the load lock.

The time required to adapt the load lock environment to the conditions
within the mainframe is called pump time. The time it takes to adjust the
load lock to the conditions outside of the cluster tool is called vent time.

Handlers

The usual transport mechanism responsible for moving the wafers within
the cluster tool to the individual process stations is a robot, called handler.
At least one handler is located in a mainframe, but configurations of clus-
ter tools with more than one robot per mainframe do also exist. The robot
is used to move the wafers from the load lock to the process chambers,
between process chambers, and back to the load lock.

As already mentioned in the paragraph on mainframes, there exist ra-
dial and linear handler topologies, cf. Figure 2.8. Furthermore, handlers
are distinguished by the number of wafers they can carry at a time. Fig-
ure 2.12(a) shows a handler of the type single–blade (or single–effector),
that can move only one wafer at a time.

Figures 2.12(b) and 2.12(c) display handlers of the dual–blade type.
They are able to perform a switch operation: One blade can be used to
transport a wafer to a chamber where another wafer is waiting to be
picked up after a process step. The second blade is used to take the wait-
ing wafer from the chamber. The first blade is then immediately used to
place the new wafer into the chamber. Using this switch operation, the
idle time of the chamber can be reduced compared to a single–blade robot.
Whereas the first three handler types presented can move along two axes
(X and Y axis), the handler in Figure 2.12(d) can also move along the Z
axis.

There exist further, more specialized types of wafers, like dual–blade
handlers that have a left and right arm that can be extended in parallel.

23

2 Semiconductor Manufacturing and Cluster Tools

(a) Single Blade Robot (b) Dual Blade Robot

(c) Leap Frog Robot (d) Robot Arm

Figure 2.12: Robot Types (Brooks Automation 2002)

In this way, two chambers can be loaded at the same time, cf. (Paré et al.
2002).

Depending on the way the wafer is placed on the blade, the move time
of the handler can change if the handler is loaded. For example, there
exist blade types where that place the wafer on the blade only loosely.
Therefore, the robot can not move as fast when loaded, because the wafer
could fall from the blade during circular motions.

Cluster Tool Controller

The cluster tool controller is the centralized module responsible for the
control of all activities within the cluster tool.

Depending on the cluster tool architecture, the cluster tool controller

24

2.3 Cluster Tools

can be a program run on a processor integrated into the cluster tool or
a software installed on an external PC or workstation, connected to the
cluster tool via TCP/IP.1 The way the cluster tool controller communi-
cates with the individual modules is standardized, cf. (SEMI 2002c).

The tasks performed by the cluster tool controller include:

• Coordination and scheduling of the material flow from module to
module (see Chapter 4 for more details on the scheduling task).

• Providing process modules with recipe data required for the mate-
rial processing.

• Control of the hand–off of wafers between chambers and load
locks.

• Coordination of the processes required for adapting the load locks
and process chambers to the environmental or processing condi-
tions.

• Alarm functions for the operator, if a wafer falls off the handler, if
a deadlock occurs, etc.

• Acquiring data, generating and displaying statistics (e.g., average
cycle time, down times, etc.).

• Animation of the cluster tool activities, since usually the handler
movements in the cluster tool and the progress in processing cham-
bers are not visible from the outside.

Recipes

A recipe is a set of instructions, describing the sequence and parameters
of the process steps that a wafer has to follow in a cluster tool. Each lot
or wafer contains a label that contains a reference to the recipe for this

1Transmission Control Protocol / Internet Protocol, the two most common protocols used in
commercial and private communication networks, cf. (Tanenbaum 2002)

25

2 Semiconductor Manufacturing and Cluster Tools

specific lot or wafer. The recipes are stored in the cluster tool controller or
in an external database, where they can be retrieved from upon request.

Among the data stored in a recipe are the kind of chemicals required for
processing and process parameters like process duration, temperature,
chemical or gas level, vacuum levels, voltage, energy levels, etc. Usually
this data is stored in two levels: The top level is the cluster recipe with
information which chambers have to be used. For each chamber, a cham-
ber recipe on the second level contains the process parameters for this
specific chamber.

2.3.3 Cluster Tool Configuration and Modes of
Operation

The basic configurations of a cluster tool are serial and parallel config-
uration. In a serial cluster tool, all process chambers perform a different
process step, whereas in a parallel cluster tool all process chambers are
identical. More common are hybrid configurations, where some of the
process chambers are duplicated (usually those with the longest process
times).

Two basic operation modes exist for cluster tools: single mode and par-
allel mode.2 In single mode, a cluster tool processes the wafers of only one
lot at a time. If all wafers are finished processing, the lot can be taken from
the load lock, a new lot is loaded and the cluster tool starts processing the
wafers from the new lot. If the cluster tool is equipped with only one load
lock, this is the only mode of operation possible.

If more than one load lock is attached to the cluster tool, parallel op-
eration is also possible. In this mode, while the cluster tool is processing
wafers of lot A placed in load lock A, another lot B can be loaded into load
lock B and after the pump time, the wafers of lot B can be processed in par-
allel with the wafers of lot A. In this way, the cluster tool can still process
lots during the pump time necessary to generate the required conditions

2It might be confusing that the term parallel is used in the configuration context as well as in
the context of operations modes, but unfortunately in the literature both uses can be found.

26

2.3 Cluster Tools

in the load lock. This ability to begin processing one lot while simultane-
ously processing the previous one is also called cascading.

In parallel mode, the impact of processing wafers of different recipes
on cluster tool performance can depend on the time difference between
the moment when the individual lots become available for processing,
cf. (Niedermayer 2002). A special case of parallel mode is called sync
mode, where the start of processing wafers of the lots in the load locks is
synchronized and, therefore, effects of varying start delays are avoided.

Cluster tools that process wafers in a pre–defined sequence, indepen-
dently of the recipe mix being processed in parallel, are called fixed se-
quence cluster tools. If, however, the cluster tool control system can spon-
taneously decide on how to allocate the available resources, depending
on the current state of the resources and the current requests, the cluster
tool is called a flexible sequence cluster tool. The problem of finding the
optimal sequence in such tools is addressed in Chapter 4.

27

2 Semiconductor Manufacturing and Cluster Tools

28

3 Performance Modeling of
Cluster Tools

29

3 Performance Modeling of Cluster Tools

Since cluster tools integrate a series of processing steps into one ma-
chine and are able to process several wafers in parallel with wafers shar-
ing resources, they represent a very complex and sophisticated class of
machines. Even minor changes to the cluster tool configuration (e.g., of
the processing times or the scheduling strategies) may have significant
effects on the cluster tool performance.

The reasons for creating an analytic or simulation model of cluster tools
are manifold. These models facilitate the performance assessment, allow-
ing, for example, to compare existing cluster tool designs with alterna-
tives, to anticipate the impact of changes in process times on cluster tool
performance, to evaluate scheduling techniques, etc.

Important performance characteristics considered in this context are
the number of wafers or lots the cluster tool can process per time unit,
called the throughput, and the cycle time. The cycle time of a lot is the
time between the moment when the lot is placed into one of the cluster
tool’s load locks until it is removed from the load lock, with all wafers in
the lot being processed. The cycle time of a wafer is defined as the time
between the moment when the wafer is picked from the load lock by a
robot until the moment when it is finished processing in the cluster tool
and returned to the load lock.

Using a performance model of a cluster tool as a decision support tool
before purchasing new equipment can protect the buyer from false in-
vestments. For example, comparing different alternatives can help in de-
ciding which is the best cluster tool configuration to buy. Often cluster
tool vendors offer such models to assist the customer in this decision. In
most of the cases, however, it is not possible to compare the performance
of tools from different vendors using such models, because the modeling
assumptions and methods differ significantly.

Even though the scheduling and controlling techniques applied in
modern cluster tool types are very sophisticated, the appearance of dead-
locks is still a frequent problem. Usually, a deadlock can only be resolved
by stopping the cluster tool operations, opening the cluster tool, and man-
ually removing one or more of the wafers that caused the deadlock. This
often leads to defective wafers, since running processes are affected, and

30

the availability of the cluster tool is reduced. Therefore, another appli-
cation for models of cluster tools is the development and testing of new
scheduling techniques in order to reduce the probability of deadlocks.

In principal, two approaches to modeling cluster tools can be distin-
guished: analytical models and simulation models, cf. Figure 3.1.

Figure 3.1: Cluster Tool Performance Modeling Approaches

Analytical models include models using closed formulae, formal mod-
els such as Petri Nets, and other mathematical approaches. The simula-
tion models presented in this chapter are divided into models created
using general purpose simulators such as AutoMod, cf. (Brooks Automa-
tion 2002), cluster–tool–specific simulation environments and other, less
prevalent approaches, e.g., meta–modeling.

Publications on modeling cluster tools mostly focus on the presenta-
tion of a single modeling approach, without comparing it to alternatives.
To the author’s knowledge, no comprehensive overview of the literature
is available yet. In this chapter, we give a review of these publications,
categorize the publications cited, and give a short evaluation of the pre-
sented methods.

In addition, the approaches are compared in different aspects, such as
the effort necessary to create and maintain the models, their ability to pre-
dict essential performance measures, and their usability in semiconduc-

31

3 Performance Modeling of Cluster Tools

tor manufacturing planning and control. As an example for a simulation
approach to the modeling of cluster tools, the simulation model used to
perform the studies presented in the following two chapters is introduced
and discussed.

3.1 Literature Review

3.1.1 Analytical Models

Closed Formulae

Closed Formulae approaches have the appealing property of being able to
quickly produce the desired performance metrics, because the formulae
can easily be entered in a simple program or a spread sheet. However, this
approach has limitations concerning the range and complexity of cluster
tool types that can be modeled and the flexibility of the resulting models
in terms of changes in configuration, etc. Nevertheless, in a variety of
applications in daily practice, closed formulae models can provide a very
good estimate of the desired performance metrics with little effort.

In (Perkinson et al. 1994) an analytical approach for computing the time
required to process a lot of wafers is presented. The relationship between
process time of the chambers, transport time of the robots and maximum
throughput of the cluster tool is analyzed.

In this approach, a distinction is made between transport–bound and
process–bound schedules. In a transport–bound schedule, the handler is
always busy and, therefore, determines the cycle time of a wafer. On the
other hand, in a process–bound schedule, the throughput of the cluster
tool is impacted by both the transport times of the handler and the process
times of the process chambers.

The authors’ analytic method is restricted to rather simple models of
cluster tools. For example, process times are supposed to be identical in
all chambers. Furthermore, the approach can only be applied to cluster
tools in sequential mode with one single–blade robot. In detail, the cluster

32

3.1 Literature Review

tool investigated has the following properties:

• NC process chambers,

• a single load lock with load time Tload and unload time Tunload,

• a single handler with constant and equal move time Tmove between
all chambers and the load lock,

• constant and equal process time Tproc for all chambers,

• equal recipe for all NW wafers in a lot,

• each wafer has to be processed in each of the chambers.

For NC = 3, the cluster tool is depicted in Figure 3.2.

Figure 3.2: Cluster Tool Investigated by Perkinson et al. (1994)

The authors derive the following expression for the total cycle time TL

of a lot of wafers:

TL = NW · TFP + Tload + Ttrans +

Tunload − (NC − 1) · TFP , (3.1)

33

3 Performance Modeling of Cluster Tools

where TFP is the fundamental period of the cluster tool, i.e., the time
between subsequent arrivals of completed wafers at the load lock. It can
be expressed as

TFP =

{
2Tmove · (NC + 1) , if Tproc

Tmove
≤ 2(NC − 1) ,

Tproc + 4Tmove , else .
(3.2)

To derive Ttrans, we define

Z = min

(
NC − 1, int

(
Tproc/Tmove + 2

2

))
. (3.3)

For Z �= NC − 1, we obtain

Ttrans = 2Z(Tproc + 3Tmove) − 2Tmove(Z + 1)2 − Tmove , (3.4)

whereas for Z = NC − 1

Ttrans = 2(NC − 1)(Tproc + 4Tmove) − Tmove(2NC + 1) . (3.5)

This basic model is extended in (Perkinson and Gyurcsik 1996) by in-
corporating redundant chambers, revisiting of chambers and using load
locks as buffers for wafers. The resulting model is still a closed formula
that facilitates easy application in performance computations.

Venkatesh et al. (1997) use the same distinction between transport–
bound and process–bound schedules to compute the steady state
throughput of a cluster tool with a dual–blade robot (see Section 4.1.2
for an explanation of steady state and transient state). It is assumed that
the wafers have to be processed sequentially in the NC process chambers.
Process time in chamber i, i = 1, . . . , NC is pi. All wafers have the same
recipe and there are no redundant chambers. The throughput of the clus-
ter tool during the transient phase is not considered in the paper. As an

34

3.1 Literature Review

application, the authors compare the steady–state throughput of a single–
blade robot to that of a dual–blade robot using the derived formulae.

In (Wood et al. 1994) the throughput time TTP of a cluster tool with
a single handler is derived from the fixed throughput time Tfix that is
independent of the lot size, an incremental throughput time Tinc for every
wafer processed, the number of wafers NW , and a correction term c as
follows:

TTP = Tfix + NW Tinc + c . (3.6)

The correction term c has to be introduced since for some tool config-
urations throughput time is not a linear function of lot size. Eqn. (3.6)
implies that the throughput rate of a cluster tool of the investigated type
can never exceed 1/Tinc.

Like Perkinson et al. (1994), the authors distinguish cluster tools oper-
ated in process–bound and in transport–bound mode. The formulae of the
throughput time and throughput rate are derived for cluster tools in se-
rial as well as in parallel configuration. Processing times in the individual
chambers can differ in serial configuration in their model, only the pro-
cessing time of the bottleneck chamber, i.e., the chamber with the longest
processing time needs to be known.

For the throughput rate rTP , the authors derive the following formula:

rTP = min

(
NLl

Tfix + NW Tinc
,

1

Tinc

)
, (3.7)

where NL is the number of load locks of the cluster tool.
As applications, the authors show a performance prediction of a cluster

tool based on their formulae as well as a cost comparison of alternative
loading methods.

Similarly, Wood (1996) uses these formulae to implement a cost model
and to compare serial and parallel configuration of simple cluster tools. In
addition, the corresponding formulae are derived for a system consisting

35

3 Performance Modeling of Cluster Tools

of n identical cluster tools with n chambers each, in serial as well as in
parallel configuration.

This study is extended in (Lopez and Wood 1996) and (Lopez and
Wood 1998), where again serial and parallel configurations are compared
and optimal lot sizes and lot release policies are determined for systems
consisting of n identical cluster tools with n chambers each. Furthermore,
in (Lopez and Wood 1996) these systems are examined under the effect of
scheduled maintenance.

Another way to derive the throughput of a cluster tool in closed form is
to perform a bottleneck analysis of the tool by identifying the module of
the cluster tool that limits tool performance. If the bottleneck module has
been identified, it is sufficient to assess the throughput of this module;
the other components of the cluster tool can be neglected. Whereas this
approach can produce satisfactory results for simple cluster tools with
fixed routing, it is not applicable in the case of flexible–sequence tools
with changing recipe mix. In this case, the bottleneck module can change
depending on the current recipe mix and the timing of the cluster tool pro-
cesses. Therefore, identifying the bottleneck is very difficult or not possi-
ble at all.

Different approaches have been presented for assessing the Overall
Equipment Effectiveness (OEE) of cluster tools, or, to be more precise, to
adapt the SEMATECH definitions of OEE to cluster tools, cf. (Ames et al.
1995). OEE is defined as follows (the variable names are adopted from the
definition found in the SEMATECH standard):

OEE = (Availability) · (Rate Efficiency) ·
(Operational Efficiency) · (Rate of Quality) , (3.8)

where the individual factors are defined as

36

3.1 Literature Review

(Availability) =
(Total Time) − (Downtime)

(Total Time)
, (3.9)

(Rate Efficiency) =
(Ideal Cycle Time)

(Actual Cycle Time)
, (3.10)

(Oper. Efficiency) =
(Total Productive State Time)

(Equipment Operational Uptime)
, (3.11)

(Rate of Quality) = 1 − (Rejected Wafers)
(Total Wafers Processed)

. (3.12)

OEE is applied, for example, in the planning process as a measure of
how many parts a certain machine can actually produce per time unit,
taking into account all factors that degrade the machine’s theoretical
throughput. Therefore, it is essential that the OEE value reflects the ac-
tual effectiveness of the machine as precisely as possible. If the calculated
OEE of the machine is higher than the actual effectiveness, the produc-
tion plan might lead to a utilization of the machine that is higher than
expected, causing large waiting times of the parts to be processed on that
machine. On the other hand, if the OEE value predicts a productivity
lower than what the machine actually can achieve, the machine might
be under–utilized, and productivity is partly lost.

As already mentioned, cluster tools can be configured in three ways:
Serial configuration, with each chamber performing a different processing
step; parallel configuration, where the cluster tool consists of identical
process chambers, each performing the same processing step; and hybrid
configuration, similar to serial, however, some of the processing chambers
are duplicated so that the respective processing step can be performed in
parallel in more than one chamber.

The type of configuration has significant influence on the availability
of the cluster tool in case of a chamber downtime. For a serial cluster tool,
an outage of a single chamber makes the whole cluster tool unavailable,
whereas in parallel configuration, the cluster tool can continue operation
if one chamber fails, but with lower throughput. In case of a hybrid clus-
ter tool, the tool can still be used if the downtime occurs at a redundant

37

3 Performance Modeling of Cluster Tools

chamber. Otherwise, the tool becomes unavailable. Matters become even
more complicated if a cluster tool is able to process wafers of different
recipes. Then, it might be that a chamber downtime affects the availabil-
ity of the cluster tool for one specific recipe, while for another recipe the
chamber outage has no effect. Similarly, in the case of cluster tools with
multiple robots per mainframe a downtime of one of the robots does not
make the cluster tool unusable.

It is obvious, that it is not simple to define the availability of a clus-
ter tool. This problem has been approached by several authors. The
weighted configuration matrix method presented by Wang and Christian
(1998) and Dolman et al. (1999) allows assigning weights to the differ-
ent fault scenarios of a cluster tool. For each scenario, the weight of the
scenario determines the impact of the equipment failure on cluster tool
throughput. As an example, Table 3.1 shows one possible instantiation of
a weighted configuration matrix for a cluster tool with one robot, two load
locks (”LLA”and ”LLB”) and two identical process chambers (”ChA”and
”ChB”).

Table 3.1: Weighted Configuration Matrix (Wang and Christian 1998)

Scenario LLA LLB ChA ChB Weight
1 0 0 X X 0
2 X X 0 0 0
3 0 1 0 1 0.55
4 0 1 1 0 0.55
5 0 1 1 1 0.6
6 1 0 0 1 0.55
7 1 0 1 0 0.55
8 1 0 1 1 0.6
9 1 1 0 1 0.7
10 1 1 1 0 0.7
11 1 1 1 1 1

In columns two to five of this table, an entry of ”0”means that the re-

38

3.1 Literature Review

spective module is down, whereas an entry of ”1”means that the mod-
ule is up. An ”X”means that the respective module can either be up or
down, because it does not have an impact on the weight of the respective
scenario. The weight determines how the throughput is affected in a cer-
tain fault scenario. For example, if one load lock is down (Scenario 5), the
throughput is degraded by 40 percent.

In (Dhudshia and Clyde 1996), the authors emphasize the necessity of
achieving a common standard for defining OEE, reliability and Cost of
Ownership for cluster tools, but no attempts for defining these metrics
are made.

Busing and Leachman (1998) map the problem of defining OEE for
flexible–sequence cluster tools on the problem of defining the theoreti-
cal processing time. They identify five factors that affect the operations
sequences: cluster configuration, cluster sequencing logic, recipe mix, al-
ternative resources, and lot sequencing effects. Since these factors make
modeling the performance of cluster tools very complex, the authors pro-
pose two approaches for deriving OEE metrics for cluster tools: one ap-
proach is to limit the point of view to a ”virtual machine”consisting of
only a single process chamber and the associated transport module and
to derive the theoretical processing time for this virtual machine.

The other approach is to use restrictive assumptions to come up with an
acceptable approximation of the theoretical processing time of the whole
cluster tool. To this end, they present four strategies: actual operations se-
quence, optimal operations sequence based on actual lot arrival times, op-
timal operations sequence disregarding lot arrival times, and average of
chamber theoretical processing times. The authors suggest using the latter
approach, i.e., to compute the theoretical processing time for each cluster
tool chamber by applying the ”virtual machine”approach and using the
average of these times as an approximation of the cluster tool theoretical
processing time.

Furthermore, the authors present definitions of productivity metrics
like uptime and productive time for individual chambers and complete
cluster tools.

39

3 Performance Modeling of Cluster Tools

Petri Nets

Performance analysis of complex cluster tools, consisting, e.g., of mul-
tiple robots, is not straightforward and cannot be accomplished using
simple closed formulae approaches. Instead, a performance analysis tool
that predicts cycle times of wafers in a cluster tool adequately has to take
into account the effects of different wafer recipes, cluster tool control and
architecture, wafer waiting times, and sequencing. Hence, Petri nets, as
a more powerful modeling technique, have been applied to the perfor-
mance modeling of cluster tools.

A Petri net is a graphical and mathematical modeling tool that can be
applied to model systems with concurrency. Petri nets were introduced by
Carl Adam Petri in the beginning of the 1960’s as the first theory for dis-
crete parallel systems. They are a generalization of automata theory. Petri
nets can on the one hand be used as a graphical tool to display concurrent
systems. On the other hand, the mathematical theory related to Petri nets
allows to compute state equations and probabilities and to derive impor-
tant properties for the system under consideration. For example, they can
be used to examine whether deadlocks can occur in a concurrent system,
cf. Chapter 4.

For an introduction to Petri nets and a list of publications on this topic
see (Petri Nets Steering Committee 2003). In order to get an overview of
the application of Petri nets in the modeling of manufacturing systems
see, for example, (Leventopoulos 1994).

One of the first attempts to model cluster tools using timed Petri nets
is reported in (Srinivasan 1998). In this article, the author shows in detail
the construction of a Petri net model of a specific cluster tool configu-
ration. As examples, Petri nets are presented for a cluster tool with two
chambers and a single–blade handler in serial configuration as well as
for a tool with three chambers and a dual–blade robot in parallel config-
uration. However, the presented approach is applicable to various other
cluster tool configurations as well. Using state cycle and reachability anal-
ysis, the transient phase and steady state cycles are derived from the Petri
net. The author finally derives the throughput for the mentioned cluster
tool configurations.

40

3.1 Literature Review

Shin and Lee (1999) also use timed Petri nets to model simple single–
robot cluster tools and to compute the cycle time for these tools. They re-
strict their approach to the analysis of one–wafer cycles. These are cyclic
sequences during which one wafer enters the cluster tool and one fin-
ished wafer exits the tool. The results are formulae for the cluster tool’s
cycle time in the process–bound and in the transport–bound configura-
tion, similar to the closed formulae derived by Perkinson et al. (1994).
The authors also present a predictive control method that increases the
performance of a cluster tool, namely by placing the robot in front of the
chamber that finishes processing next, and compare this method to a non–
predictive scheduling method using their presented Petri net model.

In his first article in a series of publications on cluster tool modeling
using timed Petri nets, Zuberek (2000) models a simple cluster tool with
multiple chambers, a single robot and one load lock operating in serial
configuration. The Petri net is used to derive the steady–state as well as
the initial and final transient behavior of the tool and to compute the du-
ration of these phases in symbolic form. This basic model is extended in
later papers to assess the cycle time of cluster tools with chamber revis-
iting, cf. (Zuberek 2001a), multiple robots, cf. (Zuberek 2001c), and dual–
blade robots as well as multiple load locks respectively chambers, cf. (Zu-
berek 2001b).

Other Analytical Approaches

Besides closed formulae and Petri nets, other formal and mathematical
methods can be used to model cluster tools. Niedermayer (2002) presents
several approaches to predict lot cycle times. For cluster tools in single
mode, linear and non–linear approximations are compared that derive
the cycle time for different lot sizes if the cycle time for a given recipe
with a given lot size is known. Different predictors are developed and
compared that estimate the cycle time of lots for cluster tools in parallel
and batch mode, as well as the effects of varying start delays that occur
when processing two lots in parallel. The approaches include simulation,
Neural Networks, and linear and non–linear formulae.

41

3 Performance Modeling of Cluster Tools

Shin et al. (2000) use finite state machines (FSM) to model the individ-
ual components of a cluster tool and specify the interaction between the
FSMs. This model is used to implement and test a real–time embedded
cluster tool scheduler for complex cluster tools; performance characteris-
tics are not derived using this model.

3.1.2 Simulation Models

According to Shannon (1975), digital computer simulation is the process
of designing a model of a real system and conducting experiments with
this model on a digital computer for a specific purpose of experimenta-
tion. In this monograph, the focus is on discrete–event simulation models.
They describe the system under investigation in terms of logical relation-
ships and state changes of the elements at certain points in time. For a
deeper introduction into simulation methodology, see for example (Law
and Kelton 1991).

General Purpose Simulators

One of the common approaches of simulating cluster tools is to use a gen-
eral purpose simulation environment, i.e., a software that allows to model
a wide variety of technical systems and that is not focused on a specific
field of application. Such environments usually provide the user with a
tool set of generic components that allow to compose a model of a techni-
cal system.

Pierce and Drevna (1992) present a generic simulation model of clus-
ter tools that was developed by SEMATECH, cf. (SEMATECH, Inc. 2002),
using the general purpose simulation language SIMAN IV.1 The robot
movement calculations were implemented in FORTRAN. The simulation,
equipped with an optional real–time animation of the cluster tool model,
can be used for capacity, cost, and performance prediction. Operators per-
forming tasks like transporting lots and system maintenance as well as

1SIMAN is the simulation language that is the basis of Rockwell Software’s Arena family of
simulation software products, cf. (Rockwell Software Inc. 2002) for details.

42

3.1 Literature Review

system failures are modeled. Process chambers can be of the type single
wafer, batch, or index.

Another animated cluster tool model is presented by LeBaron and Pool
(1994). The authors use AutoMod (cf. (Brooks Automation 2002) for details
on AutoMod) to build a model of a two–robot cluster tool similar to the
type depicted in Figure 2.9. Model parameters are entered using spread-
sheets. Some of these parameters are explained in the publication, and the
model output like tool throughput and module utilization is presented.

In (Mauer and Schelasin 1993) and (Mauer and Schelasin 1994), the
general purpose simulation software ProModelPC (ProModel Solutions
2002) has been used to build simulation models of a plasma etch tool with
radial handler movement, a photolithography tool with a central multi–
axis robot, and a wet bench with linear handler movement. Though the
structure of these tools differs significantly in terms of tool layout and
handler movements, the authors report that the respective models are ca-
pable of simulating these tools with appropriate accuracy.

Another cluster tool simulation model based on the ProModel factory
simulation software is presented in (Hendrickson 1997). The model is ap-
plicable for tools with one to eight process chambers, one or two load
locks and a central handler. The algorithms used to schedule the robot
movements are based on the transport module control software devel-
oped by Brooks Automation. The model is applied in several studies to
predict throughput under different tool configurations, e.g., for a compar-
ison of a single–blade and a dual–blade robot and to study the effect of
adding process chambers to the tool.

Unfortunately, none of the publications mentioned in this section
presents details on the implementation of the simulation model, espe-
cially no information on the scheduling algorithms is given.

Cluster Tool Simulation Software

In terms of commercial software for simulation of cluster tools mentioned
in scientific publications, ToolSim (Brooks Automation 2002) seems to be
the most popular one. ToolSim and its predecessor ClusterSim are simula-

43

3 Performance Modeling of Cluster Tools

tion software packages for the modeling of cluster tool equipment, with
a focus on capacity analysis of cluster tools. ToolSim facilitates 3–D ani-
mation of the simulation model. The simulation models already available
for ToolSim include deposition tools, PVD and CVD tools, lithography
equipment, steppers, etc. ToolSim is based on AutoSimulation’s general
purpose simulation software AutoMod.

The data defining the cluster tool configuration and simulation param-
eters are entered via a number of input files. The cluster tool model can
be composed of pre–defined module templates like processing chambers
and load locks.

LeBaron and Hendrickson (2000) use ClusterSim for a comparison of
the tool performance when using the cluster tool scheduler provided with
the simulation model and a real cluster tool scheduler. They show that
the rule–based simulation scheduler, using either a push or a pull rule,
is not capable of completely reproducing the behavior of the real sched-
uler, that applies a branch–and–bound search algorithm to find the se-
quence of robot moves that yields the highest tool utilization. Therefore,
they propose integrating the real scheduler’s program logic in the simu-
lation software (cf. Chapter 4 of this monograph for further approaches
for sequencing the robot moves within a cluster tool).

Paré et al. (2002) apply ToolSim to analyze different configurations of
a dielectric deposition tool. The options considered are side–by–side or
stacked configuration of the load locks as well as different batch capacities
of the load locks. The goal of the study is to identify the configuration that
provides the highest throughput.

Different tools in the thin film area were modeled by Aybar and Potti
(2002). The pre–defined simulation models shipped with ToolSim were
used to study the impact of changing the frequency of cleaning cycles and
the effects of different chamber configurations, to compare single and par-
allel operation mode, and to identify the bottleneck process at a sputter
tool.

44

3.1 Literature Review

Other Simulation–based Approaches

Unfortunately, some of the authors of publications on cluster tool simu-
lation do not explicitly mention the simulation environment they used to
build their cluster tool model. For example, Atherton et al. (1990) perform
case studies to evaluate the impact of process recipes, sequence of oper-
ations, etc., using a ”detailed simulation model”of a multi–process tool.
They focus on the waiting time of wafers as a performance characteristic.
However, they do not give any hint whether the model was built using a
general purpose simulation language or was implemented otherwise.

Similarly, in (Atherton et al. 1990), potential throughput advantages of
cluster tools and the problem of shifting bottlenecks are discussed with-
out presenting any details on how the simulation model used in this study
had been created.

Wood and Saraswat (1991) compare a cluster–based wafer fab to one
without cluster tools. They perform Monte Carlo simulations of the mod-
els of these two fabs to predict cost and throughput time performance.
Their results indicate that cluster–based fabs have a significant through-
put advantage at a relatively small additional cost per wafer as compared
to non–cluster–tool fabs.

This study is repeated in (Wood 1997), now based on fab data collected
in a survey of equipment vendors, chip manufacturers, and relevant lit-
erature. The simulation of the resulting fab models of a cluster–based fab
and an equivalent fab without cluster tools leads to the conclusion that a
cycle time reduction of up to 50 percent can be accomplished by employ-
ing cluster tools without a significant increase in cost per wafer.

The cluster tool model developed by Koehler et al. (1999) is used to pre-
dict cycle times of tools applied in the production of thin film heads used
in hard drive storages. Though not explicitly mentioned in the paper, it
can be assumed that the Arena simulations software was used to build the
model. The simulation results for different tool configurations are used in
a probabilistic throughput model to predict throughput of multiple clus-
ter tools where the individual tools are subject to random downtimes.

Another paper on simulation of cluster tools for comparing design al-

45

3 Performance Modeling of Cluster Tools

ternatives, presented by Poolsup and Deshpande (2000), presents results
for different studies without elaborating on the details of modeling the
cluster tools. Among the alternatives considered are single–arm vs. dual–
arm robot, different capacities of the cooling station, and different priori-
ties of the robot activities.

In (Pampel et al. 2000), the authors present a study that aimed at im-
proving the productivity of a workcenter of dry–etch cluster tools. In par-
ticular, the authors compared workcenter configurations and cluster tool
operation modes with respect to wafer throughput. Furthermore, the im-
pact on throughput of hardware and recipe changes at a single cluster tool
is considered. For a range of process times, different handler configura-
tions, wafer alignment procedures, and dispatching rules are compared.
The authors emphasize that slight deviations of the individual process
times can have significant impact on wafer throughput. Therefore, they
collected input data for the simulation model from existing equipment
with an accuracy of one second. The respective throughput results were
verified by on–tool tests. The authors mention some of the problems of
the existing equipment, like the lack of a look ahead strategy of the cluster
tool controller and the need for extensive automation of data transmission
from equipment to simulation software.

Lemmen et al. (1999) use a dynamic simulation model of the cluster tool
type applied in the deposition area of a wafer fab. This model is used to
compare different scheduling strategies for the deposition area concern-
ing the impact on throughput and cycle time of that area. The authors
show that applying area–level scheduling rules can significantly improve
the fab performance. A similar problem is addressed in Chapter 5 of this
monograph.

Quite similar to discrete–event simulation is the approach of event–
graph simulation. Nehme and Pierce (1994) use this approach for the
modeling of cluster tools. They apply a resident–entity model instead of
the more common transient–entity model, i.e., the events in the model
are associated with the resident entities like chambers or robots and not
with the wafers. This approach has proven to lead to very short execu-
tion times of the simulation model, however, the resident–entity models

46

3.1 Literature Review

are not able to cover some of the properties that can be modeled using
transient–entity simulation. The authors give a detailed overview on how
the simulator and the underlying objects and methods were implemented
in C++.

Schruben (1999) addresses the problem of detecting and avoiding
deadlocks when simulating cluster tools. The presented simulation model
is based on event graphs and provides animation of the robot activities.
He suggests to use simulation to prove that a specific schedule for the
cluster tool operation is deadlock–free.

The simulation model presented by Schruben is called Cluster Tool Per-
formance Simulator (CTPS) and has been developed at Cornell University
and later at University of California, Berkeley. The model data is entered
using a spread sheet, containing five areas:

• tool configuration, containing the number of process modules,
number of load locks, pump and vent times as well as the type
of the process modules. Three classes of modules can be used: Sin-
gle chamber modules (only one wafer is processed at a time), batch
chamber modules (batches of n > 1 wafers are processed in par-
allel), and index modules (an index module consists of different
chambers in which a wafer undergoes a series of different process-
ing steps);

• robot movement, where the move times of the handler between
chambers and load locks are specified using a from–to matrix;

• product description, associating a process flow with each wafer in
the model. A lot can contain wafers with different flows;

• process description, containing the required process module and
the associated processing time for each process flow ;

• simulation run control, specifying simulation run length, dispatch-
ing rules, and output files.

47

3 Performance Modeling of Cluster Tools

The simulator provides a schematic animation of the simulation run,
cumulative flow plots of the cycle times and wafers entering and exiting
the cluster tool, and Gantt charts of the simulated entities.

Event–graph simulation is also used by Pederson and Trout (2002).
They use the SIGMA simulation environment (Schruben and Schruben
2000) to create a cluster tool model and compare this modeling approach
to a spreadsheet model based on bottleneck analysis.

Chandrasekaran (1999) presents an approach that relates the total pro-
cessing time of a lot of wafers to process parameters like temperature,
pressure and processing time. The goal is to predict how changing the
physical or chemical processes taking place in the cluster tool’s process-
ing chambers affect the performance of the complete cluster tool. To this
end, they use a response surface model (RSM) of a CVD Tungsten deposi-
tion process, relating the deposition rate to the process parameters reactor
pressure and temperature. Using the deposition rate, the process time is
derived for a specific deposition thickness. The process time is then used
as input for two models applied to derive the cycle time of a complete lot:
an analytic network model and a simulation model.

The network model represents the sequence of wafer moves in the clus-
ter tool as a directed graph. Using this graph, the lot cycle time can be
derived using a simple algorithm. This analytic model can be applied if
the sequence of handler moves is known in advance. If this sequence is
not known, a simulation model can be used. The simulation model ap-
plied by the author is based on the Cluster Tool Performance Simulator
of Schruben (1999). The same approach is presented in (Herrmann et al.
1999) and (Herrmann et al. 2000).

This integration of process parameters in the simulation model allows
one to assess the impact of changes in process parameters on the cluster
tool performance. Using such a model, it is easier to communicate pro-
cess related topics between process engineers and operations personnel.
It has to be annotated that integration of the process parameters can be
achieved with all the presented models, because the computation of pro-
cessing times for a given set of process parameters is relatively simple.

Ruppert et al. (2000) develop regression spline meta–models of clus-

48

3.1 Literature Review

ter tools, using output from a simulation model. With such meta–models,
the output of the simulation can be predicted rapidly for different pa-
rameter settings. Since the component functions of the regression spline
models can be investigated to analyze the factors influencing cluster tool
throughput, these models also give further insight into the cluster tool
characteristics.

The disadvantage of this approach and of similar methods, like Neu-
ral Networks, is that after changing the configuration of the cluster tool
under investigation, the respective model has to be adapted to reflect the
changed configuration. Furthermore, if no cluster tool is available to gen-
erate the training data for the model, it is necessary to create a simulation
model to receive performance data of the changed cluster tool configu-
ration. Finally, with the speed of processors increasing, the run time of
simulation models is decreasing and it is questionable whether the effort
of generating a meta–model is worth the relatively small gain in comput-
ing time.

3.1.3 Comparison of Analytical and Simulation
Approaches

The two groups of modeling paradigms, analytical and simulation mod-
els, will now be summarized and compared. The presented analytical
methods can be divided into two groups: on the one hand, there are sim-
ple closed–formulae approaches that are easy to understand and easy to
implement. Due to their simplicity, they are applicable to model simple
cluster tools only and can not be used to model tools with sophisticated
layout or complicated internal logistics.

On the other hand, there are more complex analytic approaches, like
Petri nets, that are able to model virtually all kinds of cluster tools. The
more complex the cluster tool, the more complicated it becomes to main-
tain the associated model, since the modeling methodology is more com-
plex and harder to comprehend.

Therefore, for analytical approaches, a trade–off has to be made for the

49

3 Performance Modeling of Cluster Tools

application that the model is needed for. From a pragmatic point of view it
would be better to have one methodology that is easy to implement and to
understand and at the same time allows for greater flexibility concerning
the kind of models that can be created.

Simulation offers great flexibility concerning the degree of details put
into the model. The model builder can start with a simple and coarse
model of the tool and add details according to the requirements. Changes
of the cluster tool configuration are much easier to implement in simula-
tion models compared to analytical models.

An important advantage of the simulation approach is that the
scheduling algorithms used in the cluster tool can easily be implemented
if they are known, because most of the simulation environments allow the
user to extend the model using a programming language.

Generating the different performance measures that might be of inter-
est for the model builder is relatively easy using simulation, since either
the simulation environment offers statistical functions for the model ele-
ments applied, or the model builder has access to the required data using
a programming interface. Therefore, it is possible to include additional
performance measures into the simulation model even after the origi-
nal model is generated. Most analytic approaches are built to compute a
specific performance measure, and therefore adding another performance
measure might not be possible.

Once a model of a single cluster tool is created, it can be re–used to
model pools of several cluster tools. Using analytical models however, in
most of the cases it is not possible to use an existing model of a single
cluster tool and build models of cluster tool pools because the analytical
approaches have only limited flexibility concerning the complexity of the
systems that can be modeled.

In some cases, equipment vendors provide simulation models of their
products. This enables the equipment buyer to use an accurate model,
since the vendor has all knowledge about the cluster tool and its schedul-
ing algorithms necessary to build a detailed model.

The usability of the two approaches in a semiconductor manufactur-
ing environment depends on the specific purpose of the model. If only

50

3.2 CluSim

rough cut performance data is needed, then closed formulae or simple
spreadsheets might be the better choice because they can be applied and
communicated easily. Furthermore, an analytical approach may help to
gain insight why the performance measure of interest is influenced by
the model parameters. On the other hand, if a series of exact performance
data of a complex cluster tool is needed, analytical models do usually not
provide the same flexibility and modeling power as simulation.

In general, the simulative approach seems to be the more promising
one for modeling cluster tools, while there might exist specific applica-
tions where analytic methods can be applied successfully.

3.2 CluSim

In order to perform the simulation studies described in the following two
chapters, an object–oriented simulation engine for cluster tools, called
CluSim, was developed using the programming language C++ during the
course of the research for this monograph, cf. (Schmid 1999) and (Bohr
1999). For the management of the events occurring during a simulation
run, the software library simlib++ was used, cf. (Kern and Gerlich 1994).

By creating a simulation software from scratch instead of using a gen-
eral purpose simulation environment or a commercial cluster tool sim-
ulation software, the greatest possible flexibility is given. The degree of
detail of the simulation model can be increased or decreased arbitrarily,
the logic of the control of the individual parts of the simulation model
can be modified, all statistical data necessary can be extracted from the
model, etc.

3.2.1 Objects in CluSim

To give an overview of the modeling capabilities of CluSim, the essential
objects in a simulation model created with CluSim will be presented. An
overview of such a model is given in Figure 3.3.

51

3 Performance Modeling of Cluster Tools

Figure 3.3: Objects in CluSim

A simulation model in CluSim can consist of an arbitrary number of
cluster tools, each of which can have an arbitrary number of process
chambers, load locks, and handlers. Hence, different types of cluster tools
can be simulated in a single model.

To make the simulation model as generic as possible, a modular ap-
proach was applied. The individual components of the simulation model
can be exchanged easily with alternative components. For example, one
can choose the module responsible for the control of the handler from a
set of different modules.

Cluster Tools

For each of the different cluster tool types defined in the simulation
model, the following parameters can be specified:

52

3.2 CluSim

• number of cluster tools of this type,

• number of load locks,

• number and types of process chambers,

• number and types of handlers,

• type of scheduling algorithm.

The different types of scheduling algorithms that can be chosen will be
discussed in detail in Chapter 4.

If a more detailed model is necessary, one can specify additional pa-
rameters such as the time necessary to open or close a process chamber.

Each cluster tool is equipped with its own queue, allowing the cluster
tool to decide itself which lot to choose next for processing if more than
one lot is available.

Load Locks

For each load lock, the model specifies the pump and vent time, as well
as the time required for moving a lot of wafers inside the load lock. This
movement of the lot is necessary if the handler can not move along the
vertical axis.

Process Chambers

The model parameters for a process chamber consist of the time necessary
to prepare the chamber for accepting a wafer from the handler, as well as
the time to prepare the chamber before the process can be initiated.

Handlers

There are two possible ways to define the move times of a handler. If
the exact move times between the individual cluster tool modules are

53

3 Performance Modeling of Cluster Tools

not known, the user can specify a constant move time for all source–
destination pairs. A matrix of move times can be used if the different
move times for the source–destination pairs are known. In both cases, dif-
ferent move times can be specified for a loaded and an unloaded handler,
respectively.

In addition to the move times, the time required for inserting a wafer
into a process chamber and for removing it from the chamber can also be
defined.

Recipes

Recipes are specified in CluSim by listing the individual processing steps
and the process time for a wafer. For each processing step, one can declare
alternative processing chambers capable of performing the process step. It
is also possible to define recipes that require processing on several cluster
tools.

Lots

To model a lot, the number of wafers in the lot and the recipe associated
with the individual wafers has to be specified. A wafer can be marked as
scrap, e.g., to emulate the effects of failures during processing a wafer. It
is also possible to assign a higher priority to certain wafers, so they will
be processed before other wafers with lower priority.

The time between two consecutive arrivals of a lot at the pool queue
can be defined as a random variable. The model builder can choose
among the following distribution types: Deterministic, Exponential, Uni-
form, Erlang, and Normal.

Downtimes

For the components process chamber, handler, load lock and for a com-
plete cluster tool, downtimes can be specified. A downtime will occur
after the respective component has processed a certain number of wafers.

54

3.2 CluSim

This number as well as the length of the downtime can be specified as a
random variable.

Pool Queue and Scheduler

Whenever a new lot is created during a simulation run, it is put into the
pool queue. The pool scheduler will check the pool queue for lots to pro-
cess whenever a cluster tool becomes available for processing. Alterna-
tively, a new lot can be assigned immediately to a cluster tool capable
of processing that lot, and it is placed in the queue associated with that
specific cluster tool.

3.2.2 Simulation Run

The simulation model is data driven, i.e., when starting the simulation, a
text file containing all model parameters is parsed and the specific cluster
tool model is generated. With this approach, a series of simulation runs
with different models can be run in batch mode. The syntax of the input
file has to follow the grammar specified in Appendix A. An example of
an input file is presented in Appendix B.

3.2.3 Simulation Results

The simulation program computes a number of output statistics after a
simulation run, such as:

• cycle times of wafers,

• raw processing time (cycle time minus waiting time),

• average processing time of a specific recipe,

• utilization of the components of a cluster tool.

55

3 Performance Modeling of Cluster Tools

For the studies described in this monograph, the total completion time
for a given sequence of lots is of special interest.

For debugging purposes and to gain insight into the internal schedul-
ing logic, a trace of the simulation events can be generated during the
simulation run.

3.2.4 Sample Model

As an example for modeling a cluster tool with CluSim, the cluster tool
presented in (Perkinson et al. 1994) is modeled. For validating the perfor-
mance data resulting from the CluSim simulation runs against the analyt-
ical results of Perkinson et al. (1994) as derived in Eqn. (3.1), two cluster
tool models have been investigated. The set of parameters is shown in Ta-
ble 3.2. NC denotes the number of process chambers, NW is the number
of wafers in one lot. The time to load and unload a lot to and from the
load lock is denoted by Tload and Tunload, respectively. Finally, Tproc is
the processing time in all process chambers, and Tmove is the robot move
time between all chambers and the load lock.

Table 3.2: Parameters for Cluster Tool Models
NC NW Tload Tunload Tproc Tmove

Model 1 3 25 20 sec 20 sec 100 sec 20 sec
Model 2 3 25 20 sec 20 sec 100 sec 30 sec

A handler move time Tmove of 20 sec as in Model 1 will lead to idle
times of the handler, whereas for Tmove = 30 sec, no idle times will occur.

Table 3.3: Analytical Results

Tmove (sec) Cycle Time (sec)
Model 1 20 4760
Model 2 30 6230

56

3.2 CluSim

For the two models, Perkinson et al. (1994) compute the cycle times
displayed in Table 3.3. The simulation results produced by CluSim are as
follows for Tmove = 20 sec:

lots average average

per cycle CT per

lotname lots wait day time wafer

FirstLot 1 0.4% 8.6 4760.0 190.4

For Tmove = 30 sec, the results are:

lots average average

per cycle CT per

lotname lots wait day time wafer

FirstLot 1 0.3% 8.6 6230.0 249.2

As can be seen from column ”average cycle time”, in both cases the
deterministic simulation produces the same cycle time as predicted by
the analytical model.

In order to prove that CluSim produces accurate simulation results also
for more complex cluster tool types, we performed several studies of clus-
ter tools that are applied in real wafer manufacturing and compared the
results of the simulation models to the performance data measured for the
real cluster tools. The recipes that were used in the study contained con-
fidential information and can therefore not be reproduced in this mono-
graph. We simulated cluster tools processing a single lot, as well as cluster
tools that processed a sequence of lot in parallel mode. As the main per-
formance measure, the cycle time of the individual lots was used. The
comparison showed that the simulation results had a relative error of 5
to 10 percent compared to the real performance data, even for complex
cluster tools like the one depicted in Figure 3.4.

57

3 Performance Modeling of Cluster Tools

3.2.5 Case Studies

We will now present two case studies that show areas of application of
the presented cluster tool simulation software.

Effect of Lot Size on Cycle Time

Using a simulation model of the cluster tool depicted in Figure 3.4, we
will study how the number of wafers in a lot affects the cycle time of the
lot.

Figure 3.4: Cluster Tool Model for Study on Lot Size

In the simulation, a single lot is placed in one of the load locks and the
lot cycle time and the average flow factor of the wafers is measured. The
flow factor FF of a wafer is defined as follows:

FF =
(Cycle Time)

(Raw Process Time)
. (3.13)

58

3.2 CluSim

The raw process time of a wafer is defined similarly to the wafer’s cycle
time, however, now we consider a cluster tool that is in idle mode, and
the wafer under consideration is the only wafer that is currently present
in the cluster tool. Hence, the raw process time reflects the cycle time of a
wafer reduced by all (unnecessary) waiting times.

The lot loading and unloading time is not considered in this study. The
wafer recipe used is shown in Table 3.4.

Table 3.4: Recipe for Study on Lot Size

Chamber E|F A 2 B
Process Time (sec.) 30 0 75 31

Chambers E and F are identical, therefore either of them can be used for
the first recipe step. Processing time in Chamber A is zero, because this
chamber is only used to pass the wafers through to the upper mainframe
of the cluster tool. The sum of the process times is 136 seconds, the sum
of the transport times is 105 seconds, therefore the raw process time of
wafers with that recipe, including transport time, is 241 seconds.

As can be seen from Figure 3.5, the average flow factor of the wafers
increases when the lot size is increased and asymptotically approaches a
value around 2.2. The waiting time of a wafer increases for larger lot sizes
because the wafer has to wait more often for resources occupied by other
wafers to become available.

The evolution of the lot cycle time divided by the number of the wafers
shows the opposite behavior. When increasing the lot size, this value ap-
proaches 140 seconds, which is slightly higher than half the raw process
time of a wafer. This improvement is caused by the parallel processing of
wafers, also called pipelining.

This study shows that lot sizes larger than 15 wafers do not signifi-
cantly improve the cycle time. However, the larger the lot sizes, the more
wafers can be produced without pumping and venting the load lock to
change lots. This improves the productivity of the tool. Therefore, lot sizes
of 25 or 50 wafers are common in many wafer fabs.

59

3 Performance Modeling of Cluster Tools

Figure 3.5: Impact of Lot Size on Cycle Time

Choosing the Optimal Recipe Mix

For cluster tools that allow the processing of wafers of different recipes in
parallel, an improvement in throughput and cycle time can be achieved
without changing the internal scheduling mechanisms by choosing the
optimal combinations of recipes.

To estimate the performance gain that can be achieved using this ap-
proach, we tried to identify combinations of two lots that lead to small
lot cycle times when the two lots are processed in parallel, using the clus-
ter tool simulator CluSim, cf. (Dümmler 2000). The following simulation
experiment was performed using again the model of the cluster tool de-
picted in Figure 3.4 with the recipes in Table 3.5.

Starting with an empty cluster tool, we simultaneously put a lot of
recipe i ∈ {1, . . . , 4} in load lock 1 and a lot of recipe j ∈ {1, . . . , 4} in load
lock 2. For all of the 16 possible combination of recipes, we measured the
cycle time for both lots. For each combination (i, j), we computed the ra-
tios Ti,j/Ti, where Ti,j is the cycle time of a lot of recipe i when processed
together with a lot of recipe j. Ti is the cycle time of a lot of recipe i when

60

3.2 CluSim

Table 3.5: Recipes for Recipe Mix Optimization

Chamber E|F C D A 1 2 4 B

Recipe 1 80 60 40 0 70 40 30
Recipe 2 60 0 70 30
Recipe 3 80 60 40 0 90 30
Recipe 4 0 80 30

processed exclusively. The resulting ratios are displayed in Table 3.6.

Table 3.6: Cycle Time Ratios for Combinations

Recipes j = 1 j = 2 j = 3 j = 4

i = 1 1.86 1.85 1.85 1.35
i = 2 1.66 1.78 1.29 1.34
i = 3 1.50 1.38 1.88 1.39
i = 4 1.25 1.53 1.76 1.72

Obviously, there are combinations that lead to more favorable cycle
times for both lots than other combinations. For example, combining
recipes 2 and 3 leads to an increase of 29% in cycle time for recipe 2 and
of 38% for recipe 3. Hence, this is a more favorable combination than for
example recipes 1 and 3, which leads to an increase in cycle time of 85%
for recipe 1 and of 50% for recipe 3. Combining recipes 2 and 3 leads to
shorter cycle times since recipe 2 does not make use of chamber 2, which
is the bottleneck chamber of recipe 3 and vice versa. On the other hand,
when combining recipes 1 and 3, wafers of recipe 1 visit chamber 2, the
bottleneck resource for recipe 3, causing higher waiting times for both
recipes.

Table 3.6 can be used as a guideline for operators to choose combi-
nations of recipes that lead to short cycle times. However, when a large
number of lots has to be sequenced on several cluster tools, this task can
no longer be performed manually.

61

3 Performance Modeling of Cluster Tools

In several simulation studies, Niedermayer (2002) shows how the cycle
times of lots is affected if the processing of the second lot starts with a
delay and presents approximation techniques for predicting these effects.

62

4 Scheduling of Cluster Tool
Activities

63

4 Scheduling of Cluster Tool Activities

After purchasing a cluster tool, the semiconductor manufacturer usu-
ally depends on the tool manufacturer when adaptations of the control
logic of the cluster tool are necessary, e.g., when the cluster tool configu-
ration is changed or when the tool performance in general has to be im-
proved. The tool manufacturers are very reluctant to disseminate infor-
mation on how the control of the cluster tool processes, especially the se-
quencing of the individual operations and transport moves, is performed.
Hence, only little knowledge is available on the actual control algorithms.
Geiger et al. (1997) even note that the development of effective scheduling
procedures is lagging behind the rapid development of new cluster tool
technology.

The task of scheduling the cluster tool operations is not trivial. The
main goal is to maximize the productivity of the cluster tool, i.e., to in-
crease throughput and to reduce cycle times. However, there are also
side constraints to take care of. Deadlocks and situations of circular wait
can occur, since different wafers are competing for the same resources
in a cluster tool. Further constraints are imposed when the chemical or
physical processes require that two consecutive operations be performed
within a certain time frame. This constraint is called residency time con-
straint.

The goal of this chapter is to present different approaches to the se-
quencing of cluster tool activities and to compare them to each other. The
chapter is structured as follows: First, the scheduling problem is formu-
lated. In the second section, the related literature on this problem and
closely related problems is presented. Approaches to deadlock avoidance
and deadlock resolution are discussed in the next section. Finally, the al-
gorithms implemented in the cluster tool simulation model CluSim, in-
troduced in the previous chapter, are presented and compared and the
results are discussed.

64

4.1 Problem Description

4.1 Problem Description

According to Pinedo (2002), scheduling ”deals with the allocation of
scarce resources to tasks over time. It is a decision–making process with
the goal of optimizing one or more objectives.” The scheduler is the com-
ponent of a cluster tool responsible for generating for each wafer to be
processed in a cluster tool a sequence of process steps, where each step
takes place in the individual process chambers of the cluster tool. This se-
quence must be conforming with the sequence of process steps as defined
by the respective wafer’s recipe. In the context of modeling a cluster tool
using simulation, the scheduling task is reduced to generating a sequence
of handler moves, determining which wafer will be transported next to
which process chamber and at what time the processing will start.

Before generating the schedule, the state of the cluster tool must be
determined, i.e., the scheduler needs to know the number, state, and po-
sition of all wafers in the model as well as the state of the cluster tool re-
sources (idle, busy, or down). The scheduler will start whenever a change
in the cluster tool configuration takes place that has not been considered
in the current schedule. Such an event can be the failure of a cluster tool
resource, a re–configuration of a process chamber, or the arrival of a new
lot at a load lock. The scheduling approaches presented in this chapter
only consider the current state of the cluster tool and do not take into
account future states, e.g., caused by chamber failures.

In order to understand the complexity of the problem, we will inves-
tigate the following problem, cf. (Nguyen 2000): Consider a cluster tool
with one load lock and one single–blade handler. A lot of NL identical
wafers is to be processed in the cluster tool. NS process steps are required
to process a wafer. Therefore, each wafer must be moved by the handler
NS + 1 times, so for the complete lot NL(NS + 1) wafer moves must be
scheduled.

Nguyen (2000) derives the number of feasible sequences for a cluster
tool with one handler and one load lock. As an example, a cluster tool
with four process chambers, where chambers three and four can perform
the same operation, and a lot of three wafers are considered. If each wafer

65

4 Scheduling of Cluster Tool Activities

has to visit chamber one and two and then either chamber three and four,
there are 552 possible sequences per lot that the scheduler can choose
from.

4.1.1 Gantt Charts

The sequence of instructions generated by the scheduler defines a
scheduling plan of the cluster tool resources. Such a plan can be visu-
alized using a Gantt chart. In a Gantt chart, resources are displayed as
horizontal bars along the time horizon. Active or occupied states of the
resources usually are indexed by the job (in our case, the wafers) occu-
pying the resource. Arrows connecting two bars indicate the transfer of
wafers from one resource to another. At every point in time, no resource
can be occupied by more than one job.

Figure 4.1 shows a Gantt chart for a cluster tool configuration consist-
ing of three process chambers, one load lock, and one handler. The in-
dividual wafers are indicated by different textures. The periods when a
resource is occupied are divided into active periods, if processing takes
places, and passive periods, if the resource waits for a wafer to arrive or
for a wafer to be picked up.

4.1.2 Fundamental Periods

When a wafer occupies a cluster tool resource it blocks this specific re-
source, so that no other wafer can occupy the same resource. This leads to
the generation of points of synchronization among the resources, because
the transfer of a wafer from one resource to another can only take place if
both resources are in the correct state. If a lot of wafers of the same type
has to be scheduled, this synchronization will lead to the formation of
cyclic structures within a schedule. This means, that after a certain period
of time, the cluster tool will be in a steady state, where a sequence of oper-
ations is repeatedly performed within the same time frame until there are
no more wafers available. The fundamental period denotes the period of

66

4.1 Problem Description

Figure 4.1: Gantt Chart

one such cycle in steady state, cf. (Perkinson and Gyurcsik 1996).

The time period until the cluster tool reaches steady state, i.e., until
the first wafer is completed, is denoted as the filling–up phase or initial
transient phase. The completion phase or final transient phase denotes
the period following steady state, starting when there are no more new
wafers available for processing.

During steady state, a subsequence of operations that loads and un-
loads each process chamber λ times is called a λ–unit cycle. A cyclic se-
quence of length n > 1, is formed by repeating n such λ–unit cycles.

67

4 Scheduling of Cluster Tool Activities

4.1.3 Active Schedules

A schedule is called active, if no schedule can be constructed where one
task of the schedule is executed earlier without delaying another task,
cf. (Pinedo 2002). All the implemented scheduling approaches presented
later in this chapter produce active schedules.

Note, however, that it is not always advantageous to start the next pro-
cess step as soon as a resource becomes available. Figure 4.2 gives an ex-
ample of an active wait situation of a process chamber leading to higher
chamber utilization and throughput in steady state.

The wafer recipes for this example are as follows. Wafers of Type 1 have
to be processed in Chamber 2 for two time units, in Chamber 1 for one
time unit and again in Chamber 2 for five time units. Wafers of Type 2
are processed for four time units in Chamber 3, then for one time unit
in Chamber 2 and finally for one time unit in Chamber 3. It can be seen
that by introducing an ”artificial”delay and increasing the waiting time
of wafers of Type 1, the overall chamber utilization is increased by five
percent and the overall wafer throughput is improved.

4.1.4 Robotic Flow Shops

According to the definition of Crama and van de Klundert (1997), a clus-
ter tool can be considered as a robotic flow shop. This means, it consists
of an input station M0, namely the load lock, an output station Mm+1,
which is identical to M0, and a number of m machines or process cham-
bers, M1, . . . , Mm. The process chambers can contain only one part at a
time. Transportation is done by a robot, loading and unloading wafers
to and from the chambers. There exist no buffers in the cluster tool. Fur-
thermore, processing in a chamber usually can not be interrupted without
damaging the wafer or at least making the operation void, so the opera-
tions are non–preemptive. The problem consists of the task of scheduling
a number of jobs on the m machines in such a way that a certain perfor-
mance characteristic, e.g., the cycle time of the wafers, is optimized.

Crama and van de Klundert (1997) show that robotic flow shop

68

4.1 Problem Description

Wafer of Type 1 in Process

Wafer of Type 2 in Process

Time 0

Alternative 1:

Alternative 2:

Delaying a possible processing in favor of another
wafer type

Comparison:

1 2

Alternative 1

Alternative 2

"Steady State" production time units Total chamber
of wafers of type utilization

9 9 52 %

12 6 56 %

Chamber 1

Chamber 2

Chamber 3

Chamber 1

Chamber 2

Chamber 3

Fundamental Period

Fundamental Period

5 10 15 20

Figure 4.2: Example for Active Wait

scheduling with the goal of minimizing cycle time in such an environment
is strongly NP–complete, using a reduction from the Bin Packing Prob-
lem. Therefore, no algorithms are known yet that can generate an optimal

69

4 Scheduling of Cluster Tool Activities

schedule for cluster tools in polynomial time. Of course, in some clus-
ter tools, there exist some deviations from the robotic flow shop model.
For example, wafers may skip one or more chambers, and there might
be more than one robot. These characteristics, however, do generally not
reduce the complexity of the problem.

4.1.5 Regions of Operation

In general, a cluster tool can be operated in two regions: a process–limited
region and a robot–limited region. In robot–limited mode, the bottleneck
is the handler. As a consequence, chambers will wait idly for a new wafer
to arrive or for the finished wafer being unloaded from the chamber. On
the other hand, in the process–limited region, the performance is limited
by one or more process chambers and the handler.

4.2 Literature

As already indicated, only a few publications are available on the cluster
tool scheduling problem (CTSP). However, due to the relationship of the
CTSP to some well–known scheduling problems like the Robotic Flow
Shop Scheduling Problem (RFSSP), the Flow Shop Scheduling Problem
(FSSP), the Job Shop Scheduling Problem (JSSP), or the Hoist Scheduling
Problem (HSP), a large body of literature can be used as a starting point
to investigate solutions to the CTSP.

One of the rare publications about schedulers that are actually imple-
mented in cluster tools is (LeBaron and Hendrickson 2000). In the men-
tioned scheduler, a Branch–and–Bound algorithm is used to do an ex-
haustive search of all possible moves within a specified search horizon.
The objective is to maximize utilization of the process modules within the
search horizon. The advantage of this approach is that deadlock situa-
tions can be completely avoided, since for every search branch leading to
a deadlock situation, there exists at least one equivalent branch without
a deadlock. Another advantage cited by the authors is that the algorithm

70

4.2 Literature

quickly adapts to changes in tool configuration or in recipes. Of course,
there exists a trade–off between run time of the search algorithm and the
quality of the solution. A similar algorithm was implemented in the clus-
ter tool simulation model CluSim and will be presented later in this chap-
ter.

In (Herrmann and Nguyen 2000), another Branch–and–Bound algo-
rithm is presented and it is shown that the results for simple problem
instances are better using this algorithm as compared to a simple push or
pull approach. The authors also enumerate the one–unit cyclic sequences
(cf. Section 4.1.2) for a sequential cluster tool with two and three process
chambers and compute cycle time and lot makespan for these cyclic se-
quences. The cluster tool under investigation is a rather simple type with
only one load lock and one handler.

The authors extend this algorithm in (Nguyen and Herrmann 2000)
to also handle hybrid cluster tools, i.e., cluster tools that can have more
than one process chamber for a specific operation. They also present a
heuristic that only considers cyclic sequences and has significantly lower
computational effort but still produces better results than the push and
pull rules. The authors conclude that focusing on cyclic sequences is a
good trade–off between computational effort and the resulting quality of
the schedule.

An approach that is very flexible and that can be applied to cluster
tools with changing setups is using dispatch rules, cf. (Morton and Pen-
tico 1993). Dispatch rules are simple if–then rules, that are applied suc-
cessfully in a variety of environments, cf., for example, (Conway 1965).
They are easy to implement and require only little information about the
actual environment in which they are applied. In Section 4.4.3, the dis-
patch rules implemented in CluSim are introduced.

Bierwirth et al. (1995) investigate the application of Genetic Algorithms
(cf. Chapter 5) to dynamic and non–deterministic job shop scheduling.
The authors show that Genetic Algorithms produce schedules that are
only slightly better than those generated with simple dispatch rules.

In (Yim and Lee 1999), a scheduling algorithm based on Simulated An-
nealing is presented that is used to schedule the processing of wafers

71

4 Scheduling of Cluster Tool Activities

in a series of four cluster tools. The resulting schedules produce smaller
makespan than those obtained by using dispatch rules, however, the com-
putation time of the algorithm is significantly higher.

Shin et al. (2000) present a real–time scheduler for cluster tools with
a robot with dual opposite blades. They model the cluster tool as a fi-
nite state machine (FSM). The reaction of the cluster tool to the occurring
events, like the arrival of a new lot, has to be modeled in the FSM as well.
An occurring event will then start a series of activities, specified in the
FSM. As a consequence, the task of finding a good schedule is actually
transferred to the person modeling the FSM.

Geiger et al. (1997) consider the problem of scheduling an Automated
Wet Station (AWS). They compare two heuristics usually applied to the
FSSP in connection with Tabu Search. Since the control of the robot moves
inside the AWS is fixed, only the sequencing of jobs entering the AWS is
considered. The approach produces ”high–quality”solutions within short
computational time.

Oh (2000) presents several approaches for reducing the number of re-
source conflicts in a cluster tool. A resource conflict occurs when two
wafers wait for the same chamber or the same handler, and residency
time constrains do not permit that one of the wafers waits until the other
wafer’s request is satisfied. A formula for computing the number of mod-
ules needed to ensure availability of modules at a specific process step
is derived. Whereas this approach might be used for chamber conflicts,
it usually can not be applied to avoid handler conflicts, because adding
additional robots to a cluster tool is costly or even not possible due to
technical constrains.

Another solution to the problem of resource conflicts mentioned by Oh
(2000) is to apply priorities or dispatch rules. The author remarks that the
disadvantage of simple ”if–then”decisions like dispatch rules is that no
steady flow of wafers can be guaranteed and hence cycle times can not
be predicted adequately. The proposed solution to the problem of trans-
port conflicts therefore is to artificially introduce delays between process
steps to maintain a steady flow of wafers in identical patterns. The de-
lays have to be large enough to avoid transport conflicts but on the other

72

4.2 Literature

hand should be kept as small as possible. Therefore, the optimal delays
are computed using a Genetic Algorithm.

A related problem, namely the Hoist Scheduling Problem (HSP) is ad-
dressed in (Kats et al. 1999). In this study, the produced parts are identical.
The authors present an algorithm based on a Sieve Method that produces
optimal λ–unit cyclic schedules (λ > 1). One result of the study is that
multiple–unit schedules often produce better performance than the sim-
pler single–unit schedules.

A side constraint that is often imposed on the scheduling algorithm
for chemical and quality reasons is the so–called post–processing resi-
dency constraint. For example, CVD (Chemical Vapor Deposition) and
Rapid Thermal Processing require that the time a wafer spends in a pro-
cess module after processing is finished does not exceed a certain limit.

Rostami et al. (2001) propose an algorithm that generates periodic
schedules under post–processing residency constraints. Their approach
is to first generate a simple periodic schedule according to the proce-
dure presented in (Perkinson et al. 1994). If this schedule satisfies all con-
straints, the algorithm returns the result. Otherwise, the fundamental pe-
riod is repeatedly increased, starting from the minimum value derived
according to Eqn. (3.2). A schedule with a longer fundamental period is
generated by modifying the original schedule with basic operations, for
example by moving operations in the respective Gantt chart. Since this
approach requires extensive computation, some heuristics are presented.
In (Rostami and Hamidzadeh 2002), the proposed approach is extended
to handle robot residency constraints, i.e., the time a wafer is allowed to
spend on a handler can also be limited.

Several authors use Petri Nets (cf. Section 3.1.1) for the task of schedul-
ing cluster tools. Kim et al. (2002) analyze a dual–armed cluster tool with
delay time constraints using Timed Petri Nets. In their paper, they exam-
ine the region of process times that allows generating a feasible schedule
that does not violate the delay time constraints. They also propose an al-
ternative swap method for the dual–blade handler. This method uses the
handler as a kind of buffer, allowing a wafer on the handler to wait for
the next process chamber to become available.

73

4 Scheduling of Cluster Tool Activities

Hendrickson (1997) states that the optimal operation point of a clus-
ter tool is near the crossover between robot–limited and process–limited
mode. At this operation point, both the robots and the bottleneck cham-
bers are close to 100 percent in utilization. Hence, one way of improving
the performance of process–limited cluster tools is to shorten the process
time, e.g., by adding another process chamber to remove the bottleneck.
In case of a robot–limited cluster tool, increasing robot speed or optimiz-
ing the transport sequence and therefore reducing the number of robot
moves will lead to a better utilization of the cluster tool resources.

The articles presented on the Cluster Tool Scheduling Problem and re-
lated problems use a broad variety of methods and in most of the cases
produce satisfactory results for the specific area of application. Since one
of the advantages of introducing cluster tools into the semiconductor
manufacturing process is the flexibility of the cluster tool configuration, a
viable scheduling technique should be applicable to a broad range of dif-
ferent scenarios and should not be constrained to a certain cluster tool
configuration. Therefore, the application of the scheduling techniques
presented later in this chapter that were implemented in CluSim are not
limited to specific cluster tool configurations and can operate in a variety
of scenarios.

If modifying the scheduling algorithms is not possible, other ap-
proaches to optimize cluster tool performance have to be chosen. For
example, Rogatty and Boebel (1996) present a case study where de–
clustering a series of process steps actually improves performance of the
tools involved. Another example for performance improvement of clus-
ter tools without affecting the scheduling mechanisms is given in Chap-
ter 5. The case study on optimizing recipe mix presented in Chapter 3
also presents an approach for optimizing throughput and makespan of a
single cluster tool without changing the internal scheduling mechanisms.

74

4.3 Deadlocks

4.3 Deadlocks

A major problem when scheduling the operations of a cluster tool is the
occurrence of deadlocks (also known as mutual blocking). Coffman et al.
(1971) identified four necessary conditions for a deadlock situation:

• Each resource (in the case of cluster tools: chamber or handler) can
only be used by a single process (wafer) at a given time.

• While using a resource, a process can require additional resources
(e.g., after being processed in a process chamber, a wafer waits for
the handler to be picked up).

• Processes can not be forced to release a resource.

• There exists a closed chain of two or more resources, that currently
are occupied by wafers and the respective wafers are waiting for
the next resource in the chain.

Concerning cluster tools, the first three requirements obviously are sat-
isfied. The fourth condition will be satisfied for some combinations of
wafers, or recipes, while for other recipes, no deadlock is possible because
condition four will never occur. Figure 4.3 shows a scenario where two
wafers block each other.

Wafer 1 has to be processed in Chamber 1 for three time units, and
then in Chamber 2 for one time unit. Wafer 2, after being processed for
two time units in Chamber 3 and then for two time units in Chamber 2,
has to be processed in Chamber 1 for two time units. As can be seen from
Figure 4.3, the cluster tool is in a deadlock after four time units, since
Wafer 1 can not be transferred into Chamber 2 and Wafer 2 can not be
transferred into Chamber 1.

4.3.1 Deadlock Detection

Even though it might be easy for the human eye to detect that a system is
in a deadlock situation, in a lot of scenarios the presence of a deadlock is

75

4 Scheduling of Cluster Tool Activities

Figure 4.3: Simple Deadlock Situation

not trivial to detect by an algorithm.
Schruben (1999) solves the task of deadlock detection by comparing

the simulated time needed to process a set of wafers in parallel to the
simulated time necessary to process each of the wafers sequentially. If the
completion time in parallel mode is longer than in sequential mode, it
is supposed that the system is in a deadlock state. When using this ap-
proach, significant computational effort is necessary to detect a deadlock.

More efficient approaches continually monitor the system state and de-
tect blocking situations using, for example, graph–theoretic algorithms.
The approach presented in (Deuermeyer et al. 1997) is based on dynamic
entity–resource graphs as proposed by Holt (1972). These directed graphs
display the dependencies between resources and processes at a given mo-
ment. In the context of cluster tools, the nodes of a graph represent re-
sources and wafers currently in process. An edge leading from a wafer
to a resource means that the wafer is waiting for the resource to become
available. An edge leading from a resource to a wafer means that the re-

76

4.3 Deadlocks

source is currently occupied by the wafer. Graphs containing at least one
strongly connected component with no edge leading out of the compo-
nent are in deadlock state. Figure 4.4 displays the deadlock–situation of
Figure 4.3 as an entity–resource graph. C1 to C3 denote Chamber 1 to
Chamber 3, respectively.

Figure 4.4: Dynamic Entity–Resource Graph

4.3.2 Deadlock Resolution

To resolve a deadlock situation, the request for a resource of one of the
wafers leading to the deadlock has to be delayed. Schruben (1999) imple-
ments this approach by restarting the simulation after detecting a dead-
lock. The release of the wafer causing the deadlock into the cluster tool
is delayed until after the time when the deadlock occurred in the original
setting. Since the simulation has to be restarted completely, this method
is rather inefficient.

Deuermeyer et al. (1997) propose to remove one of the wafers from
the system. This could be done, for example, by placing this wafer back
into the load lock, hence releasing a blocked resource. Choosing the wafer

77

4 Scheduling of Cluster Tool Activities

that leads to the optimal resolution of the deadlock situation is an NP–
complete problem, cf. (Leung and Lai 1979). Therefore, Schruben (1999)
proposes to use heuristics for choosing the right wafer. For example, the
last wafer that has been taken from the load lock, or the wafer with the
least remaining processing time can be chosen.

Both approaches are rather myopic, because by avoiding only the cur-
rent deadlock situation, it is not guaranteed that a similar situation will
not occur with another wafer. Due to the often cyclical structure of the
cluster tool schedules, it is quite likely that another deadlock will oc-
cur. Furthermore, it is questionable whether the approaches can be im-
plemented in a cluster tool, since process time constraints often do not
allow to delay the processing of wafers.

4.3.3 Deadlock Avoidance

One way of preventing the occurrence of deadlocks is to reduce the num-
ber of jobs released into the system, such that a deadlock is not possi-
ble, independent on how the schedule for that system is derived, cf. (Wu
1999).

This approach offers flexibility in choosing the scheduling strategy and
therefore allows one to use the strategy delivering the best performance.
On the other hand, when the number of wafers in the cluster tool is lim-
ited, it is not possible to avoid starvation, i.e., the waiting of resources for
new jobs to arrive. As a consequence, the productivity of the cluster tool
is reduced and cycle times increase. Furthermore, blocking can still occur
when a machine finishes a job and can not be unloaded because there is
no buffer space.

Wu and Zhou (2001) propose an approach for Automated Manufactur-
ing Systems based on Petri Nets that avoids deadlocks and reduces star-
vation and blocking. They improve the so called Maximally Permissive
Policy by introducing a policy that is slightly more restrictive. As men-
tioned already, by reducing the number of wafers that are allowed to be
processed in the cluster tool in parallel, the utilization of the cluster tool

78

4.4 Scheduling Approaches Implemented in CluSim

is reduced and therefore this approach has significant negative impact on
the tool performance.

A more restrictive approach can be denoted as batching and is pre-
sented in (Bodner and McGinnis 1997). The authors propose to decom-
pose the mix of wafer types to remove potential conflicts by separating
wafer types with recipes that might lead to deadlocks and by separating
recipes with re–entrant flows (i.e., flows where a wafer will be processed
in the same chamber more than once) into different production runs. Since
this approach can lead to a significant constraint on the combination of
lots for parallel processing and also to a reduction of cluster tool perfor-
mance, it seems less applicable.

4.4 Scheduling Approaches Implemented

in CluSim

In the previous sections, several approaches of scheduling cluster tool
operations have been presented. In order to implement the simulation
model introduced in Chapter 3, some of these approaches were chosen
for implementation. The goal was to develop a simulation model that pro-
vides a high degree of flexibility: the user should be able to easily model
different cluster tool layouts, a great variety of recipes, handler types, etc.
Therefore, most of the presented approaches could not be chosen for ap-
plication in the simulation model, since they are too restrictive in their
modeling assumptions. Many of the algorithms provide useful results
only if the solution space is of limited size. If the number of resources,
jobs, and job types is increased, the explosion of solution space leads to
computation times that exceed the computational resources available in
common manufacturing environments.

Algorithms for generating cyclic schedules, like the approaches used
in Hoist Scheduling, might provide good schedules in steady state condi-
tions. However, in the context of cluster tools, the time periods when the
tool is in steady state are very short, because, for example, the operation

79

4 Scheduling of Cluster Tool Activities

of a cluster tool in parallel mode with different wafer recipes prohibits
maintaining a steady state for long periods.

Another deficit of many of the presented algorithms is that they do not
consider anticipatory moves. It is not possible to move an idle handler to
a position where it can pick up the wafer that finishes processing next.

Therefore, only two different approaches were implemented in CluSim.
These approaches will be introduced later in this section. First, we will in-
troduce the performance criteria that were used to assess the performance
of these approaches.

4.4.1 Objective Functions

When faced with the task of choosing an appropriate objective function to
evaluate different scheduling strategies, at least two contradictory aspects
of optimization have to be considered.

• On the one hand, the goal is to optimally utilize the expensive clus-
ter tool, and therefore to reach a high throughput.

• On the other hand, it is necessary to assure the in–time production
of the ordered wafers. To avoid long waiting times, the utilization
of the cluster tool resources should be kept low.

Three objective functions will now be introduced, each with a different
weighting of these two goals. They will be used in the following sections
to compare the implemented scheduling strategies.

Objective Function 1: Average Flow Factor of Wafers

If we choose the average flow factor of wafers as the objective function,
the goal can be defined as follows:

min

(
1

nW

nW∑
i=1

CTWi

RPTWi

)
, (4.1)

80

4.4 Scheduling Approaches Implemented in CluSim

where

• nW is the number of wafers considered,

• CTWi, i = 1, . . . , nW is the cycle time of wafer i, i.e., the time from
picking this wafer from the load lock until returning it to the load
lock, and

• RPTWi, i = 1, . . . , nW is the raw process time of wafer i.

Objective Function 2: Average Chamber Utilization

If the goal is to reach a high utilization of the process chambers, a possible
formulation of the respective objective function is:

max

(
1

nC

nC∑
i=1

ρCi

)
. (4.2)

In this equation,

• nC is the number of process chambers, and

• ρCi , i = 1, . . . , nC is the utilization of process chamber i.

Objective Function 3: Wafer Throughput

When using the following objective function, the focus is on achieving a
relatively small equivalent raw process time:

max

(
1

GPT

nW∑
i=1

RPTWi

)
, (4.3)

where GPT is the global process time or makespan of all nW wafers.

81

4 Scheduling of Cluster Tool Activities

It is obvious that objective function 1 is more oriented towards assuring
the timely completion of wafers or lots, whereas objective functions 2 and
3 aim at a high productivity of the cluster tool.

Of course, in reality, these objective functions will in most of the cases
be combined with each other, or with other objectives, like on–time deliv-
ery. Furthermore, it will be necessary to associate different weights to the
different objectives. These weights are subject to change over time, e.g.,
when a certain product type has to be finished in short time.

4.4.2 Exhaustive Search

The first of the implemented scheduling approaches is called Exhaus-
tiveSearch scheduler.

Application

The ExhaustiveSearch scheduler finds the optimal schedule by browsing
the whole search space of possible schedules. Optimality is defined by the
choice of one of the objective functions presented in the previous section.
This scheduling mechanism is not intended for use in a real cluster tool,
since the search for the optimal schedule is computational very expensive.
It is rather used for generating the optimal schedule in order to have a
benchmark for other heuristic scheduling approaches and to gain insight
into the generation of optimal schedules.

Algorithm

The ExhaustiveSearch scheduler uses the current system state of the clus-
ter tool as the starting point. In this context, the system state is defined by
the set of wafers available for processing and the wafers’ location, as well
as the availability of the resources. The algorithm generates a search tree
of possible schedules using breadth–first–search.

The nodes of the search tree represent handler moves and are divided
into loading (picking up the wafer from the current position and putting

82

4.4 Scheduling Approaches Implemented in CluSim

it into a chamber) and unloading operations (positioning the handler in
front of a chamber and removing the wafer from the chamber). A path
leading from the root of the tree to one of the leaves describes the schedule
for the handlers and therefore of the cluster tool.

Figure 4.5 illustrates the generation of the search tree for a cluster tool
consisting of a load lock, three chambers, and one robot. We assume that
a lot of three wafers is loaded into the load lock. Each wafer has to be
processed in either Chamber 1 or Chamber 2, and then in Chamber 3. For
sake of simplicity, the nodes of the search tree represent the number of
wafers in the load lock resp. in the chambers, after the robot move has
been executed. For example, ”<2 0 0 1>” means ”two wafers in the load
lock, one wafer in Chamber 3”.

A node of the search tree is expanded using a method that generates
all applicable continuations of that node. A feasible action is executed as
soon as possible, leading to active schedules, cf. Section 4.1.3.

Pruning the Search Tree

If the generation of new search paths is not restricted, the search tree
grows exponentially with the depth of the tree, leading to an explosive
growth of the run–time of that algorithm, even for relatively simple mod-
els. By detecting transient and non–active parts of a schedule and avoid-
ing the generation of sub–optimal paths, the search space can be reduced.

Detecting the Fundamental Period

Detecting the fundamental period in the search tree is an important means
to exclude redundant or sub–optimal schedules from the search tree. The
goal is to cyclically repeat the steady–state part of a schedule.

The implemented approach makes use of the fact that the cluster tool
has reached a steady state if a series of handler moves is repeated, but no
resource is continually occupied during the time period of that series. The
Fundamental Period is then defined by that series of moves and can be

83

4 Scheduling of Cluster Tool Activities

Figure 4.5: Partial Search Tree

repeated until no more unprocessed wafers are available and the cluster
tool changes to completion phase.

It has to be noted, however, that in certain cases the continuation of a
Fundamental Period is not the optimal solution. An example is given in
Figure 4.6. It can be seen that using the schedule [b] leads to a cycle time
that is 25 percent smaller than the cycle time of schedule [a].

In this example, wafers of type 1 are processed for one time unit in
Chamber 1, Chamber 2 and again in Chamber 1. Type–2–wafers are pro-

84

4.4 Scheduling Approaches Implemented in CluSim

Figure 4.6: Effect of Continuing Fundamental Period

cessed in Chamber 2, Chamber 3, and Chamber 2 for 1 time unit. Finally,
wafers of type 3 have a processing time of 1 time unit in Chamber 3,
Chamber 1 and Chamber 3.

To achieve schedule [b], significant computational overhead is neces-
sary, because the state evolution of the cluster tool has to be stored. There-
fore, this modified approach has not been implemented.

85

4 Scheduling of Cluster Tool Activities

Detecting Non–Active Paths

To avoid generating sub–optimal schedules, it is important to detect han-
dler moves leading to non–active schedules. Non–active schedules occur
if a handler move is already part of another schedule, but in this sched-
ule it appears at an earlier point in time. The Gantt chart in Figure 4.7[a]
represents an active schedule. Chart [b] contains the same moves, but par-
tially scheduled at a later time. Therefore, the corresponding schedule is
non–active and does not need to be examined further.

Figure 4.7: Active [a] and Non–Active [b] Schedules

Excluding Schedules with Deadlocks

Obviously, schedules leading to a deadlock situation can also be excluded
from the search tree. Since it can be assumed that for each search path
leading to a deadlock situation there exists at least one path without dead-
locks, we did not attempt to resolve deadlock situations in the Exhaus-
tiveSearch scheduler.

4.4.3 The Heuristic StepByStep Scheduler

Application

The StepByStep scheduler aims at generating small schedules, containing
only a few robot moves. These sequences are generated by using dispatch

86

4.4 Scheduling Approaches Implemented in CluSim

rules. This keeps the computational complexity low and facilitates the use
of this scheduler in real cluster tools.

Controlling a cluster tool using dispatch rules causes relatively my-
opic decisions, since the objective function is evaluated only for a small
number of moves, not for the whole schedule. Furthermore, deadlocks
can not be avoided when using dispatch rules. To generate more efficient
schedules, it is necessary to apply strategies that facilitate a look ahead
on future cluster tool states. One of these strategies is to place a robot that
is currently idle in front of the process chamber that finishes processing
next (Fetch Wafer Look Ahead), or to initiate the transport of a wafer to a
process chamber that can be unloaded by another robot (Put Wafer Look
Ahead). For the StepByStep Scheduler, several versions of Fetch Wafer
Look Ahead have been implemented.

Algorithm

The algorithm used by the StepByStep scheduler that is run when a new
robot move is generated can be described with the following rules. The
scheduler will generate a new move according to the first of the following
rules that applies:

1. Generate a move that transports the wafer currently on the robot to
its destination. This situation can occur for example when a process
chamber has failed and now returns to state ”up”.

2. If a wafer has been stored into a load lock or process chamber in
order to resolve a deadlock situation, generate a move that returns
the wafer into the process sequence.

3. Move a wafer waiting in a process chamber to be picked up.

4. Generate a move that takes an unprocessed wafer waiting in one of
the load locks. Try to balance the recipe mix in case of a cluster tool
with more than one load lock by alternating the load lock to pick
from.

87

4 Scheduling of Cluster Tool Activities

5. If a look ahead strategy is used, place the robot in front of the pro-
cess chamber that will finish processing next.

Whenever a rule applies for more than one wafer, the scheduler picks
a wafer according to one of the dispatch rules described in the following
paragraph.

Implemented Dispatch Rules

Different dispatch rules for choosing the next wafer for transportation
have been implemented in the StepByStep Scheduler. To avoid the star-
vation of wafers of a certain recipe, dispatch rules like Shortest Process
Time First (SPTF) have not been considered.

• Least Work Remaining (LWKR)

This anticipatory and dynamic rule chooses the wafer with the
smallest remaining processing time. The goal is to minimize the
flow factor of wafers.

• Fewest Remaining Operations (FRO) in Combination with LWKR

Another anticipatory and dynamic rule similar to LWKR, FRO also
tries to minimize the flow factor of wafers. In this case, the wafer
with the smallest number of remaining recipe steps is chosen. If
there is a draw situation between different wafers, the LWKR rule
is applied.

• First Come First Serve (FCFS)

First Come First Serve is commonly applied in queuing systems.
The wafer that spent the longest time waiting in a chamber is cho-
sen. The goal is minimizing the maximal waiting time of wafers.

• First Arrival in Shop (FAS)

FAS is a dynamic rule that causes a behavior similar to LWKR. The
goal is to expedite the processing of the wafer that spent the longest
time in the cluster tool.

88

4.4 Scheduling Approaches Implemented in CluSim

• Service in Random Order (SIRO)

This rule is only intended for benchmarking purposes. It randomly
selects one wafer of the set of available wafers for processing.

The presented rules have been tested in a simulation experiment with
the cluster tool depicted in Figure 3.4. The model parameters are specified
in Appendix B, the simulation results for the different objective functions
are presented in Table 4.1. The simulation was run five times, each time
for 200,000 seconds. The resulting performance characteristics were iden-
tical in all runs, because the simulation model contains no random ele-
ments. To estimate the influence of the dispatch rule on the computational
complexity of the simulation, the average run time of the five simulation
runs was computed.

Avg. Avg. Flow Fac- Avg. Wafer
Run Time tor of Wafers Chamber Util. Throughput

Strategy (sec) (Obj. Fct. 1) (Obj. Fct. 2) (Obj. Fct. 3)
LWKR 152.4 1.41 0.217 7.33
FRO – LWKR 152.7 1.41 0.217 7.33
FCFS 152.4 1.47 0.204 6.88
FAS 136.6 1.50 0.203 6.81
SIRO 142.2 1.43 0.211 7.11

Table 4.1: Comparison of Different Dispatch Rules

The differences of the performance values for different objective func-
tions are relatively small. We expected this result, because only a part of
the scheduling decisions is made by the dispatch rules. Other decisions
are independent of the choice of the dispatch rule. For example, if there
are two lots with wafers of different recipes loaded, in all simulation runs
the scheduler tries to give equal priority to the two recipes, i.e., over a
given period of time, the number of wafers of the two recipes that are
processed should be equal.

The rules FCFS and FAS seem to have a negative impact on the cluster
tool productivity. On the other hand, LWKR and FRO–LWKR work well
in the presented model. If the processing times of the individual recipe

89

4 Scheduling of Cluster Tool Activities

steps differ only slightly, the behavior under LWKR and FRO–LWKR is
rather similar.

Implemented Look Ahead Strategies

Three different types of strategies for wafer fetching have been imple-
mented in the StepByStep scheduler.

• NoLookahead: Handler moves are started only if the destination
resources are not busy.

• FixedLookahead: An idle handler is placed in front of a processing
chamber as soon as processing has started.

• TemptativeLookahead: Similar to FixedLookahead. However, if
the handler has been placed in front of a busy process chamber,
the decision to fetch the wafer in that chamber can be revised if it is
more appropriate according to the chosen dispatch rule.

None of the presented alternatives is better than the others in all cases.
For all strategies, it is possible to generate cluster tool configurations that
lead to the best results under the respective strategy.

Table 4.2 displays the performance characteristics under the different
look ahead strategies. Again, the simulated time was 200,000 seconds, the
run time is the average of five runs. The dispatch rule applied was Fewest
Remaining Operations (FRO) in combination with LWKR.

Avg. Avg. Flow Fac- Avg. Wafer
Run Time tor of Wafers Chamber Util. Throughput

Strategy (sec) (Obj. Fct. 1) (Obj. Fct. 2) (Obj. Fct. 3)
NoLookahead 138.0 1.41 0.212 7.15
FixedLookahead 110.1 1.47 0.181 6.11
TentativeLookahead 152.4 1.41 0.217 7.33

Table 4.2: Comparison of Different Look Ahead Strategies

90

4.4 Scheduling Approaches Implemented in CluSim

Depending on the chosen look ahead strategy, the run times of the sim-
ulations differ significantly, since the number of decisions that the sched-
uler has to generate is dependent on the look ahead strategy. When using
TentativeLookahead, the run time is larger than for the other strategies,
because each scheduling decision will be revised if a process chamber fin-
ishes processing before the wafer has been fetched. For FixedLookahead,
we measured the smallest run times. The number of scheduling decisions
is reduced with this strategy because when a chamber finishes process-
ing, a handler is waiting in front of the chamber already to pick up the
finished wafer and so no scheduling decision is required.

Handling Deadlocks

When using dispatch rules for scheduling a flow shop, deadlock situ-
ations can occur. Therefore, a simple deadlock detection and recovery
mechanism has been implemented in the StepByStep scheduler.

If all of the following conditions apply during simulation, the cluster
tool model is in deadlock:

• There are partially processed wafers in the process chambers or on
the handlers.

• No handler is active.

• If a look ahead strategy is applied, all processing in chambers is
finished.

• No wafer transportation is possible.

Obviously this mechanism can only detect deadlocks when they have
occurred already. It is not possible to avoid a deadlock situation.

To recover from the deadlock situation, the wafer with the longest wait-
ing time is placed back into the load lock. This approach increases the time
the wafer spends in the system and, therefore, violations of residency time
constraints or inter–process time constraints can occur. Furthermore, the

91

4 Scheduling of Cluster Tool Activities

recovery approach is also myopic, since a similar deadlock situation can
occur shortly after the recovery.

The effects of deadlocks have been investigated using the cluster tool
model in Appendix B. To this end, process steps two and three in recipe
number three have been switched in order, so that deadlock situation can
occur theoretically. Table 4.3 illustrates the impact of deadlocks on perfor-
mance for a simulation time of 200,000 seconds.

Avg. Avg. Avg. Wafer
Run No. of Flow Factor Chamber Through-
Time Dead- of Wafers Util. put

Model (sec) locks (Obj. Fct. 1) (Obj. Fct. 2) (Obj. Fct. 3)
Original 152.4 0 1.41 0.217 7.33
Step 2 and 3 Switched 141.4 116 1.45 0.203 7.15

Table 4.3: Performance Loss Caused by Deadlocks

Optimizing the Scheduler

The deadlock detection can be performed more efficiently than with
the presented approach. Using an entity–resource graph as proposed by
Deuermeyer et al. (1997) seems to be an efficient alternative.

Another extension of the scheduler is to also implement a put wafer
look ahead, similar to the fetch wafer look ahead.

4.5 Discussion

To provide a general algorithm that can guarantee to solve the cluster
tool scheduling problem optimally seems to be impossible. Many side
constraints occur in the manufacturing environment, and a high degree
of flexibility should be achieved with the implemented scheduling algo-
rithms. Therefore, most of the more complex approaches presented in
literature are not applicable, because they are either too restrictive con-
cerning the cluster tool configuration or require too much computational

92

4.5 Discussion

effort. However, if an heuristic approach is needed, both Branch–and–
Bound algorithms and dispatch rules seem to be good candidates.

93

4 Scheduling of Cluster Tool Activities

94

5 Work Load Distribution in
Pools of Cluster Tools

95

5 Work Load Distribution in Pools of Cluster Tools

As an application of the simulation model CluSim presented in Chap-
ter 3, this chapter is dedicated to an optimization problem that is derived
from an actual problem in a semiconductor manufacturing facility.

5.1 Problem Description

Consider a pool of m ≥ 1 cluster tools. The m cluster tools can be iden-
tical or of different type. Each cluster tool can have an arbitrary number
of load locks. It is assumed that the m cluster tools are initially idle and
will start processing lots simultaneously. We assume further that there is
a number of n > 1 lots available for processing. The n lots can be iden-
tical or of different types. There is no constraint concerning the recipes
according to which the wafers in the lots have to be processed, besides
the constraint that the lots can be processed on any of the m cluster tools
available in the pool.1 If a cluster tool has more than one load lock, we
assume that parallel processing of any combination of lots on this cluster
tool is possible.

The optimization problem consists of two tasks:

1. Find a partitioning of the n lots into m subsets, numbered 1, . . . , m.
A subset can be empty.

2. For each subset i, i = 1, . . . , m, find a sequence according to which
the lots in the subset will be ordered.

The optimal partitioning and sequencing solution for processing the
lots of all subsets i, i = 1, . . . , m on the respective cluster tool i in the se-
quence derived in Task 2 minimizes a given objective function. For exam-
ple, the objective can be to minimize the cycle time of the n lots. Figure 5.1
depicts the problem for m = 2 and n = 8.

The number χ of solutions in the search space of this optimization
problem is

1In an extension of this problem, this constraint has been removed, so that tool dedication
can also be modeled.

96

5.1 Problem Description

Figure 5.1: Optimization Problem

χ =
(n + m − 1)!

(m − 1)!
. (5.1)

We prove En. 5.1 by induction over the number of lots n. Assume the
number of cluster tools m ≥ 1 is arbitrary, but fixed. For n = 1 lots, En. 5.1
reduces to

97

5 Work Load Distribution in Pools of Cluster Tools

χ =
m!

(m − 1)!
= m (5.2)

which obviously is true, since the single lot can be processed on any of
the m cluster tools.

Assume now that En. 5.1 is correct for a given n > 1. If we consider
a valid solution of assigning n lots (of which there exist (n+m−1)!

(m−1)!
many

according to our assumption), an additional lot can be inserted into the
solution in the following ways. It either is processed immediately after
lot i, i = 1, . . . , n on the same cluster tool on which lot i is processed, or it
is processed as the first lot on any of the m cluster tools. Therefore, n + m

possibilities exist of inserting the (n + 1)st lot into the existing solution,
which leads to

χ =
(n + m − 1)!

(m − 1)!
(n + m)

=
(n + m)!

(m − 1)!
, (5.3)

and finishes the proof.
It is obvious, that even for small instances of m and n, the search space

of our optimization problem becomes very large. For example, for n =

8 lots and m = 2 cluster tools, there are χ = 362, 880 possibilities of
processing the lots on the cluster tools. Exhaustive search of the solution
space is not efficient, if at all possible. It is also questionable whether a
human ”expert”is able to find the optimal solution, or even a solution
that is close to the optimum, just by inspection.

The problem of scheduling n jobs on m parallel machines, where the
processing times pij of job j on machine i is known, in order to minimize
the makespan is NP–hard, i.e., no algorithm is known that solves this
problem in polynomial time, cf. (Pinedo 2002). Since, in the problem we
consider, parallel processing of jobs on one machine influences the pro-
cessing time pij of that job, we can not assume that a polynomial–time

98

5.2 Genetic Algorithms

algorithm exists to exactly solve the problem. Therefore, approximation
algorithms and heuristics have to be applied.

In the following sections, an approach to this problem is presented. The
approach is based on Genetic Algorithms, as they were introduced by
John Holland and his colleagues at the University of Michigan, cf. (Hol-
land 1992).

5.2 Genetic Algorithms

5.2.1 The Basic Idea

The basic idea of a Genetic Algorithm is to imitate evolutionary processes:
The best individuals in a population survive and reproduce to pass on
their genetic material to the next generation.

The goal is to simulate this evolutionary process by modeling the in-
dividuals or chromosomes as possible solutions to a given problem. The
higher the fitness of an individual in terms of solving the problem, the
higher the likelihood of the individual to be present in future generations.

In the most basic implementations of Genetic Algorithms, the solutions
are encoded as strings of bits, cf. (Goldberg 1989). More advanced im-
plementations of Genetic Algorithms use solutions that are encoded as
strings of integers, characters, or more complex structures.

Roughly speaking, a Genetic Algorithm consists of three elements: A
data structure to represent the chromosomes (e.g., strings of bits), opera-
tors on this data structure that allow the Genetic Algorithm to create new
solutions, and an objective function to evaluate the fitness of a chromo-
some.

Genetic Algorithms have recently been applied for scheduling prob-
lems in general and in the area of semiconductor manufacturing. In (Bier-
wirth et al. 1995), an application of Genetic Algorithms to the determin-
istic job shop scheduling problem is presented, i.e., the jobs are released
into the shop at predetermined points in time. The approach is extended

99

5 Work Load Distribution in Pools of Cluster Tools

to also handle non–deterministic job shops, where the release of jobs oc-
curs at random points in time.

Yamada and Nakano (1995) introduce a new operator, called multi–
step crossover and apply this operator to solve the job shop scheduling
problem using a Genetic Algorithm. Utilizing the neighborhood struc-
ture of two parents p1 and p2, new solutions are successively generated
by gradually adapting the characteristics of p1 to those of p2 instead of
combining the characteristics of the parents. In preliminary experiments,
they showed that the approach is at least comparable in performance to a
Simulated Annealing approach.

Chen et al. (2001) use a Petri Net model of a semiconductor manufac-
turing system to model work in progress and machine status. A Genetic
Algorithm is used to search for solutions to the scheduling problem. The
solution found by the Genetic Algorithm is fed into a Petri–Net–based
schedule builder to generate a near–optimal schedule.

5.2.2 Outline of the Basic Genetic Algorithm

In the context of solving optimization problems using Genetic Algo-
rithms, the search space consists of so–called phenotypes or individuals.
If, for example, the optimization problem is to minimize the makespan of
a job shop, the phenotypes are production schedules, telling which job to
process at what time on which machine.

Associated with each phenotype is a certain level of fitness. To deter-
mine the fitness, an objective function is defined. In our context, the ob-
jective function can be defined, for example, via the makespan that can be
derived by simulation for a specific production schedule. The smaller the
makespan, the higher the fitness of the individual.

To model the population of individuals on a computer, a coding
scheme has to be developed that transfers those properties of individu-
als that are relevant for the optimization problem into a set of properties
or parameters called the genotype. A specific instance of parameters is
called a chromosome and a set of chromosomes is called a population.

100

5.2 Genetic Algorithms

Starting with a population of randomly created chromosomes, the Ge-
netic Algorithm repeatedly creates new generations by selecting the chro-
mosomes with the highest fitness from the existing population. By re–
combining or mating these chromosomes, new chromosomes are gener-
ated that combine the properties of the parents. Random mutations of the
genetic material create new chromosomes that possibly solve the objec-
tive better.

Different versions of Genetic Algorithms are described in literature.
One possible implementation of a basic version of a Genetic Algorithm
is presented in pseudo–code in Algorithm 1 and visualized in Figure 5.2.

Algorithm 1 Basic Genetic Algorithm
generate random population of s chromosomes
repeat

evaluate the fitness f(x) of each chromosome x in the population
repeat

- with probability pSelection select a chromosome with high fitness
from the current generation and insert it into the new population
- with probability pCrossover select two parent chromosomes from
the current population according to their fitness (the better the fit-
ness, the higher the chance to be selected). Mate the parents to form
two new chromosomes, containing a re–combination of the genetic
material of the parents. Insert the offspring into the new popula-
tion.
- with probability pMutation mutate a chromosome in the new pop-
ulation by randomly selecting a parameter and modifying it.

until (new population has size s)
until (end condition is satisfied, e.g., a certain fitness level is reached
by at least one chromosome in the current population)
return the best solution of the current population

The parameters s, pSelection, pCrossover , and pMutation have to be
adopted to the specific optimization problem. If the parameters were

101

5 Work Load Distribution in Pools of Cluster Tools

Figure 5.2: Visualization of Genetic Algorithm

chosen correctly, the algorithm will hopefully converge to an optimal or
nearly–optimal solution. Genetic Algorithms usually are relatively robust
concerning the parameter setting, so for a broad range of parameters the
algorithm will produce satisfactory results.

Crossover

The crossover operation uses two chromosomes of a population to gen-
erate two new individuals. In its simplest form, the one–point crossover,
both chromosomes are cut at the same position, see Figure 5.3. Now the
tails of the two chromosomes are exchanged and are concatenated again.
Hence, two strings of equal length are generated with new properties,
combining properties of the parents.

102

5.2 Genetic Algorithms

Figure 5.3: Crossover Operation

Mutation

The mutation operation simply chooses a position in the chromosomes
and modifies the value at that position, see Figure 5.4. The aim is to in-
troduce random modifications into the pool of solutions in order to avoid
that the search for a solution stops with a suboptimal solution.

Convergence of the Genetic Algorithm

As a stopping criterion of the Genetic Algorithm, different measures can
be used. Possible criteria are

103

5 Work Load Distribution in Pools of Cluster Tools

Figure 5.4: Mutation Operation

• Number of newly generated populations
This criterion is especially useful during the parameterization of
the Genetic Algorithm, when it is not known yet how long it takes
for the algorithm to converge to a solution.

• Convergence of the population
According to Beasley et al. (1993), the ”population is said to have
converged when all of the genes have converged.”A gene (or pa-
rameter) has converged, if, for example, 95% of the chromosomes
in the population share the same value of the parameter.

• A solution with the desired level of fitness has been found
This criterion can only be applied if it is known that there exist
solutions with at least the desired level of fitness.

If the number of generations is chosen large enough, the algorithm
will eventually converge to a near–optimal or optimal solution, because
only the best chromosomes are chosen for reproduction. Furthermore, ex-
changing parts from promising chromosomes often leads to even better
solutions after the crossover operation, and the random element of mu-
tation provides a small number of fresh strings in each generation. Con-
vergence of the algorithm to the global optimum can not be guaranteed,
however. Therefore, several methods have been presented that avoid pre-
mature convergence to local optima, cf. (Goldberg 1989).

104

5.2 Genetic Algorithms

Properties of Genetic Algorithms

As already mentioned, Genetic Algorithms have been applied success-
fully to a variety of optimization problems. This can be explained with
the following properties:

• Robustness
Genetic Algorithms can be applied to a broad range of problems
and will generate optimal or nearly optimal solutions, independent
of the topology of the solution space.

• Transparency
Using simple standard implementations of the crossover and mu-
tation operation, it is possible to apply a Genetic Algorithm to a
optimization problem without having to know many details about
the actual problem structure.

• Simple Operators
The operations necessary to run a Genetic Algorithm generally do
not require extensive computational power.

• Arbitrary Objective Functions
The objective function can be chosen virtually arbitrarily. It is not
necessary that derivatives of the objective function exist, and be-
sides the definition, further information on the objective function is
not required.

• Reduced probability to get stuck in local optima
Since the mutation operation introduces a random element into the
search for the optimum, new areas of the search space will be dis-
covered. Therefore, it is unlikely that the search will stop in the
neighborhood of a local minimum.

• Anytime algorithm
Genetic Algorithms can be considered as an anytime algorithm. If
the algorithm is stopped at an arbitrary point in time, it is possible

105

5 Work Load Distribution in Pools of Cluster Tools

to return the best solution from the current population. Even if this
solution might not be optimal, it still provides a feasible solution if
it is needed urgently.

On the other hand, if an efficient algorithm is required, several aspects
of the implementation of the Genetic Algorithm require specific atten-
tion. A coding scheme of the parameters has to be found that will lead
to an efficient representation of the search space. Usually, the operations
crossover and mutation have to be adapted to the specific problem so that
the newly generated chromosomes are likely to have higher fitness than
their predecessors.

Since there exist no rules about how to choose the parameters for a
given optimization problem or for a given topology of the solution space,
one has to experiment with the parameters like population size or prob-
abilities for crossover and mutation if the convergence speed of the algo-
rithm has to be improved. Finally, in some cases a large number of chro-
mosomes has to be generated to find the optimum. Therefore, Genetic
Algorithms are often combined with other optimization techniques, like
Local Search.

5.3 Implementation of the Optimization

Approach

To apply the Genetic Algorithm to the optimization problem presented
above, we used the programming library ”GAlib”(Wall 1995). Since GAlib
is written in C++, it could be easily integrated into the existing simula-
tion tool CluSim, cf. (Dümmler 1999).

In this application of Genetic Algorithms, the chromosomes of the Ge-
netic Algorithm are represented as follows. If n lots, numbered 1, . . . , n,
have to be scheduled on m cluster tools, numbered 1, . . . , m, a chromo-
some consists of a list of integer numbers lk ∈ {1, . . . , n}, k = 1, . . . , n

and an array of integer numbers ak ∈ {1, . . . , m}, k = 1, . . . , n. The list lk

106

5.3 Implementation of the Optimization Approach

represents the processing sequence of the lots and the array entries ak de-
note the cluster tool on which lot k is scheduled for processing. A sample
coding for n = 8 and m = 2 is presented in Figure 5.5.

Figure 5.5: Coding Scheme for GA

Each chromosome in the initial population is generated by putting the
n lots in a random order and randomly assigning a cluster tool to each of
the lots.

The default operators on lists and arrays that are implemented and
documented in the GAlib library to generate new chromosomes were
applied after some modification. The modifications of the crossover and
mutation operation were necessary in order to create consistent chromo-
somes.

To make sure that a crossover operation does not modify the set of
lots encoded in the chromosomes, the following implementation is used.
Firstly, lot–cluster tool pairs that appear in both parent chromosomes are
identified and copied into the child chromosome. Then, the child lot is
filled with the remaining lot–cluster tool pairs of the first parent. Fig-
ure 5.6 depicts the two steps of the formation of one child chromosome.
The second child lot is generated in an analogous way by copying the

107

5 Work Load Distribution in Pools of Cluster Tools

remaining lot–cluster tool pairs of the second parent chromosome.

Figure 5.6: Implementation of the Crossover Operation

For the mutation operation, one has to distinguish whether it is applied
to a position in the list of lots or to a position in the array of cluster tools.
For the list of lots, a mutation is performed by switching the position of
two genes, i.e., by switching the processing sequence of two lots. If ap-
plied to the array of cluster tools, a mutation is simply done by choosing
another cluster tool for processing the respective lot.

As the objective function, the time required for processing all lots
according to the sequence that the Genetic Algorithm suggests, the
makespan, is used. This time is derived using the simulation model of
the cluster tools. Each cluster tool is simulated in isolation, and the max-

108

5.4 Case Studies

imum of the makespans of the different cluster tools is used as the objec-
tive value. The Genetic Algorithm uses this objective value to evaluate a
chromosome and to decide whether it is ”fit”enough to survive and re-
produce. In order to avoid simulating the same schedule repeatedly and
to speed up the optimization process, simulation results for a given sched-
ule on a specific cluster tool are stored in an array.

5.4 Case Studies

The combination of a simulation model of cluster tools and a Genetic Al-
gorithm was applied in two studies. The problem for the first case study
is of a rather limited size, so it is possible to find the optimal solution by
enumeration and the performance of the Genetic Algorithm can be eval-
uated. The second case study presents a more realistic problem size and
therefore is able to prove the applicability of the presented approach in
an actual semiconductor manufacturing environment.

5.4.1 Case Study 1

The cluster tool model under investigation in the first case study is de-
picted in Figure 5.7. It consists of two mainframes to which the individ-
ual processing chambers are attached. Transportation of wafers in the up-
per module is performed by the transfer robot, in the lower module the
wafers are transported by the buffer robot. There are two load locks that
allow to load lots into the cluster tool independently. Wafers from both
load locks can be processed in parallel.

The model parameters are as follows. For both robots, we assume that
it takes 20 seconds to move a wafer from any position (chamber or load
lock) to another. Without transporting a wafer, it takes the robots one sec-
ond to move from one position to another. Pump and vent times for the
load locks are zero, since they were not considered in our case study. We
assume that lots of one recipe can be distinguished from each other, for
example by an unique ID number.

109

5 Work Load Distribution in Pools of Cluster Tools

Figure 5.7: Cluster Tool Model for Case Study 1

Simulation studies have been conducted for this model for 30 different
recipes. In the study presented in this monograph, we restrict the num-
ber of recipes to four. The processing times in seconds at each chamber
are listed in Table 5.1. A cell is empty if a wafer of the corresponding se-
quence does not visit the corresponding chamber. Note that in all process
sequences, process time in chamber A is zero because it is only used as a
transfer chamber to the upper main module.

Table 5.1: Recipes for Case Study 1

Chamber E|F C D A 1 2 4 B

Recipe 1 80 60 40 0 70 40 30
Recipe 2 60 0 70 30
Recipe 3 80 60 40 0 90 30
Recipe 4 0 80 30

110

5.4 Case Studies

Test Scenario 1

Three problem instances have been used to test the Genetic Algorithm.
In the first problem instance, four lots, one of each recipe, have to be se-
quenced for processing at a single cluster tool. The optimal sequence can
be found in this case by simulating all 4! = 24 lot sequences. The opti-
mal sequence has a makespan of 10031 seconds. The Genetic Algorithm
was run five times for this problem, each time with a different randomly
generated initial population. The respective parameters can be found in
Table 5.2.

Table 5.2: Parameters for Test Scenario 1
Population size 5
Number of generations 5
Probability of crossover 0.6
Probability of mutation 0.1
Number of replacements 2

The results are displayed in Table 5.3. For each of the five test runs, the
best lot sequence that the Genetic Algorithm found is displayed. In the
following columns, the makespan for the best sequence, the number of
sequences tested to find the best sequence, and the total run time of the
algorithm are given.

The Genetic Algorithm found the optimal sequence in one of the five
runs, the results for the other runs differed not more than one percent
from the shortest makespan. However, instead of testing all 24 sequences,
the algorithm needed to test only 14 sequences to find the optimal solu-
tion.

Test Scenario 2

In the second problem instance, two lots of each recipe, eight lots in to-
tal, are sequenced for processing on one cluster tool. The parameters are
given in Table 5.4.

111

5 Work Load Distribution in Pools of Cluster Tools

Table 5.3: Results for Test Scenario 1
Best Sequen- Run
Lot Make- ces Time

Run Sequence span tested (sec.)
1 4 1 2 3 10036 13 2
2 1 4 3 2 10052 9 2
3 3 2 4 1 10031 14 2
4 2 3 4 1 10142 10 2
5 2 3 4 1 10142 14 3

Table 5.4: Parameters for Test Scenario 2 and 3
Population size 20
Number of generations 10
Probability of crossover 0.6
Probability of mutation 0.1
Number of replacements 8

Five test runs have been performed. The results are displayed in Ta-
ble 5.5. For each run, the makespan of the best sequence that the Genetic
Algorithm found is displayed. Since the search space for the optimal se-
quence consists of 40,320 possible solutions, the optimal solution can not
be found within acceptable time. Therefore, we compare the makespan of
the best sequence to the average makespan of 20 randomly generated se-
quences. The relative reduction in makespan is given in the third column.
Finally, the number of sequences generated to find the best solution and
the run time of the algorithm are displayed.

In all five runs, the Genetic Algorithm produced a sequence that lead to
more than ten percent reduction in makespan compared to the randomly
generated sequences.

112

5.4 Case Studies

Table 5.5: Results for Test Scenario 2
Best Sequen- Run

Make- % ces Time
Run span Improved tested (sec.)

1 19562 12.5 114 42
2 19840 11.3 113 41
3 19601 12.3 117 42
4 20067 10.3 105 39
5 19691 11.9 115 43

Test Scenario 3

Finally, in the third problem instance three lots of each recipe are se-
quenced for processing on two cluster tools. In this scenario, the search
space contains more than 6 billion solutions. The parameters used in this
case are the same as in Table 5.4. The results of five test runs are dis-
played in Table 5.6. Again, the improvement in makespan for the best se-
quence is compared to the average makespan of 20 randomly generated
sequences. The random sequences were generated by evenly distributing
the lots over the cluster tools.

Table 5.6: Results for Problem 3
Best Sequen- Run

Make- % ces Time
Run span Improved tested (sec.)

1 14418 10.8 111 56
2 14182 13.0 100 52
3 13979 13.7 89 43
4 14059 14.9 111 56
5 13860 14.9 118 60

113

5 Work Load Distribution in Pools of Cluster Tools

5.4.2 Case Study 2

In the second case study, we investigated a workcenter consisting of a
pool of four cluster tools of the type depicted in Figure 5.8.

Figure 5.8: Cluster Tool Model for Case Study 2

Since the parameters for this case study were taken from a real man-
ufacturing environment, historical data was available on the sequence of
lots processed on this workcenter. Hence, the results generated by the
Genetic Algorithm could be compared to the performance data of the real
workcenter.

The historical data consisted of a sequence of 4,200 lots arriving at
the workcenter within a timeframe of 20 days. Within the given time-
frame, the average number of lots available for processing, i.e., the work
in progress (WIP), was 37.

There were 23 different recipes according to which the wafers had to be
processed. Since not every cluster tool was able to perform all 23 recipes,
there was a rather high degree of dedication of recipes and cluster tools.

For our case study, we picked sequences of 40 lots from the histori-
cal data, starting with a randomly chosen lot. Then, by simulation, the
makespan for each of these sequences was computed by processing the
lots in the order given in the historical data. Finally, we compared this
makespan to the makespan that resulted from processing the lots accord-
ing to the best schedule generated by the Genetic Algorithm.

The respective makespans for five test runs are listed in Table 5.7.

114

5.5 Discussion

Table 5.7: Results for Case Study 2

Historical Run
Make- Optimization % Time

Run span Result Improved (sec.)
1 17,835 15,015 15.81 37
2 16,125 14,116 12.46 41
3 19,186 15,757 17.87 45
4 19,839 17,110 13.76 36
5 18,362 15,962 13.07 40

The problem size χ in this case study, according to En. 5.1, is approxi-
mately 4.573 × 1026.

The Genetic Algorithm produced sequences that lead to a reduction in
cycle time of at least 12 %, i.e., about 30 minutes less cycle time. Given
the small amount of run time of only a few seconds required to produce
the optimized schedule, it is obvious that using the proposed approach,
a significant improvement in cycle time can be achieved with relatively
small effort.

5.5 Discussion

The run time of the presented Genetic Algorithm is small enough to make
it useful in the actual dispatching of cluster tools. Schedules can be re–
optimized in only a few minutes if the set of lots waiting for processing
changes.

Another advantage of the Genetic Algorithm is that it is an anytime
algorithm. If a result is needed before the Genetic Algorithm has termi-
nated, the computation can be stopped and the Genetic Algorithm will
respond with the currently best solution.

The interfaces to the optimization algorithm and simulation engine are
rather simple and both programs require only data that is available in

115

5 Work Load Distribution in Pools of Cluster Tools

the manufacturing control system of the wafer fab. As a consequence, an
integration of the programs into the manufacturing control can be easily
implemented, leading to a significant performance improvement for the
cluster tool pools.

Several extensions of the presented approach are possible. As an exam-
ple, the crossover operation applied to generate new chromosomes can
be adapted better to the actual optimization problem, so that generating
schedules that apparently have a larger makespan than the existing ones
is avoided.

116

6 Concluding Remarks

117

6 Concluding Remarks

Cluster tools play an essential role in today’s semiconductor manufac-
turing environments. The proliferation of this kind of equipment both in
established 150 and 200mm wafer fabs as well as in modern 300mm fabs
gives proof to the fact that, although these tools are very capital inten-
sive and complex to handle, they are inevitable in the constant effort to
make the production of semiconductors more cost effective, to improve
the underlying production processes, to ensure on–time delivery, and to
increase the quality of the finished products.

In this monograph, first the role of cluster tools in semiconductor man-
ufacturing has been reviewed. An overview of different approaches of
modeling cluster tools was given, with a focus on performance modeling
and application in production planning. Furthermore, a generic simula-
tion model of cluster tools was introduced. Then, the problem of schedul-
ing the operations within a cluster tool was addressed and different so-
lutions to this problem were presented. Two approaches implemented in
the aforementioned generic simulation model were discussed. Finally, a
Genetic Algorithm for optimizing the production schedule in a pool of
cluster tools was introduced.

The aim of this work was to give an insight into the problems that arise
with modeling cluster tools and with controlling their operations. A liter-
ature survey of modeling and scheduling cluster tools was given to help
in further investigating into these topics. Some suggestions into which
direction this research could be heading were given.

The main contribution of this study is to show possible starting points
for the optimization of cluster tools. Two main aspects could be identified:
The optimization of the scheduling and control of the internal cluster tool
operations and the optimization of the production planning of cluster tool
pools. It was shown that applying optimization methods can lead to sig-
nificant performance improvements when using such sophisticated and
capital intensive equipment.

In this study we showed that by using simulation it is possible to build
generic cluster tool performance models that produce precise results and
have execution times that facilitate the integration of these models in ex-
isting or future planning systems for semiconductor manufacturing envi-

118

ronments. Using this approach, much more reliable predictions of cluster
tool throughput and cycle times can lead to more precise production plan-
ning.

Concerning the scheduling of cluster tool operations it is obvious that a
lot of optimization potential could be tapped if there were a closer coop-
eration between cluster tool manufacturers, end–users, and researchers.
Due to the restrictive information policy of the equipment manufactur-
ers, a lot of uncertainty exists on the end–user side concerning the actual
capability of the cluster tools and on scientific side concerning the algo-
rithms actually applied in cluster tools.

The optimization of production schedules using Genetic Algorithms
has been applied successfully in this study. It is to be expected that sim-
ilar areas of application exist in the semiconductor manufacturing envi-
ronment, e.g., in the back–end production, and in other industries as well.

119

6 Concluding Remarks

120

A Input File Grammar for
CluSim

121

A Input File Grammar for CluSim

On the following pages, the grammar for defining a cluster tool model
and the simulation parameters is presented. The input file in the follow-
ing section was generated according to this grammar.

The grammar is given in Extend Backus-Naur Form (EBNF, cf. (Wirth
1977)), i.e., all literals are written in quotation marks and symbols on the
left hand side are syntactic variables. Data types String, Float and Int are
written in capital letters. Zero (0) is the default value for all time defini-
tions, e.g., PumpTime, LoadingTime and MoveTime.

122

input file factory block clustertool block
recipe block lot block.

factory block ”Factory” STRING ”SimulationTime” number.
clustertool block clustertool sec {clustertool sec}.
clustertool sec ”ClusterTool” STRING [”NumberOfTools” INT]

sched stmnt loadlock sub chamber sub
handler sub.

interrupt sub interrupt stmnt {interrupt stmnt}.
interrupt stmnt ”NumberOfWafers”

STRING distribution distribution.
distribution number

| disttype1 ”(” number ”)”
| disttype2 ”(” number ”,” number ”)”.

disttype1 ”exp”
| ”det”.

disttype2 ”norm”
| ”unif”
| ”erl”.

loadlock sub loadlock stmnt {loadlock stmnt}.
loadlock stmnt ”LoadLock” STRING [”PumpTime” number]

[”VentTime” number] [”MoveTime” number].
chamber sub chamber stmnt {chamber stmnt}.
chamber stmnt ”Chamber”

STRING [”PreparationTime” number]
[”AdaptationTime” number] [interrupt sub].

handler sub handler stmnt {handler stmnt}.
handler stmnt ”Handler” STRING [”LoadingTime” number]

[”UnloadingTime” number] movetime spec
[interrupt sub].

movetime spec [”MoveTime” number]
| ”MoveTimeArray” ”(” matrix header ”)”
matrix body.

123

A Input File Grammar for CluSim

matrix header STRING {STRING}.
matrix body matrix line {matrix line}.
matrix line STRING matrix entry {matrix entry}.
matrix entry signed number ”/” signed number.
sched stmnt ”Scheduler” (”ExhaustiveSearch”

| ”StepByStep” [lookahead mode] [criterion type]).
lookahead mode ”NoLookAhead”

| ”FixedLookAhead”
| ”TentativeLookAhead”.

criterion type ”FIFOWaitingTime”
| ”MaxRemainingProcessTime”
| ”FIFOSystemEntering”
| ”FewestRemainingSteps”.

recipe block recipe sec {recipe sec}.
recipe sec ”Recipe” STRING step stmnt {step stmnt}.
step stmnt ”Step” STRING chamber step sub

{chamber step sub}.
chamber step sub ”ClusterTool” STRING

chamber step stmnt {chamber step stmnt}.
chamber step stmnt ”Chamber” STRING number.
lot block lot sec {lot sec}.
lot sec ”Lot” STRING

”StartRate” distribution wafer stmnt {wafer stmnt}.
wafer stmnt ”Recipe” STRING ”NumberOfWafers” INT.
number FLOAT

| INT.
signed number number

| ”-1”.

124

B Endura Model

125

B Endura Model

The following model represents an actual cluster tool type encountered
in today’s wafer fabs. It contains two identical cluster tools, each consist-
ing of two mainframes, one robot per mainframe and two chambers that
are used to pass wafers from one mainframe to the other (chambers A
and B). The cluster tool is displayed in Figure 2.9.

Factory TestFactory
SimulationTime 15000

ClusterTool XEndura
NumberOfTools 2
Scheduler StepByStep TentativeLookAhead LeastWorkRemaining
LoadLock LL1
LoadLock LL2

Chamber Chamber1
Chamber Chamber2
Chamber Chamber3
Chamber Chamber4
Chamber Chamber5
Chamber ChamberA
Chamber ChamberB
Chamber ChamberC
Chamber ChamberD
Chamber ChamberE
Chamber ChamberF
Handler HandlerA

MoveTime 1/20
Recipe Recipe1

Step Step1
ClusterTool XEndura

Chamber ChamberE 80
Chamber ChamberF 80

Step Step2
ClusterTool XEndura

Chamber ChamberC 60
Step Step3

ClusterTool XEndura
Chamber ChamberD 40

Step Step4
ClusterTool XEndura

Chamber ChamberA 0
Step Step5

ClusterTool XEndura
Chamber Chamber1 70

Step Step6
ClusterTool XEndura

126

Chamber Chamber2 40
Step Step7

ClusterTool XEndura
Chamber ChamberB 30

Recipe Recipe3
Step Step1

ClusterTool XEndura
Chamber ChamberE 80
Chamber ChamberF 80

Step Step2
ClusterTool XEndura

Chamber ChamberC 60
Step Step3

ClusterTool XEndura
Chamber ChamberD 40

Step Step4
ClusterTool XEndura

Chamber ChamberA 0
Step Step5

ClusterTool XEndura
Chamber Chamber2 90

Step Step6
ClusterTool XEndura

Chamber ChamberB 30
Recipe Recipe4

Step Step1
ClusterTool XEndura

Chamber ChamberA 0
Step Step2

ClusterTool XEndura
Chamber Chamber4 80

Step Step3
ClusterTool XEndura

Chamber ChamberB 30

Recipe Recipe2
Step Step1

ClusterTool XEndura
Chamber ChamberE 60
Chamber ChamberF 60

Step Step2
ClusterTool XEndura

Chamber ChamberA 0
Step Step3

ClusterTool XEndura
Chamber Chamber1 70

127

B Endura Model

Step Step4
ClusterTool XEndura

Chamber ChamberB 30
Lot FirstLot

StartRate 4000
Recipe Recipe1
NumberOfWafers 25

Lot SecondLot
StartRate 4000
Recipe Recipe2
NumberOfWafers 25

Lot ThirdLot
StartRate 4000
Recipe Recipe3
NumberOfWafers 25

Lot FourthLot
StartRate 4000
Recipe Recipe4
NumberOfWafers 25

128

List of Figures

1.1 Worldwide Semiconductor Market (Sources: WSTS for His-
torical Data until 2002, InStat for Forecast) 2

2.1 Production Steps (Schömig and Fowler 2000) 7
2.2 Formation of Metal Gate MOS Transistor (Zant 1996) 8
2.3 Pattern Transfer During Photolithography Step (Zant 1996) 10
2.4 Transportation of a Wafer During Processing (Atherton et

al. 1990) . 14
2.5 Deposition Cluster Tool (Brooks Automation 2002) 16
2.6 Mainframe Type 1 (Brooks Automation 2002) 19
2.7 Mainframe Type 2 (Brooks Automation 2002) 19
2.8 Simple Types of Cluster Tools 20
2.9 Cluster Tool with Two Mainframes 20
2.10 Chamber Types . 21
2.11 Process Steps and Times in a Process Chamber (Kawamura

et al. 1998) . 22
2.12 Robot Types (Brooks Automation 2002) 24

3.1 Cluster Tool Performance Modeling Approaches 31
3.2 Cluster Tool Investigated by Perkinson et al. (1994) 33
3.3 Objects in CluSim . 52
3.4 Cluster Tool Model for Study on Lot Size 58
3.5 Impact of Lot Size on Cycle Time 60

129

List of Figures

4.1 Gantt Chart . 67
4.2 Example for Active Wait . 69
4.3 Simple Deadlock Situation 76
4.4 Dynamic Entity–Resource Graph 77
4.5 Partial Search Tree . 84
4.6 Effect of Continuing Fundamental Period 85
4.7 Active [a] and Non–Active [b] Schedules 86

5.1 Optimization Problem . 97
5.2 Visualization of Genetic Algorithm 102
5.3 Crossover Operation . 103
5.4 Mutation Operation . 104
5.5 Coding Scheme for GA . 107
5.6 Implementation of the Crossover Operation 108
5.7 Cluster Tool Model for Case Study 1 110
5.8 Cluster Tool Model for Case Study 2 114

130

List of Tables

2.1 Classification of Clean Rooms (Zant 1996) 13

3.1 Weighted Configuration Matrix (Wang and Christian 1998) 38
3.2 Parameters for Cluster Tool Models 56
3.3 Analytical Results . 56
3.4 Recipe for Study on Lot Size 59
3.5 Recipes for Recipe Mix Optimization 61
3.6 Cycle Time Ratios for Combinations 61

4.1 Comparison of Different Dispatch Rules 89
4.2 Comparison of Different Look Ahead Strategies 90
4.3 Performance Loss Caused by Deadlocks 92

5.1 Recipes for Case Study 1 . 110
5.2 Parameters for Test Scenario 1 111
5.3 Results for Test Scenario 1 112
5.4 Parameters for Test Scenario 2 and 3 112
5.5 Results for Test Scenario 2 113
5.6 Results for Problem 3 . 113
5.7 Results for Case Study 2 . 115

131

List of Tables

132

List of Algorithms

1 Basic Genetic Algorithm . 101

133

List of Algorithms

134

Bibliography

Ames, V. A., J. Gililland, J. Konopka, R. Schnabl, and K. Barber (1995).
Semiconductor manufacturing productivity overall equipment ef-
fectiveness (OEE) guidebook. SEMATECH Technology Transfer
#95032745A-GEN.

Applied Materials, Inc. (2003). Applied materials announces results for
third fiscal quarter 2003; new orders increase to $1.05 billion; net
sales of $1.09 billion. http://www.amat.com.

Atherton, L. F., R. W. Atherton, M. A. Pool, and F. T. Turner (1990).
Performance analysis of multi-chamber manufacturing equipment
for the semiconductor industry. Working paper, please contact the
authors directly.

Atherton, R. W., F. T. Turner, L. F. Atherton, and M. A. Pool (1990).
Performance analysis of multi-process semiconductor manufactur-
ing equipment. In Proceedings of IEEE/SEMI Advanced Semiconductor
Manufacturing Conference, pp. 131–136.

Aybar, M. and K. Potti (2002). Case studies in improving equipment
productivity in TI’s DMOS5 fab using ToolSim. In Proceedings of
the International Conference on Modeling and Analysis of Semiconductor
Manufacturing (MASM), pp. 42–45.

Bader, M. E., R. P. Hall, and G. Strasser (1990). Integrated processing
equipment. Solid State Technology 33(5), 149–154.

135

Bibliography

Beasley, D., D. R. Bull, and R. R. Martin (1993). An overview of genetic
algorithms. University Computing 15(2), 58–69.

Bierwirth, C., H. Kopfer, D. C. Mattfeld, and I. Rixen (1995). Genetic
algorithm based scheduling in a dynamic manufacturing environ-
ment. In IEEE Conference on Evolutionary Computation.

Bodner, D. A. and L. F. McGinnis (1997). Deadlock analysis of cluster
tools. Slides.

Bohr, M. (1999). Schedulingverfahren für Cluster Tools in der Halbleit-
erfertigung. Master thesis, Chair of Distributed Systems, University
of Wuerzburg.

Brooks Automation (2002). Brooks Automation web–page.
http://www.brooks.com.

Busing, D. and R. C. Leachman (1998). Practical productivity metrics
for flexible-sequence cluster tools. Draft.

Chandrasekaran, N. (1999). Operational models for evaluating the im-
pact of process changes on cluster tool performance. Master thesis,
Institute for Systems Research, University of Maryland.

Chen, J.-H., L.-C. Fu, M.-H. Lin, and A.-C. Huang (2001). Petri-Net
and GA-based approach to modeling, scheduling, and performance
evaluation for wafer fabrication. IEEE Transactions on Robotics and
Automation 17(5), 619–636.

Coffman, E., M. Elphick, and A. Shoshani (1971). System deadlocks.
ACM Computing Surveys 3, 67–78.

Conway, R. (1965). Priority dispatching and work in progress inven-
tory in a job shop. Journal of Industrial Engineering 16, 123–130.

Crama, Y. and J. van de Klundert (1997). Robotic flowshop scheduling
is strongly NP-complete. Communication with the authors.

Deuermeyer, B. L., G. L. Curry, A. T. Duchowski, and S. Venkatesh
(1997). An automatic approach to deadlock detection and resolu-
tion in discrete simulation systems. INFORMS Journal on Comput-
ing 9(2), 195–205.

136

Bibliography

Dhudshia, V. H. and H. Clyde (1996). Cluster tool performance track-
ing. Future Fab International 1(1).

Dolman, D., Q. Wang, and J. Crowley (1999). Weighted configuration
matrix approach to cluster tool metrics. In Proceedings of the IEEE
International Symposium on Semiconductor Manufacturing, pp. 179–
182.

Dümmler, M. (1999). Using simulation and genetic algorithms to im-
prove cluster tool performance. In Proceedings of the Winter Simula-
tion Conference, pp. 875–879.

Dümmler, M. (2000). Steuerung und Optimierung von Cluster Tools in
der Halbleiterfertigung. In Symposium on Operations Research (SOR
2000), pp. 295–300.

Gartner, Inc. (2003). Gartner says worldwide semiconductor market to
experience 8 percent growth in 2003. http://www.gartner.com.

Geiger, C. D., K. G. Kempf, and R. Uzsoy (1997). A tabu search ap-
proach to scheduling an automated wet etch station. Journal of Man-
ufacturing Systems 16(2), 102–116.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley.

Hendrickson, R. A. (1997). Optimizing cluster tool throughput. Solid
State Technology.

Herrmann, J. W., N. Chandrasekaran, B. F. Conaghan, M.-Q. Nguyen,
G. W. Rubloff, and R. Z. Shi (1999). Intergrating process models and
operational methods. In Proceedings of the International Conference
on Semiconductor Manufacturing Operational Modeling and Simulation,
pp. 119–123.

Herrmann, J. W., N. Chandrasekaran, B. F. Conaghan, M.-Q. Nguyen,
G. W. Rubloff, and R. Z. Shi (2000). Evaluating the impact of process
changes on cluster tool performance. IEEE Transactions on Semicon-
ductor Manufacturing 13(2), 181–192.

137

Bibliography

Herrmann, J. W. and M.-Q. T. Nguyen (2000). Sequencing wafer han-
dler moves to improve the performance of sequential cluster tools.
Technical Research Report 2000-3, Institute for Systems Research,
University of Maryland.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. MIT
Press.

Holt, R. (1972). Some deadlock properties of computer systems. ACM
Computing Surveys 4(3), 179–196.

Huntley, D. (1990). Cluster tool communications: The path to an open
standard. Solid State Technology, 85–88.

Kats, V., E. Levner, and L. Meyzin (1999). Multiple-part cyclic hoist
scheduling using a sieve method. IEEE Transactions on Robotics and
Automation 15(4), 704–713.

Kern, C. and N. Gerlich (1994). The simlib++ library. Technical report,
University of Wuerzburg, Chair of Distributed Systems.

Kim, J.-H., L. Tae-Eog, and H.-Y. Lee (2002). Scheduling of dual-armed
cluster tools with time constraints. In Proceedings of the International
Conference on Modeling and Analysis of Semiconductor Manufacturing
(MASM), pp. 36–41.

Koehler, E. J., T. M. Wulf, A. C. Bruska, and M. S. Seppanen (1999).
Evaluation of cluster tool throughput for thin film head production.
In Proceedings of the Winter Simulation Conference, pp. 714–719.

Law, A. M. and W. D. Kelton (1991). Simulation Modeling & Analysis
(2nd ed.). New York: McGraw–Hill.

LeBaron, T. H. and R. A. Hendrickson (2000). Using emulation to val-
idate a cluster tool simulation model. In Proceedings of the Winter
Simulation Conference, pp. 1417–1422.

LeBaron, T. H. and M. Pool (1994). The simulation of cluster tools: A
new semiconductor manufacturing technology. In Proceedings of the
Winter Simulation Conference, pp. 907–912.

138

Bibliography

Lemmen, B., E. van Campen, H. Roede, and J. Rooda (1999). Clus-
tertool optimization through scheduling rules. In Proceedings of the
IEEE International Symposium on Semiconductor Manufacturing, pp.
89–92.

Leung, J.-T. and E. Lai (1979). On a minimum cost recovery from sys-
tem deadlocks. IEEE Transactions on Computing 28, 671–677.

Leventopoulos, M. M. (1994). A new class of petri nets for modeling,
planning and scheduling of flexible manufacturing systems. Master
thesis, Graduate School of the University of Maryland.

Lopez, M. J. and S. W. Wood (1996). Performance models of systems
of multiple cluster tools. In International Electronics Manufacturing
Technology Symposium, pp. 57–65.

Lopez, M. J. and S. W. Wood (1998). Systems of multiple cluster
tools: Configuration and performance under perfect reliability.
IEEE Transactions on Semiconductor Manufacturing 1(3), 465–474.

Mauer, J. and R. Schelasin (1994). Using simulation to analyze inte-
grated tool performance in semiconductor manufacturing. Micro-
electronic Engineering 25(2/4), 139–146.

Mauer, J. L. and R. E. A. Schelasin (1993). The simulation of integrated
tool performance in semiconductor manufacturing. In G. W. Evans,
M. Mollaghasemi, E. C. Russell, and W. E. Biles (Eds.), Proceedings
of the 1993 Winter Simulation Conference, pp. 814–818.

Morton, T. and D. Pentico (1993). Heuristic Scheduling Systems. Wiley
Series in Engineering & Technology Management. New York: John
Wiley & Sons.

Nehme, D. A. and N. G. Pierce (1994). Evaluating the troughput of clus-
ter tools using event-graph simulations. In IEEE/SEMI Advanced
Semiconductor Manufacturing Conference, pp. 189–192.

Nguyen, M.-Q. T. (2000). Improving cluster tool performance by find-
ing the optimal sequence and cyclic sequence of wafer handler

139

Bibliography

moves. Master thesis, Institute for Systems Research, University of
Maryland.

Nguyen, M.-Q. T. and J. W. Herrmann (2000). Sequencing wafer han-
dler moves to improve the performance of hybrid cluster tools.
Technical Research Report 2000-31, Institute for Systems Research,
University of Maryland.

Niedermayer, H. (2002). Approximation of lot cycle times for cluster
tools in semiconductor manufacturing. Master thesis, Chair of Dis-
tributed Systems, University of Wuerzburg.

Oh, H. L. (2000). Conflict resolving algorithm to improve productiv-
ity in single-wafer processing. In Proceedings of the International
Conference on Modeling and Analysis of Semiconductor Manufacturing
(MASM), pp. 55–60.

Pampel, S., J. Domaschke, and H. Jetter (2000). Productivity improve-
ment for dry etch equipment through the application of simulation.
In International Symposium on Semiconductor Manufacturing, pp. 79–
83.

Paré, K., U. Dierks, and H. T. LeBaron (2002). Using simulation to un-
derstand and improve process tool efficiency. In Proceedings of the
International Conference on Modeling and Analysis of Semiconductor
Manufacturing (MASM), pp. 46–51.

Pederson, D. E. and C. E. Trout (2002). Demonstrated benefits of clus-
ter tool simulation. In Proceedings of the International Conference on
Modeling and Analysis of Semiconductor Manufacturing (MASM), pp.
58–63.

Perkinson, T. L. and R. S. Gyurcsik (1996). Single-wafer cluster tool per-
formance: An analysis of the effects of redundant chambers and re-
visitation sequences on throughput. IEEE Transactions on Semicon-
ductor Manufacturing 9(3), 384–400.

Perkinson, T. L., P. K. McLarty, R. S. Gyurcsik, and R. K. Cavin
III (1994). Single-wafer cluster tool performance: An analysis of

140

Bibliography

thoughput. IEEE Transactions on Semiconductor Manufacturing 7,
369–374.

Petri Nets Steering Committee (2003). Petri Nets World.
http://www.daimi.au.dk/PetriNets.

Pierce, N. G. and M. J. Drevna (1992). Development of generic simula-
tion models to evaluate wafer fabrication cluster tools. In Proceed-
ings of the Winter Simulation Conference, pp. 874–878.

Pinedo, M. (2002). Scheduling. Theory, Algorithms, and Systems (2nd ed.).
New Jersey: Prentice-Hall.

Poolsup, S. and S. Deshpande (2000). Cluster tool simulation assists the
system design. In Proceedings of the Winter Simulation Conference, pp.
1443–1448.

ProModel Solutions (2002). ProModel web–page.
http://www.promodel.com.

Rockwell Software Inc. (2002). Arena Software.
http://www.arenasimulation.com/.

Rogatty, U. and F. Boebel (1996). 30% productivity increase of 16Mb-
DRAM Gate-Conductor etching without additional investment.
In Proceedings of IEEE/SEMI Advanced Semiconductor Manufacturing
Conference, pp. 64–68.

Rostami, S. and B. Hamidzadeh (2002). Optimal scheduling techniques
for cluster tools with process-module and transport-module resi-
dency constraints. IEEE Transactions on Semiconductor Manufactur-
ing 15(3), 341–349.

Rostami, S., B. Hamidzadeh, and D. Camporese (2001). An optimal pe-
riodic scheduler for dual-arm robots in cluster tools with residency
constraints. IEEE Transactions on Robotics and Automation 17(5), 609–
618.

Ruppert, D., L. Schruben, and M. Freimer (2000). Meta-modeling of a
cluster tool simulator. In Proceedings of the International Conference on

141

Bibliography

Modeling and Analysis of Semiconductor Manufacturing (MASM), pp.
67–77.

Schmid, M. (1999). Modellierung und Simulation von Cluster Tools
in der Halbleiterfertigung. Master thesis, Chair of Distributed Sys-
tems, University of Wuerzburg.

Schömig, A. and J. Fowler (2000). Modelling semiconductor manufac-
turing operations. In Proceedings of the 9th ASIM Dedicated Confer-
ence Simulation in Production and Logistics, pp. 55–64.

Schruben, D. and L. Schruben (2000). Event Graph Modeling Using
SIGMA. CustomSimulations.

Schruben, L. W. (1999). Deadlock detection and avoidance in cluster
tools. In Proceedings of the International Conference on Semiconductor
Manufacturing Operational Modeling and Simulation, pp. 31–35.

SEMATECH, Inc. (2002). Sematech, inc. homepage.
http://www.sematech.org.

SEMI (1996). Standard for Definition and Measurement of Equipment Reli-
ability, Availability, and Maintainability (RAM). SEMI.

SEMI (2002a). SEMI E21-94 (reapproved 1102) - cluster tool mod-
ule interface: Mechanical interface and wafer transport standard.
http://www.semi.org.

SEMI (2002b). SEMI E26-92 (reapproved 0699) - radial cluster tool foot-
print standard. http://www.semi.org.

SEMI (2002c). SEMI E38-1296 - cluster tool module communications
(CTMC). http://www.semi.org.

Shannon, R. (1975). Systems Simulation: The Art and Science. Englewood
Cliffs, NJ, USA: Prentice–Hall.

Shin, Y.-H., J.-H. Kim, H.-Y. Lee, and T.-E. Lee (2000). Modeling and
implementation of a real-time embedded scheduler for CVD cluster
tools. In Proceedings of the International Conference on Modeling and
Analysis of Semiconductor Manufacturing (MASM), pp. 78–82.

142

Bibliography

Shin, Y.-H. and T.-E. Lee (1999). Performance modeling of cluster tools
using timed petri nets. In Proceedings of the International Conference
on Semiconductor Manufacturing Operational Modeling and Simulation,
pp. 36–41.

Singer, P. (1993). The thinking behind today’s cluster tools. Semiconduc-
tor International, 46–51.

Singer, P. (1995). The driving forces in cluster tool development. Semi-
conductor International, 113–118.

Srinivasan, R. S. (1998). Modeling and performance analysis of cluster
tools using petri nets. IEEE Transactions on Semiconductor Manufac-
turing 11(3), 394–403.

Tanenbaum, A. S. (2002). Computer Networks (4th ed.). Prentice Hall
PTR.

Tracy, D. D. P. (2003). 2003 semiconductor capital equipment outlook.
http://www.corning.com/semiconductormaterials/netnews/.

Venkatesh, S., R. Davenport, P. Foxhoven, and J. Nulman (1997). A
steady-state throughput analysis of cluster tools: Dual-blade versus
single-blade robots. IEEE Transactions on Semiconductor Manufactur-
ing 10(4), 418–424.

Wall, M. (1995). GAlib. A C++ library of genetic algorithm components.
http://lancet.mit.edu/ga/.

Wang, Q. and C. Christian (1998). Cluster tool equipment performance
monitoring. Future Fab International 5, 275–277.

Wirth, N. (1977). What can we do about the unneccessary diver-
sity of notation for syntactic definitions? Communications of the
ACM 20(11), 822.

Wood, S. C. (1996). Simple performance models for integrated pro-
cessing tools. IEEE Transactions on Semiconductor Manufacturing 9(3),
320–328.

143

Bibliography

Wood, S. C. (1997). Cost and cycle time performance of fabs based on
integrated single-wafer processing. IEEE Transactions on Semicon-
ductor Manufacturing 10(1), 98–111.

Wood, S. C. and K. C. Saraswat (1991). Modeling the performance of
cluster-based fabs. In Proceedings of IEEE International Semiconductor
Manufacturing Science Symposium, pp. 8–14.

Wood, S. C., S. Tripathi, and F. Moghadam (1994). A generic model
for cluster tool throughput time and capacity. In Proceedings of
IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp.
194–199.

Wu, N. and M. Zhou (2001). Avoiding deadlock and reducing star-
vation and blocking in automated manufacturing systems. IEEE-
TRA 17(5), 658–669.

Wu, N. Q. (1999). Necessary and sufficient conditions for deadlock–free
operation in flexible manufacturing systems. IEEE Transactions on
Systems, Man, and Cybernetics; Part C: Applications and Reviews 29(2),
192–204.

Yamada, T. and R. Nakano (1995). A genetic algorithm with multi–step
crossover for job–shop scheduling problems. In IEE/IEEE Interna-
tional Conference on Genetic ALgorithms in Engineering Systems: Inno-
vations and Applications (GALESIA), Sheffield, UK, pp. 146–151.

Yim, S. J. and D. Y. Lee (1999). Scheduling cluster tools in wafer fabri-
cation using candidate list and simulated annealing. Journal of In-
telligent Manufacturing 10, 531–540.

Zant, P. v. (1996). Microchip Fabrication: A Practical Guide to Semicondutor
Processing. McGraw–Hill.

Zuberek, W. M. (2000). Timed petri nets models of cluster tools. In Pro-
ceedings of the IEEE International Conference on Systems, Man and Cy-
bernetics, pp. 3063–3068.

Zuberek, W. M. (2001a). Petri net modeling and performance analysis
of cluster tools with chamber revisiting. In Proceedings of the IEEE

144

Bibliography

International Conference on Emerging Technologies and Factory Automa-
tion, pp. 105–112.

Zuberek, W. M. (2001b). Timed petri nets in modeling and analysis
of cluster tools. IEEE Transactions on Robotics and Automation 17(5),
562–575.

Zuberek, W. M. (2001c). Timed petri nets models of multi–robot cluster
tools. In Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, pp. 2729–2734.

145

Bibliography

146

Index

active wait, 68
anticipatory moves, 80
anytime algorithm, 105
assembly, 6

back end, 7
batch processing, 21
batching, 79
best–of–breed, 16
blocking, 78
bottleneck, 35, 70
bottleneck analysis, 36
Branch–and–Bound, 70
breadth–first–search, 82

cascading, 27
cassette module, 22
chip test, 6
chromosome, 99, 100
clean room, 12
CluSim, 51
cluster tool, 15

controller, 24

fixed sequence, 27
flexible sequence, 27
hybrid, 71

completion phase, 67
cycle time, 30, 96
cyclic sequence, 67

deadlock, 75
avoidance, 78
detection, 75
resolution, 77

deposition, 9
chemical vapor, 9

dice, 6
dispatch rule, 71, 86, 88

Fewest Remaining Opera-
tions, 88

First Arrival in Shop, 88
First Come First Serve, 88
Least Work Remaining, 88
Service in Random Order,

89
distribution, 54

147

Index

doping, 11

evaporation, 9
exhaustive search, 82

fab, 6
fabrication, 6
Fetch Wafer Look Ahead, 87
filling–up phase, 67
finite state machine, 72
fitness, 99
flow factor, 58, 80
front end, 7
fundamental period, 34, 66

Gantt chart, 66
Genetic Algorithms, 71, 99
genotype, 100

handler, 23
dual–blade, 23, 34
single–blade, 23
single–effector, 23

heat treatment, 11
Hoist Scheduling Problem, 73
hybrid, 26

individual, see phenotype

layering, 9
load lock, 22
Local Search, 106
look ahead, 87
lot, 14

mainframe, 18
masking, 10
mating, 101
Maximally Permissive Policy, 78
mini–environments, 13

NP–completeness, 69

objective function, 100
Overall Equipment Effective-

ness, 36
oxidation, 9

parallel, 26
parallel mode, 26
patterning, 10
Petri Nets, 31, 40, 73
phenotype, 100
photolithography, 10
physical vapor deposition, 9
pipelining, 59
population, 100
post–processing residency con-

straint, 73
premature convergence, 104
probe, 6
process chamber, 20
process–bound, 32
product storage, 22
pump time, 23
Put Wafer Look Ahead, 87

rapid thermal processing, 16
raw process time, 59

148

Index

recipe, 25
residency time constraint, 64
response surface model, 48
robot, see handler
robotic flow shop, 68

schedule, 64
active, 68

scheduler, 65
scrap, 54
serial, 26
Simulated Annealing, 71
simulation, 31, 42

discrete–event, 42
event graphs, 46, 47

single mode, 26
sputtering, 9
starvation, 78
switch operation, 23
sync mode, 27

Tabu Search, 72
throughput, 30
tool dedication, 96
transient phase

final, 67
initial, 67

transport module, 18
transport–bound, 32

vent time, 23

wafer, 6
wafer preparation, 6
work in progress, 114

149

ISSN 1432-8801

