Julius-Maximilians-Universitat Wirzburg

Institut fr Informatik
Lehrstuhl fir Kommunikationsnetze
Prof. Dr. P. Tran-Gia

Performance Evaluation of
Publish/Subscribe Middleware
Architectures

Robert Henjes

Wiurzburger Beitrage zur
Leistungsbewertung Verteilter Systeme

Bericht 04/10

Wirzburger Beitrage zur
Leistungsbewertung Verteilter Systeme

Herausgeber

Prof. Dr. P. Tran-Gia

Universitat Wirzburg

Institut fir Informatik

Lehrstuhl fir Kommunikationsnetze
Am Hubland

D-97074 Wirzburg

Tel.: +49-931-31-86630
Fax.: +49-931-31-86632
email: trangia@informatik.uni-wuerzburg.de

Satz

Reproduktionsfahige Vorlage vom Autor.
Gesetzt inATpX Computer Modern 9pt.

ISSN 1432-8801

Performance Evaluation of
Publish/Subscribe Middleware
Architectures

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades
der Julius—Maximilians—Universitat Wirzburg

vorgelegt von

Robert Henjes

aus

Wiirzburg

Wirzburg 2010

Eingereicht am: 30.09.2010

bei der Fakultat fir Mathematik und Informatik
1. Gutachter: Prof. Dr.-Ing. P. Tran-Gia

2. Gutachter: Prof. Dr. Peter Sturm

Tag der mundlichen Prifung: 23.11.2010

Danksagung

Waéhrend der letzten 9 Jahre am Lehrstuhl fir Kommunikatietz bin ich vie-
len Menschen begegnet, die mich zunachst als Student undtdien 6 Jahre
dann bei meiner Forschung und der Erstellung meiner Arlredrstitzt haben.
All jenen méchte ich an dieser Stelle danken.

Meinem Doktorvater und Betreuer, Herrn Prof. Dr.-Ing. Rhilican-Gia, gilt
ganz besonderer Dank, da er mich von Anfang an in meiner Fongcuner-
miudlich unterstiitzt hat, nicht zuletzt durch viele Diskassn. Auch moéchte
ich mich daflir bedanken, dass er mir bei allen Aktivitatestsssein Vertrauen
geschenkt hat. Mit seiner Hilfe war es mir erst moglich, reeiirfahrungen im
internationalen Umfeld auf Konferenzen, bei der Kooperathit Industrie oder
in der technischen Betreuung eines Lehrstuhlnetzes zogenta auszubauen und
in neue ldeen fur meine Arbeit umzusetzen. Nicht zuletztidatas angenehme
Arbeitsklima, das durch ihn am Lehrstuhl geschaffen wuvded mir die Zeit
wahrend meines Studiums und meiner Promotion in Wirzburgdmn posi-
tiver Erinnerung bleiben.

Meinem Zweitgutachter Herrn Prof. Dr. Peter Sturm danke fioh seine
Aufmerksamkeit, die er meiner Arbeit geschenkt hat, sowiaf.FDr. Alexan-
der Wolff und Prof. Dr. Reiner Kolla fir das Interesse an reeifirbeit, und dass
sie als Prifer fur meine Disputation zur Verfigung standen.

In meiner Zeit am Lehrstuhl durfte ich in verschiedenen &ktgn mitwirken
und mochte mich deshalb bei allen mitwirkenden Projektart bedanken.
Besonderer Dank gilt den Mitarbeitern der Firma Siemengipnse Commu-
nications (SEN), die die wesentlichen Fragestellungen einen Arbeit beige-
tragen haben. Auch den Partnern bei der DATEV und im Projektr@n-Lab
mochte ich fur deren Einsatz und ihre Unterstutzung danken.

Danksagung

Ein besonderer Dank gilt auch Prof. Dr. Michael Menth, dudgssen, im
wahrsten Sinne, unermidliche Unterstiitzung ich sehr weBezug auf wis-
senschaftliches Arbeiten lernen konnte. Auf seine fabkliKompetenz konnte
ich mich jederzeit stiitzen, wodurch er einen wesentlicheteilizum Gelingen
der Forschung und der Arbeit beigetragen hat.

Besonderer Dank gebihrt der Geduld und den fruchtbarenekimgen
meiner langjahrigen Burokollegen, Dr. Andreas Binzenhdde. Ridiger Martin
und Dr. Simon Oechsner.

Spezieller Dank gilt auch meinen Kollegen Dr. Rastin Prianiel Schlosser
und Michael Duelli, nicht nur fir die aufmerksame und unediitine Korrek-
turarbeit. Meinem Bruder Hans mdchte ich an dieser Stefleéia abschlieRen-
den Feinschliff danken. Speziell Michael Duelli, Michaerschel und Daniel
Schlosser méchte ich auerdem fiir die gute Zusammenarbeién letzten
Jahren bei der technischen Administration des Lehrstidrikeh.

Das positive Arbeitsklima, an welchem ich teilhaben dynftarde erst durch
den Zusammenhalt, das Vertrauen und die gegenseitigedtlitamg unter den
Kollegen méglich. Dies wurde besonders deutlich beim gaszenen Genuss
von Kaffee oder Tee in dem meinem Biro nicht fernen Etagealsamm, der
eine unerschdpfliche Quelle fur Ideen, Diskussionen unstignAktivitaten war
und ist. Deshalb mdchte ich an dieser Stelle neben den &eiannten allen
anderen jungen und ,alten” Kollegen danken, denen ich égelménRig begegnet
bin und die auch sonst wesentlicher Bestandteil meines &gardys waren, sind
und hoffentlich bleiben werden: Matthias Hartmann, Dr.udddeck, Matthias
Hirth, David Hock, Dr. Tobias HoR3feld, Dr. Alexander KleiDominik Klein,
Frank Lehrieder, Dr. Kenji Leibnitz, Dr. Andreas Mader, BRudiger Martin,
Dr. Jens Milbrandt, Prof. Dr. Oliver Rose, Christian SchwaBarbara Staehle,
Dr. Dirk Staehle, Prof. Dr. Kurt Tutschku, Dr. Norbert VigaFlorian Wamser
und Thomas Zinner. Bedanken mdéchte ich mich auch im weiterafeld bei
Markus Sauer, Stefan Selbach und Florian Zeiger fur die fdtitzung und die
gemeinsamen Aktivitaten.

Danksagung

Viele Teile der Arbeit wurden erst durch die tatkraftige Mite meiner Stu-
denten, Praktikanten und Diplomanden mdglich, sei es ddiretkte Arbeit am
Thema oder durch die Unterstiitzung bei der Ausfihrung meinsétzlichen
Aufgaben. Besonders mdchte ich meinen Diplomanden Seba&kehrsitz,
Valentin Himmler, Matthias Koller und Christian Zepfel dam. Fir die Un-
terstitzung nicht nur in technischen Belangen, wie derdBeing der IT am
Lehrstuhl, mdchte ich besonders den studentischen Hilfigkr Steffen Gebert,
Inanc Girulttcl, Nicholas Gray, Waldemar Huber, ChrisespMetter, Sven
Scheuring, Stephan Seufert, Christian Sieber, JohannekéMand Tobias Zier-
mann danken, sowie allen anderen, die mir bei der Betreuangvarlesungen
und Projekten geholfen haben.

Bedanken mochte ich mich auch bei unserer Sekretérin FreelaGkorster,
fuir die Unterstiitzung in allen organisatorischen und véiomgstechnischen An-
gelegenheiten, auch unter Zeitdruck. Des Weiteren bedahkeich bei Fritz
Kleemann und Markus Krieger fir die Unterstlitzung in allechnischen An-
gelegenheiten aufRerhalb unseres Lehrstuhls.

Meiner Familie mdchte ich danken fur den Rickhalt und die @anm@hrende
Unterstutzung in allen Lebenslagen.

Contents

1

Introduction 1
1.1 Scientific Contribution 2
1.2 OutlineoftheThesis. 4

Background and Motivation

21

2.2

2.3

2.4

The Publish/Subscribe Communication Pattern 7
2.1.1 The Basic Communication Patterns using MOM 8
2.1.2 \Variations of Pub/Sub Systems 9
2.1.3 Performance Characterization in Pub/Sub 1. 1
The Java Message Service 11
221 JIMSMeSsage 12
2.2.2 Message Selection (Filtering) 14
2.2.3 Message Transmission Modes and Reliability 15
2.2.4 Network Level Communication and Application-Layer
Transport 18
Application ScenarioandUse-Case 19
2.3.1 MOM Application Deployment Scenarios 19
2.3.2 Presence Information Exchange as a Use-Case 21
RelatedWork 22
2.4.1 Publish/Subscribe Architecture and Design 22
2.4.2 Benchmarking ApproachesforMOM 31
2.4.3 Other Messaging Approaches and JMS Servers 34

Contents

3 Experimental-Based System Evaluation 39

3.1 Experimental Environment and Experiment Design 39
3.1.1 Experimental EnvironmentSetup 40
3.1.2 Evaluated JMS Server Environment 43
3.1.3 Measurement Methodology 45
3.1.4 Experiment Parameter Design Space 47

3.2 Testing Basic System Performance 50
3.2.1 Impact of the Number of Publishers 50
3.2.2 Impact of the Number of Subscribers 53
3.2.3 Impact of the Message Size 55
3.2.4 Impact of the Number of Topics 57
3.2.5 Impact of Filter Activation 58

3.3 Impactof Complex Filtering. 60
3.3.1 Impactof OR-Filters 60
3.3.2 Impactof AND-Filters 62
3.3.3 Impact of IN-Filters (Presence Use-Case) 4. 6

3.4 Impact of Subscription Aggregation and Registration..... . . 66

3.4.1 Impact of Aggregation Options for Multiple Subsdops 67
3.4.2 Evaluation of the Registration Time for Subscripsion . 69

3.5 ConcludingRemarks 75
4 Evaluating Message-Oriented Middleware 77

4.1 Background: Multiple Regression and Least-Squaresr@Xpp
mationo 78

4.2 Modeling the Server Capacity 81
4.2.1 Performance Model for the Message Processing Time 2. 8
422 FioranoMQ 84
4.2.3 BEAWeblLogicServer 87
424 Apache ActiveMQ oo 90

4.3 Adapted PerformanceModels 94
4.3.1 SunMQ: Increased Impact of Different Filters 49

vi

Contents

4.3.2 WebSphereMQ: Impact of Filtering Dominates Dis-

patching 99
4.4 Performance Model Considering Complex Filtering102
4.4.1 Complex Filter Design Options 103
4.4.2 Results of the Measurement Experiments 105
4.4.3 Extended Performance Model for the Message Process-
ingTime 105
4.5 Application of the Models as Best-Practice Example 111
4.6 Concluding Remarks on Performance Models 13. 1
5 Analytical Assessment of IMS Server Performance 115
5.1 Gamma-Approximation of th&//GI/1—oco Waiting Time . . . 116
5.1.1 Review of the\//GI/1—o00 Queuing System 117
5.1.2 The Gamma-Approximation 120
5.1.3 Discrete Time Analysis and its Accuracy 123
5.1.4 \Validation of the Gamma-Approximation 131
5.1.5 Concluding Remarks on Gamma-Approximation 135
5.2 Analytical Performance Evaluation of the JMS Serverdcdp . 136
521 JMSServerCapacity 136
5.2.2 Modeling of the Message Waiting Time 139
5.2.3 Analysis of the Message Waiting Time 145
5.3 Performance Comparison of Distributed JMS Server Aechires 151
5.3.1 Publisher-Side JMS Server Replication 115
5.3.2 Subscriber-Side JMS Server Replication (SSR) . . . 152
5.3.3 Capacity Comparison of PSRandSSR 152
5.4 ConcludingRemarks, 155
6 Conclusions and Future Trends 157
Bibliography and References 163

Vii

1 Introduction

Modern communication mechanisms are a key element to reghgsical
distances between people and enable efficient businesgssesx A large
variety of applications and devices evolved during the thstade to support
people’s communication. To design an efficient informatexchange in this
heterogeneous scenery, the communication interfacestbgrevide flexibility
and performance.

Messaging introduces the possibility of synchronous agdasonous com-
munication while separating the communication partnersriagsage-oriented
middleware. This set of features can be illustrated bestooyparing two well-
known communication applications: a classic telephonyesysand an e-mail
infrastructure. Considering the telephony system, agpént can only commu-
nicate synchronously with a single other participant iftbparties are available
for communication at the time the phone call is initiateds@both sides have to
speak a common language and there is no way to filter out resdiimformation,
beside rejecting the caller. Within an e-mail infrastruetuinformation can be
sent using messages to a central entity. The informatidregide on the central
entity until a receiver fetches it which enables asynchusncommunication.
Additionally, the receiver can decide if and in which order donsume the
incoming information.

In the context of message-oriented middleware, commupitas mostly
asynchronous. The communication process is realized as$ af seessages,
rather than a continuous information flow, like observed lassic telephony.
According to Hohpe and Woolf [121], messaging systems enabhigh-speed,
asynchronous, application-to-application communicatidgth reliable delivery”
based on the exchange of messages over a packet-switcheatnet

1 Introduction

According to the aforementioned description of the bas#tesy architecture,
we can identify six crucial components. First, theessage containing and
transmitting the information itself. The message has toydae plain information
generated by the clients and some meta-information forebersl element, the
message-oriented middlewaikéhe third important component is the definition of
standard communication interfaces.g., theJava message servi¢@MsS) [129].

A fourth component is theleploymentwhere a messaging system is used in,
like a data center or worldwide communication through thermet. In addition,
the underlying communication pattern influences the deptyt scenario, like
using a publish/subscribe-oriented communication. Exghrey information over
the Internet means to transmit data through an unsecurerartalle medium.
This leads to the last two elements, the introductionmedifbility and security
into the messaging environment.

Since messaging, if used in application-to-applicatiomewnication, repre-
sents the backbone of the system, it has to have a high, wellsk performance.
Therefore, itis necessary to develop mechanisms and n@tigids to determine
the performance limits of such systems. It is important tentdfy possible
bottlenecks and parameters causing them. Also during yieyot, a careful
dimensioning of the system should take place, which can lpposted by
efficient prediction models adaptable to a varying set ofieafion scenarios.

1.1 Scientific Contribution

The main contribution of this thesis is an approach to amalgad evaluate
the performance of a message-oriented middleware in theextoof JMS. The
analysis and evaluation is based on system-level measntgrimecombination
with an easy-to-handle model for predicting the overaltesysperformance. The
presented approach can be adapted to a wide range of ajgplisaénarios.

On the market, a huge number of messaging solutions and caatnerod-
ucts are available and their feature sets are diverse. Thedirst contribution

1.1 Scientific Contribution

of this work is to discuss the different design options anaategorize them
according to their relevance. A focus is set on the publigigsribe communica-
tion pattern, which is supported by the JMS. However, we caume that the
messaging system in general may become a bottleneck in corapgication
scenarios. Therefore, the overall achievable messageghpait is identified as
a measure for comparison of the design options and is additjouseful in
different optimization scenarios. In a publish/subsciiented communication
infrastructure, the filtering and replicating informatidimat are carried by a
message are crucial for achieving a high message througifptite overall
system. Both aspects — filtering and replication — are a mfgjous in the
remainder of this monograph. For evaluation, we selectrafignt set of servers
in order to compare different implementation strategies.

To be able to determine the limits of the different serversimroduce a black-
box oriented measurement approach, which allows to testversaccording
to different parameters in a semi-automated environmehris dpproach differs
from basic benchmarking approaches by its adaptabilityatging application
scenarios and a more fine-grained output of the results. ertables a detailed
analysis of possible performance bottlenecks. Furthezmase introduce a
calibration methodology and automated measurement \agidicfor our testbed
and our experiments. This ensures the reproducibility efrtteasurement runs
and consistent measurement results. In total, we measiffededt systems
regarding the impact of the number of connected client$erdifit information
filtering options, and network specific influences. We idgnitiasic values of
typical parameters to operate our tests in a significantremrient. As a result,
we observe that the replication grade and filtering has aihighct on the overall
system performance.

Thus, we introduce a model for the JMS server's message ghput per-
formance considering the impact of replication grade angrfilg. To get
the system-specific values for the prediction models, wégdea dedicated
experiment series and repeat them for all considered servVee model itself
is based on linear regression adapted to the requiremerdarafystem level

1 Introduction

measurements. We further show the adaptability of our ambrdy enhancing
the models for complex filtering scenarios and evaluate @ficgtion scenario
using our models.

The server models are based on average values for the mélssagghput and
do not consider internal server behavior, like messagemngiimes. To show the
influence of the server behavior on the overall system we nseg AG1/1— oo
gueuing system for approximating the waiting times. Ondiegion scenario is
the real-time prediction of the impact of a certain configioraon the overall
system performance. Since there is no algorithm availabth the desired
efficiency for solving an\/ /G I /1—co queuing system numerically, we introduce
a fast approximation method to calculate the required nusnded denote it by
“Gamma-approximation”.

In the first part of the thesis we focus on a single server saenahereas
we discuss in the second part two different design optiogarttng message
throughput scalability. To evaluate the expected perfogaaf the two different
approaches, we use our basic message throughput modelsuarfthdings
regarding the waiting time analysis.

1.2 Outline of the Thesis

Figure 1.1 depicts the overall organization of the remairdeéhis monograph.
The figure is organized such that each box represents a cludple thesis and
outlines the covered topics. In Figure 1.1, all contribasioesulting from this
thesis are classified into the main topics of the thesis aottigpl on the right side
of each chapter overview. Some of the publications are citgiiple times since
they cover the evaluation of a single server.

Chapter 2 introduces the publish/subscribe communicagiatiern. Sec-
tion 2.2 discusses the widely used JMS and its featuresdiegathe support
of publish/subscribe communication. Furthermore, in iac.3 we present
an application scenario as a motivation for our performageaiuation. The
chapter also contains in Section 2.4 a discussion on relggedture regarding

1.2 Outline of the Thesis

the basic architecture and design options for publishtsities systems, general
benchmarking of message-oriented middleware, and pesagibbal overview
of related messaging approaches.

Chapter 3 proposes an architecture for an experimentalcemaient in order
to evaluate the performance of publish/subscribe-basstersyg. Moreover, it
describes our measurement methodology and discussesediffparameters
considered for testing. In Section 3.2, we evolve a basies@&f experiments
in order to determine the boundaries of our equipment andeheer software
used. In Section 3.3 and Section 3.4, we extend our experimegarding the
impact of filtering and client handling. We conclude this pfeat by analyzing
the impact of different parameters tested by the measurtsmen

Chapter 4 introduces a general methodology to build basicemsofor
approximating the message throughput capacity of Javaages®rvice servers.
As atool for this methodology, we present some basics onpheilegression and
least-squares approximation in Section 4.1. This is falldwy Section 4.2 and
Section 4.3 introducing a basic version of the model regarthe joint impact of
number of filters and replication grade for different semygres. In Section 4.4
we extend the basic model considering complex filtering. \Wactude this
chapter with an application scenario of the models and s@merks on the
results of our proposed models.

Chapter 5 focuses on the message waiting time of a messagingr and
an M/GI/1 — oo queuing system is applied. Since the focus is on real-time
numerical evaluation of the queuing behavior, we introdaoeapproximation
method based on the Gamma-distribution in Section 5.1. Tilaé/#cal perfor-
mance evaluation considering the Gamma-approximatiohadds presented in
Section 5.2. In addition, we discuss two different optiamgitroduce scalability
regarding the overall message throughput in Section 5.3.

Chapter 6 summarizes the major contributions of this wordtdifionally, an
outlook on future trends and challenges in the area of pulslibscribe systems
and messaging systems in general is given.

1 Introduction

Chapter 1: Introduction
Scientific Contribution Outline of the Thesis

Chapter 2: Background and Motivation
The Publish/Subscribe The Java Message
Communication Pattern Service

Application Scenario and

Use-Case Related Work

Chapter 3: Experimental-Based System Evaluation

Experimental Environment and Testing Basic System Bl M
Experiment Design Performance 4l [8]
Impact of Complex Impact of Subscription]

Filtering Aggregation and Registration [10]

Chapter 4: Evaluating Message-Oriented Middleware
Multiple Regression and Least-Squares Approximation

Modeling the Server Adapted Performance 5]) 6]
Capacity Models Bl 18 [4]
Performance Model Application of the Models as [10][1 n
Considering Complex Filters Best-Practice Example 1

Chapter 5: Analytical Assessment of JMS Server Performance

Gamma-Approximation of the M/GI/1-oco Waiting Time -
; 9
Analytical Performance Evalua- Performance Comparison of Bl

tion of the JMS Server Capacity| JMS Server Architectures

Chapter 6: Conclusions and Future Trends
Measurement-Based Message Throughput Analytical Performance
Evaluation Models Evaluation

Figure 1.1:Organization and contribution of the thesis.

2 Background and Motivation

In this chapter, basic principles ofiessage-oriented middlewa(®OM) are
presented and discussed. The communication pattern §milibscribe” and its
industry standard framework callddva message servi¢dMS) are introduced.
We discuss a set of parameters which influence the perfoenah@a JMS
environment. Furthermore, an overview is given on relateckvin the areas of
publish/subscribe in general, IMS framework implemeoteti and performance
evaluations of message-oriented middleware.

2.1 The Publish/Subscribe Communication Pattern

In general, message-oriented middleware (MOM) acts as aatmd plat-

form for the communication of application components andwa them to
create, send, and receive messages. Acting as a mediattforpl, MOM

provides distributed communication which is loosely ceapl reliable, and
asynchronous. The involved entities can be divided into asage producer,
a message consumer, and the mediation entity. The mediatitity manages
one or multiple queues, which are used to coordinate theagessansmission
process. The entities can be distributed on multiple mashior run on a
single machine. The process of information disseminatsodiriected from the
producer to the consumer. Overall we can distinguigloiat-to-point(PtP) and

apublish/subscribépub/sub) oriented messaging approach.

2 Background and Motivation

Mediation server

Produces Consumes R
- Eosens S o popiication B

Producer Mediation platform Consumer

Figure 2.1:Point-to-Point messaging pattern.

2.1.1 The Basic Communication Patterns using MOM

The PtP messaging approach defines the communication ofsageeproducer
with a single consumer as depicted in Figure 2.1. The praduwed consumer are
connected using a server application which provides a desticqueue for the
communicating entities. A message producer sends its gessa the desired
gueue. In case multiple consumers are connected to the saewe,qthe PtP
pattern ensures that a message is delivered only once tagle sioansumer. It
is not necessary that the producer and the consumers areatedrio the server
at the same time as described in [129]. A message will beneddan a queue until
itis fetched by a single consumer or will be dropped as sodts @azpiration date
is reached. In order to support multiple applications anviddal queue has to
be set up on the server for each pair of communicating apita

In contrast to PtP, the pub/sub communication pattern gesva one-to-many
communication. As Figure 2.2 illustrates, multiple congusnsubscribe to the
same topic. An application publishes a message to a ceop fbcated on a
mediation platform, which is very similar to the PtP procédse messages will
be dispatched to each subscribed application on the comsitee The mediation
platform itself might be centralized or distributed amorifjedent servers. In
general, the mediation platform divides the communicaditities in publishers
and subscribers, which is also called decoupling. Eugstar 7] differentiate
between a full decoupling in space, synchronization, ame in pub/sub-based
systems.

Consideringspace decouplingublishers and subscribers do not communicate
directly with each other, but use an event router as medigliamtform. Therefore,

2.1 The Publish/Subscribe Communication Pattern

Mediation server

Subscribes
Application 1
Dispatches
- —= T0p|c
—
Subscribes
Application n
Dispatches
Producer / Mediation platform Consumer /
publisher subscriber

Figure 2.2:Publish/Subscribe communication pattern.

the publishers do not have to know the subscribers and thedtibns. On the
other hand the subscriber does not need to know who publigteecthessage.
This guarantees a kind of anonymity between the communitgiartners.

The publish/subscribe system further establisgheghronization decoupling
The one-way character of the message transmission progid@synchronous
communication between publishers and subscriber. Hendgispers are not
blocked while they produce messages and subscribers dieshasynchronously
of a message. In the meantime they can perform some conttasin

In case oftime decouplinghe mediation platform offers a message queue
which enables an asynchronous communication, where peltisand sub-
scribers have not to be available at the same time. The peblimmessages e.g.,
are delivered at a later point in time in case of a networkifail

2.1.2 Variations of Pub/Sub Systems

One of the most crucial aspects in messaging systems is it #voding of the
consumers with unwanted messages. Typically a consumetjidrdgerested in
a subset of all published messages. The pub/sub commumiqaditern tries to
address this problem by offering options for respectingctimsumer interests.
A very coarse grained pub/sub scheme is based on so-calfEds A
topic divides the overall message load into logical sulseas A publisher

2 Background and Motivation

sends its messages to the corresponding topic, and eactribebsnterested
in that particular topic will receive the message. Topisdthsystems are also
often referred to as subject-based systems. Topics can dily eéstributed
over multiple servers, since they are independent. Thid kifiorganization
enables a straightforward scalability with an increasiressage load. A major
disadvantage of topic-based systems is that the topics tavee defined
previously on an administrative level. So the scalability dopic-based system
is limited by the capacity of a server hosting the topic wita highest load.

However,content-basegub/sub provides mechanisms to introduce message
filters by the subscribers to specify their interests. Onthefearly goals of the
content-based pub/sub approach is to match the intereatswdscriber against
the published information on a semantic level. Seen fronchriieal level the
mediation platform has to consider the whole content of asags. This is a
very time-consuming task which does not scale regardingotleeall message
throughput.

Therefore the message is divided into a so-caflpglication headerand a
body part containing the information payload. The appiwatheader stores
attributes and tags describing the properties or contenh ofiessage. The
values of the attributes and tags are searchable on the tioadatform by a
varying set of filtering languages. This kind of routing dgan is also called
header-basedpub/sub system. In environments where the mediation server
are distributed, the filters have to be propagated througti®usystem. Since
the filter propagation is a time-dependent process, the sththe different
servers might become inconsistent. This might lead to ueeepl behavior while
disseminating messages. Problems regarding distribwect eouting are not
part of this work, but are well-known in literature, e.g. [87

Several additional approaches try to optimize the perfogaaof a central
mediation platform. E.g., additionally to the propagatifrthe subscriber side
interests a publisher can previously advertise its atieband a corresponding
value range, which enables additional possibilities to rowp the internal
mediation server performance, as shown in [137].

10

2.2 The Java Message Service

2.1.3 Performance Characterization in Pub/Sub

Overall two characteristics are important: (1) the expvesgss of filtering and
(2) the achievable maximum message throughput of the niediglatform.
The expressivenesdetermines the granularity at which the interests of the
subscribers can be captured. For example in header-baséslipusystems the
number of attributes introduced to each message, respbctive length of a
filter are influenced by the expressiveness. ffaximum message throughmit
a mediation platform is a key performance parameter, sino@ght represent
the overall performance bottleneck, due to the centralactiar of the pub/sub
system.

Furthermore, other requirements which have to be considerean event
routing environment are the timely delivery of messagédmbitity of the service,
as well as preserving the message transmission orderisg. guarantees for
message delivery and roll-back mechanisms in case of adaie key features
in industry standard implementations.

2.2 The Java Message Service

TheJava message servi¢d8MS) is anapplication programming interfacAPI)
provided by Sun Microsystems (now Oracle) as described 29][&nd [120].
It is organized as a programming framework for Java, butidens a generic
system behavior. In general, the JMS framework defines thesyas a set of
non-implemented Java methods such as interfaces and cbsgthods, where
the specific implementations are up to a vendor.

The API defines Java interfaces for the publishers how torgémend send
messages to the JMS server. For the subscriber side, thedidwa interfaces
consider the reception of these messages — or a subsetftherem the IMS
server. The API provides abstract Java methods to conteintessage flow
by various message filtering options. The JMS server itsdiich represents
the mediation server, is not specified by the API and its imgletation is up

11

2 Background and Motivation

- Message flow ---------- >
.4, UMS 4

'server

. / Fittered 3

message
'

W, v

Publishers Subscribers

Filters Replication
grade

Figure 2.3:The JMS server defines the participating entities as wellhas t
message structure.

to a vendor, as well as the underlying communication mechasibetween
publishers and subscribers. In this context the replinagjicade describes the
number of messages which have to be transmitted to the $dasciby the

JMS server for a single published message. The overall taothie of the

JMS framework is depicted in Figure 2.3. In this section, wsalibe the JIMS
framework and the most important features provided by th8 NRI.

2.2.1 JMS Message

One of the basic components of the JMS API is the definitionntérfaces
to represent a message. In JMS context, a message is splannapplication
header part and a message body, as depicted in Figure 2.4ppheation header
consists of a fixed and an application-specific part, whightbdy contains solely
payload data.

The JMS API defines up to 10 different fields in tieed partof the header.
A detailed description can be found in [141]. We introducéefty the most
common parameters as outlined in Table 2.1. When publishimgssage, some

12

2.2 The Java Message Service

JMS message
Fixed header Application P
fields I ’ Application data ‘

Header Body

Figure 2.4:Structure of a JMS message.

of the properties can be set by the publisher applicatiorlevdthers can only
be set by the vendor specific publisher implementation oJM8 server itself.
Upon reception the subscriber application can overrideraerties with custom
values.

Table 2.1:Selected properties of the fixed header part in the JMS API.

Field name Value is set by Provided by Optional
JMSDestination Publisher Vendor No
JMSDeliveryMode Publisher JMS API No
JMSMessagelD Vendor/Publisher Vendor No
JMSCorrelationlD Publisher Client Yes
JMSRedelivered JMS server JMS API No

TheJMSDestinatiorparameter contains the destination of a message, e.g., the
name of a topic or a queue. The value must remain constartreagiption of
the message by a subscriber. ThdSDeliveryModeontrols, if a possible loss
of the transmitted message is tolerable. If it is set to paat, a subscriber has
to receive successfully the message “once and only oncestated in the JMS
API. Delivering a message twice may cause undefined behdoroexample if
the message contains only a differential update to a statedsat the subscriber.
E.g., consider a financial balance which is updated twice pgsitive value. In
contrast, non-persistent defines only a reception by at s and message
loss is not a concern. ThiMSMessagelland theJMSCorrelationIDare two
parameters for message identification. The message ID ibyséte vendor

13

2 Background and Motivation

specific publisher implementation, which cannot be infleehby the customer
application. However, the correlation ID can be set by thet@uer application
to mark a sequence of messages. Especially it is possibéatolsthis parameter
by a subscriber’s filter. ThéMSRedeliverefleld is an indicator that is set by the
JMS server in case a message has to be transmitted twicejwego a message
loss on the network path. This option holds for persistedtram-persistent mode
and marks, if a message is delivered a second time, due ta#@less of a IMS
message acknowledgement.

The JMS API also defines who provides the possible value$iéptoperties.
Some of the properties have defined a fixed value range pbbigithe IMS AP,
like the IMSDeliveryModeand theJMSRedeliveregarameter. Other properties,
like the JMSDestinatiorare specific implementations provided by the vendor
of the JMS server. Some of the parameters can be customizelebglient
application according to its demands, like thdSCorrelationID

In contrast to the fixed header part, seveapplication-specific properties
may be set in the application property section of a JIMS messagplication
properties can be specified by the application where the wéithe property and
its value are free to be adapted to the needs of an applicd¢isigner. They can
store common data types, likmoleans bytes integers floatsandstrings The
overall number of arguments is not limited for a message.

2.2.2 Message Selection (Filtering)

In contrast to the mechanisms on publisher side, a subsdrdsethe ability to

select messages according to different header propdritse JMS framework,

pub/sub is limited to the header-based routing concept twbansiders only
properties in the header of the JMS message and does not tdlselect

messages upon the content of their message body. Thistionita acceptable
for performance and scalability reasons. The JMS framewlefines a subset
of the SQL92 [22] conditional expression syntax as selackkmguage which
enables an increased complexity in designing messageaslean this work we

focus on the operands presented in Table 2.2.

14

2.2 The Java Message Service

Table 2.2:JMS SQL92: Important message selection operands.

Operand Data type
= All
<GS > 2>, F Arithmetic
AND, OR, NOT Boolean
BETWEEN Arithmetic
I'N String
LI KE String

The JMS framework does not specify which entity has to predhes filter.
But most vendors evaluate the installed selectors on the siwer for obvious
reasons. The JMS server will only forward messages to sibessrif their
installed SQL92 statement evaluatesTIRUE compared with the values set in
the properties of a message. The JMS framework specifies emrargpL| KE
that allows a message selection based on wild-cards inxtootestring based
data types, which is not considered in our evaluations. Thgact on filter
evaluation time by specifyingl KE-based fuzzy searches does not apply to the
high performance requirements of a data center applicatienario.

2.2.3 Message Transmission Modes and Reliability

In general, the JMS server does not define any mechanisms ihodseto
provide a guaranteed reliability and availability of the SMervice itself. The
JMS framework requires only a specific behavior for reliabkessage delivery
by defining constraints. The implementation and the metlusds to keep these
constraints are up to the vendor of the JMS server envirohmen

2.2.3.1 Differentiation of Service and Data Availability

Since the development of the JMS framework has been mainrgrdby Sun
Microsystems, it is worth to have a look on their implemeiotatstrategies
within the Sun Java System Application Sernjdi38], now known as the

15

2 Background and Motivation

Oracle System Application ServeFhe application-specific documentation of
this server introduces two levels of availability, tservice availabilityand
the data availability With respect to the pub/sub communication pattern this
differentiation can be considered as generally admitted.

With service availability it has to be ensured that the JMS service continues
its operation with a minimized down-time in case of a failoyeadding sufficient
redundancy. Single messages might be lost as long as the MiSesresumes
operation with only a minimal delay. Most common architeetucope with this
problem by providing standby backup servers or a clustectfaservers.

Data availabilitymeans the persistent and consistent information and messag
handling. This availability level enables the guaranteesiefined by the JMS
API, the once and only once message delivery (persistemay)ttle message
ordering (consistency). Data availability requires irmsed overhead compared to
pure service availability. Service availability is out abpe in this work, whereas
data availability is partly focused by evaluating the castim times of a large
number of subscribers, e.qg., after a system failure.

2.2.3.2 JMS Acknowledgement Modes

One important feature defined by the JMS API to ensure validsange trans-
mission is to acknowledge the reception and transmissianesfsages on their
way through the mediation environment. This enables tagddéeresponsibilities
to subsequent entities if they acknowledge correctnessplication level. In
general, JMS does not consider a message sent succestsittillijhe subscriber
acknowledges the reception of the message. The mediatititegrstore a
transmitting message until the appropriate acknowledgraenves. The JMS
framework describes three different mutually exclusivienaevledgment modes.
If the DUPS_OK_ACKNOW_EDGE mode is active, the JMS implementation
acknowledges only “lazily” the reception of messages. Harethe IJMS
specification does not state precisely what “lazily” in thismitext exactly means.
But by activating this option the JMS server can benefit fraraduced overhead

16

2.2 The Java Message Service

while maintaining its resources for persistent messageedtg! In this context
the subscriber implementation must be tolerant to the tememf duplicate
messages.

By default the mod&UTO_ACKNOW_EDCE s active. In this mode, the vendor
specific JMS implementation is responsible for sending askedgments upon
reception of a message. The subscriber application dodsawmetto pay attention
to acknowledge incoming messages. Since this mode intgfolbws the once-
and-only once policy, it introduces overhead on the JMSesdtself.

Activating the third modeCLI ENT__ACKNOW.EDGE a subscriber application
itself becomes responsible acknowledging a message i@tephe underlying
JMS environment should be aware to limit the number of unaskedged
messages. This protects a subscriber from message overload

2.2.3.3 JMS Message Delivery Modes

The JMS offers several modes to ensure persistent messtgerydeictivating
the persistentmode, messages are delivered reliably and in order. Thisropt
can be set by each individual publisher and affects all itsliphed messages.
In addition, a publisher can decide to set this option on ampessage basis,
if its default is set tonon-persistentIn both cases, a JMS server must not
deliver a message twice, especially in case of an outadee [iérsistent mode is
activated the JMS server has to store a copy of this messatijethe message is
successfully delivered to all interested and currentlynemted subscribers. This
might lead to a delayed delivery and therefore introducesieneased overhead
on the mediating entity.

In addition to the persistence options for messages, whiehcammonly
set by the publisher, a subscriber can define the mode toveepsssages. In
the durable mode, messages will be also forwarded to previously regidte
subscribers that are currently not connected while inrtbe-durable mode,
messages are forwarded only to subscribers who are presatitie. Thus, the
server requires a significant amount of buffer space to steessages in the
durable mode and it might achieve a larger throughput in thredurable mode.

17

2 Background and Motivation

Message flow

Publisher application » Subscriber application

IMS client APl <« M55 MSclient APl <« » VS client API

Vendor-specific
transport

Vendor-specific
transport

App.
transport

App.
transport

Network TCP_ Network TCP_ Network
connection connection

Publisher JMS server Subscriber

Figure 2.5:Communication layer in the JMS application environment.

Similar to databases the JMS framework also offers sodadhensacted
sessions. Here, in one transaction a set of messages isdtr@ata group. The
transaction itself is an atomic unit of work. In case of aufedl, the complete set
of messages within one transaction has to be destroyedisTaiso calledoll-
back So either all messages arrived successfully at all intedesubscribers, or
none of them.

2.2.4 Network Level Communication and
Application-Layer Transport

JMS introduces application-specific communication layfersconnections in
addition to the ISO/OSI layer model. The use of the networll gansport
layer is not explicitly defined by the JMS API. Typically, a PGP connection
is considered to be used, as depicted in Figure 2.5. Mostovenidtroduce
additional application-layer transport protocols, likeetadvanced message
gueuing protocolAMQP) [97], as an abstraction layer between transportrlaye
and an application-specific JIMS session. These transpatdquis are typically
adapted to the environment and the requirements of the Jykcation, e.g.,
reliability, performance, or compatibility.

To simplify the architecture and reduce the overhead pentlit is possible to
group several JMS sessions into one transport or TCP caangcgéspectively.

18

2.3 Application Scenario and Use-Case

This is also used in the test environment for emulating mpldttlients on a single
machine, as long as the performance characteristics @reiff clients or TCP
connections can be neglected.

2.3 Application Scenario and Use-Case

This section introduces an application scenario for thdigusubscribe com-
munication pattern based on a JMS environment. This seeiarised as a
motivation for our message-oriented middleware (MOM) eatibns presented
in this work.

2.3.1 MOM Application Deployment Scenarios

In general, we can distinguish two major deployment scesdir a pub/sub-
based system. The first scenario considersngrnet-scaledeployment of the
event routing engines, as often described in pub/sub telagrature, e.g., in
[46] and [49]. The second scenario concentrates on enahlingvent based
infrastructure for aservice oriented architectur€SOA) [115] in a local data
center, e.g., as applied in [89].

Considering the Internet-scale scenario, a large numberastaded event
routers are involved for transmitting messages and maintithe pub/sub
infrastructure. Additionally, an efficient routing engihas to be optimized for
low bandwidth consumption and delay tolerant networks.oAlse available
resources on an event router node are typically limitedei®#& self-organizing
approach for maintaining the topology and the subscrigtisused.

In contrast, a data center offering a service-orientediegigbn maintains a
local infrastructure with careful dimensioned server emwnents and network
connections. As depicted in Figure 2.6, this kind of scenadan be divided
into three parts according to [121]: (1) tipeesentation layerepresenting the
customers, (2) théusiness logic layewhere all service application logic is
located, and (3) data layerfor supporting high-performance data storage.

19

2 Background and Motivation

Presentation

Business Logic Layer Data Layer
Layer 9 y . v
: : z
Z Web App : =
/A,V server server 4
/ . ' Database
Web App.
server server lj
/ Storage
g\@ server
Clients / ; Front-end Service oriented -

customers : servers architecture /
. back-end

Figure 2.6:Data center scenario implementing pub/sub.

The presentation layer is typically implemented by a welwiser or a small
dedicated application, also called clients. The clienésrermally connected via
the Internet to the business logic of the data center andtrifighefore experience
best effort network conditions. Additionally, the cliemtgght be equipped with
less system resources to reduce price of the equipment potier consumption
in case of mobile devices.

In the business logic layer, we can differentiate two ddfersub-layers, i.e.,
the front-end and the back-end area. The front-end is re#iplerfor abstracting
the application logic from content delivery. This approaciables the scalability
of the number of customers and enables additional serviegs, optimized
graphical output of the content for the customer. The bauk-eandles the
application logic split into small services. The networkinectivity within the
back-end is based on a high-speed local area network (LAR)chwvenables
a distribution of the services among different applicatgmmvers, as depicted
in Figure 2.6. To enable communication between the sendc®OM, like
a JMS environment, is introduced. This JMS environment loakandle all

20

2.3 Application Scenario and Use-Case

messages exchanged by the application logic which repegenpublishers and
subscribers for the transmitted information. This leadhé&conclusion that the
performance of the JMS environment has to be well dimensionerder to avoid

bottlenecks. We assume, that the redundancy requireddiieree is part of the
JMS environment and the overall data center design itselfdamnot consider it

in this work.

2.3.2 Presence Information Exchange as a Use-Case

A typical scenario in nowadays communication infrastreetis the exchange

of presence informatioras described in [37] and [35]. Presence denotes the
state of software component or an individual person, éhg.person is currently
online and available for chatting. This kind of informatiisrypically exchanged

in social networks and instant messaging environmentseRoe information
can be used as a trigger for a specific action if the person éiaa sertain
presence state. For example, if the user sets the state Vaitatde for voice
communication”, the calling person might be adviced to éeavext message.

The change of presence information is typically represkasean event which
is published as a message from an application service aatirgypublisher to
the JMS environment. All interested subscribers, which lsarother services
and persons, have to be notified. The subscribers providenberests typically
by a set of complex filters, e.qg., filtering for the desiredsperidentifiers. The
filter design can vary from one complex filter to multiple simfilters per client.
Additionally, the reception of a state change might triggeascade of additional
events in the system.

Presence is only one example for a use-case of the pub/sulmwaication
pattern. The data center-oriented application deployraadtthe presence use-
case motivated the evaluations presented in this work.rQibe&sible use-cases,
alternative application deployment scenarios, and agpexsafor proper system
design are described in the following section.

21

2 Background and Motivation

2.4 Related Work

The field of content-based routing, especially the puldishgcribe communica-
tion pattern is a well-known research topic in literaturb@eTongoing research
covers a wide range of different issues regarding the corigation pattern
itself, the routing and subscription optimization, thetdtectural design options,
as well as performance evaluation. Also the topics of sgcudliability, and the
introduction of the communication pattern on differentwatk layers are hot
topics in the field of research, but out of scope for this wankthe following
subsections, we present a generalized overview on work enfithd of the
publish/subscribe communication pattern and differemir@gaches to evaluate
the performance, also regarding the JIMS framework.

In literature some of the terms introduced in the previoustises have
additional synonyms. The mediation server or JIMS servds@skanown as event
router or event broker. In pub/sub systems the tatigigatching notification and
receivingare often used as synonyms. Algmducerand publisher as well as
consumeiandsubscriberare replaceable terms for the same entities.

2.4.1 Publish/Subscribe Architecture and Design

The acceptance of the pub/sub communication pattern ongerlarcale is

enabled by an increasing performance of message-orierititleware systems
and the underlying hardware. A general introduction to thehitecture of

pub/sub systems is given by [57] whose authors describe dbe Iprinciples

of the involved entities and features of decoupling comrmatdn partners.
Typical scenarios and industry-wide accepted use-caseg$igning messaging
solutions are described by Hohpe and Woolf [121] and TerdySimawn [141].

Design and Architecture

Already in the early nineties, Bernstein [25] compared edéht middleware
components for distributed system services. Its major gotd cope with the

22

2.4 Related Work

heterogeneity of distributed computing problems usingmamication on lower
network layers. In nowadays service-oriented architestuthe same problems
like scalability and throughput might be observed, but tim@yed to application-
layer.

Antollini et al. [83] describe the requirements for implantiag a high level
publish/subscribe architecture in an enterprise gradernmition system. In
general, a definition of all entities of a pub/sub system aergas program-
ming interfaces and an approach to integrate JMS is prakehte described
mechanisms and interfaces are useful to identify realgténarios in the field
of pub/sub systems, and we therefore considered them watlirexperiment
design.

The design of large-scaled content-based routing is destiin the theses
of Muhl [49] and of Tarkoma [87]. The work of Tarkoma focusestbe event
routing process itself and also considers aspects of mpbilhe thesis of Muhl
presents an evaluation of the scalability of the event nguthfrastructure by
implementing a prototype. Both works inspired the desigd #i@ selection of
certain scenarios for the experiments done in this work.

Baldoni et al. [53] give an overview on the evolution of pullyscommuni-
cation systems. The authors review general issues in pulsfsstems, such as
anonymity of the participants and decoupling in time and flolhe advantages
and the difference between topic-based and content-bgstshss are discussed.
Also several research topics, still up-to-date, are maeticegarding the efficient
subscription routing and fault tolerance of the servers.

Filtering Strategies

Optimizing the filter evaluation performance is one of thg lssues to achieve
a high message throughput. Several publications deal wlighojptimization
of filters. Aguilera et al. [33] proposed some basic mechmgiso match the
content of messages by appropriate filters. They also velidheir methods by
simulative studies. In [39], a filter transformation to hipaecision diagram is

23

2 Background and Motivation

proposed. The authors of [48] take advantage of similaritidilters installed by
different subscribers. From our observations, not alleesruse these options to
increase the throughput by adding such optimizations tio siystem.

A general discussion of filter matching algorithms can bentbun [81].
According to the authors, tree-based algorithms are the eféisient way to
solve the filter matching problem. A generalized proof fodiing all matching
filters in sub-linear time is also presented in [33]. It is esfed that the time to
match a random event is not greater tt@fV'—*), whereN is the number of
subscriptions.

In [41] an approach is suggested to implement high-efficiitering algo-
rithms. The authors claim to supp@rtillion subscriptions and abo@00 events
per second. They consider also a high rate for subscribidguarsubscribing
clients. The proposed memory and CPU optimized algorithresezaluated
by measuring a prototype. The results gained from the exmts are quite
promising, but the assumed scenario differs from our olasiems in industrial
environments. “Very fast”, as indicated in the title of [4-ublish/subscribe
systems have to support message throughput rates orderagriitade higher
than600 messages per second, especially in case the system haptotaypto
6 million of parallel subscriptions. Typically in data certwriented applications,
subscriptions are aggregated on a per machine or per sétack level, which
reduces the number of parallel subscriptions in the pulsiigiscribe system.

Gorton et al. [58] introduce multiple mechanisms to optierfitering in large
data streams. The focus of the work considers JMS and alse sests with
the JBoss JMS server are conducted. We tried to evaluatBtes IMS server
as well, but the versions we used could not handle the loaeaffby our test
scenarios, so we were not able to apply our evaluation metdodever, the
basic design goals of the tests are in line with this work.

The authors of [36] introduce an approach using B-treegdas adistributed
data structureg(DDS) in a grid based storage network. Different easily aioial
services write concurrent pulled events to the DDS inftedtre and are
responsible for pushing the events to the subscribers.eShme DDS storage

24

2.4 Related Work

is assumed to be highly scalable and can achieve high thpotghtes, all

necessary modes for a pub/sub-based system are given.pfineaah might be
useful in a distributed server environment. Also resileergcsupported, which is
not considered in this work. The evaluation of the approauh easily be done
by applying our proposed methodology.

A general overview on requirements in filtering and its cepanding data
models is given in [42] by Muhl. A generic “content-basedadatodel”, as
well as constraints for values and notification types areodiced. Also it
defines a differentiation of perfect and imperfect mergifigubscriptions, by
considering similarities within their interests. Thesergiry mechanisms are
proposed with regards to optimized filter matching strategh detailed analysis
of the imperfect and perfect matching is presented in [72] anthe PhD
thesis “management of uncertainties in publish/subs@yistem” [106] by Liu.
The work of Liu focuses on fuzzy matching of event informatiagainst the
interests a client subscribed for, which is a prerequisiteehabling semantic
publish/subscribe systems.

Designing efficient filtering processes is one of the keyeassim designing
content-based routing. However, our focus is not on desggsuch filters, but
rather on evaluating the filtering performance in varyingrerios, and to develop
a flexible modeling approach for system dimensioning of dqubsystem.

Distributed Event Brokers

Besides filtering performance at each event broker, it iessary to keep the
system scalable to distribute the overall load upon mutiptokers. In case
multiple brokers are involved, subscriptions have to bériblisted throughout
the network, in order to optimize message routing and laafiz8], an efficient

way to aggregate subscriptions and to select the routifggraapplication-layer
is introduced. Subscription aggregation is also usefulsingle server scenario,
since the evaluation of a filter takes a noticeable amouritra#.tAs our results
showed, different broker applications can benefit from soptimizations. An

25

2 Background and Motivation

efficient event routing for content-based publish/sulcgystems is proposed
in [65]. This work introduces an architecture called Kyraietthtries to balance
the filter matching and routing load upon multiple brokersefefore the authors
propose different routing approaches and evaluate thgegtaims by comparing
different parameters, e.g., network performance, stocag, and processing
load. The evaluations are done by simulative studies. Aesuon common
“routing algorithms for content-based publish/subscrilystems” is presented
in [98]. A general overview on the entities as well as a setooting options
for event dissemination is given. Also architectural opsiofor organizing
subscription propagation and partitioning the filter matghmechanisms are
discussed. The authors conclude that many of the preselgtedtiams are only
evaluated by their authors using only “synthetic data setsimulative studies.
This is a motivation for our experimental driven approackvaluate the system
performance presented.

Another approach to increase system throughput perforeneart be achieved
by reducing the traffic at the server, which is caltpgenching This approach
is implemented byElvin4 as described in [29] and [38], a general-purpose
notification service. In order to reduce network traffic, tbeting entity informs
all publishers periodically about all registered subg@ips. In this work, a
theoretical estimation is presented, regarding perfoomatifferences between
filtering on subscriber side and publisher side. The autbb®&ena[34] propose
a distributed environment, where the replication of the sagss is done as
close as possible to the desired subscriber. Consisteltggsfintroduced by the
subscribers are aggregated as far as possible. Our evalsiaiowed that in a
data center scenario the network capacity is not a bottlefoeenessaging with
typical payload sizes, which might be different in an In&rscale scenario.

Hsiao proposes a different approach besides applicadiger-routing in [59]
by considering IP multicast. The approach is based on the fidework and
provides the interfaces as required by the JMS API. The azgian of message-
flows is mainly done by topic-based IP multicast groups. demfiltering is
done on subscriber side. Also a rate control is implemeritechse a subscriber

26

2.4 Related Work

gets overloaded. An implemented prototype showed promisaults regarding
the throughput with larger message body sizes. Followiegattproach in [70],
the server has only to evaluate the header parts of a JMS geesshat is

described as “lazy deserialization” in the work of Koao andhbl. During normal

deserialization process the overall IMS message Javat dligto be restored in
memory, which is a time and memory consuming task. Since #ssage body
is not of any use for the JMS API this step can be omitted. We elsluated

the throughput capacity depending on the message bodyasidefound, that
the observed impact of the message body size is well prédlictand does
not depend on the server’'s implementation, but on its nétyaicket forward

capacity.

Approaches for Generalized Models

In [63] an approach to model and validate distributed aeciitres based on
the publish/subscribe pattern is presented. In modern amplex distributed
systems, the automated model checking becomes an imppatdmtf developing
and programming, since cascading effects might influeneesytistem perfor-
mance. In this work, we test JMS framework features in aratedl manner on
a single server environment. The use of a single serveramvient reduces the
difficulties in verifying the environment.

A state-persistent model for handling subscriptions isoshiced in [47]. It
describes events and subscriptions as points in a multiditoeal space where
the distance between points determines a match betweeneath &vd a sub-
scription. This approach supports semantic-aware pulggstems. In addition
to the architectural considerations and definitions, a ¢isémplementation of
the matching algorithm as well as an analytical evaluatibrthe expected
performance is presented in [60]. A major focus of this wakon updating
subscribers interests which means a modification of thecsipbtion. The JMS
framework does not support a subscription modification, woveork does not
consider modification. We assume in our scenarios a corigealgletion and a
modified re-subscription process for processing a modidioat

27

2 Background and Motivation

A cost model for publish/subscribe with focus on mobile ggit/ironments
is presented in [74]. The authors compare a client-serveedand a polling
based communication pattern with the publish/subscrilmensonication pattern
by a cost-based analysis. The evaluation is done regartgotal cost for a
given scenario and the cost for each single access to thensyst case of the
pub/sub system is transmitting a message. While developipgb/sub system
representing its central nature in the software commusicathe calculation
of costs is an important issue. Since its costs add to the imtesiuced by
the other software components it might take an importarg molthe overall
service delivery. We focus not on evaluating costs, theidaodiffer from our
throughput analysis, but cost evaluation may completeytbm analysis.

Peer-to-Peer Based Event Brokers

A major advantage for efficiently implementing the decouplifeatures in
pub/sub environments is the central nature of the medigpiatform, that
all clients have to connect to. The well-knowreer-to-peer(P2P) principle
can add additional features to enable an efficient disidhuof the pub/sub
system. A lot of research has been done in this area. A gedealission
of infrastructure-less pub/sub systems based on P2P jpienisi done in [82].
In [62] a publish/subscribe system based odistributed hash tabl¢DHT) is
proposed. In the case of a DHT, all clients are involved inistrthe subscriptions
and evaluating them. Fault tolerance is introduced as aurfeaif the DHT
approach. If a single subscription is frequently used, 8saiated node might
get overloaded which limits the scalability of the overgitem. Triantafillou et
al. [77] also propose a DHT based system but specialize thg $e Chord
which forms the DHT in a ring-like overlay structure. Thegitike overlay
structure supports a better load balancing between thesnadeheir estimation
of the workload shows. From a message throughput perforenpoint of view,
the overall achievable throughput in P2P based publisbtsilie architectures
depends on the number of involved nodes and their CPU cgpagipically,

28

2.4 Related Work

the available system resources in terms of CPU and memorsatirer low in
a fully distributed environment, therefore a large numbfenades is necessary.
This leads to the former described problems in efficientatipison handling and
message routing. All in all, the central approach, as fatusehis work, is the
better choice to cope with the requirements of a data ceptdication. Some of
the investigated algorithms might be useful in case of Iadrring the servers.

Quality of Service Considerations

An important aspect in the field of publish/subscribe is tfuality of service
(Qo0S). Especially if a timely delivery of messages is nemgsshe pub-
lish/subscribe system has to be QoS aware. In [84] and [#&}eint approaches
for enabling QoS guarantees are presented and evaluategtnis of their
performance. Our focus is not on the QoS features of a publibkcribe system,
but we present an approach to model the internal behaviodlg&server, which
might be used to evaluate the desired QoS behavior.

Reliability Aspects

Introducing reliability in distributed and dynamic pulilisubscribe networks
causes additional overhead. In [55] and [67], differentrapphes to design a
reliable publish/subscribe system are introduced anduated by simulations
regarding different failure rates, e.g., network link faés. This applies for
dynamic broker networks distributed over an Internet-tgseablish/subscribe
network. In our data center-oriented approach, this kincdprmblem can be
handled by adding redundant server resources with the ppat®e resilience
mechanisms. The resilience mechanisms in a data centett wogisider the
presented approaches in the dynamic environment, butajypithey introduce
too much overhead compared to simple one-by-one serveupattategy.

29

2 Background and Motivation

Security Issues

Security and confidentiality are important issues for penfnce of a pub-
lish/subscribe system. In [51], the authors point out soemeisty issues arising
from the structure of pub/sub systems. A number of probleomsecalong with
this type of communication, e.g., authentication of put#is and subscribers
among each other, information confidentiality, and sulpsiom confidentiality.
It must be taken into account whether the publish/subsdnibrastructure is
trusted or not, resulting in different mechanisms that caruged to solve the
mentioned problems, as described by the authors of [69]o,Ademe of the
security requirements conflict with the pub/sub model. Baneple, content-
based routing includes the evaluation of the informatidnisTs not possible if
the message is encrypted (information confidentiality3egk a trust relationship
exists for the overall environment, including the mediattatform. Some of the
approaches usepablic key infrastructuréPKI) or similar approaches which are
not part of the publish/subscribe domain, others rely omustéd infrastructure.
Since we are focusing on a data center scenario, our teststdmnsider any
security options, but can be easily extended to take thewraictount.

Applying Pub/Sub to Lower ISO/OSI Layers

In Future Internet scenarios currently under discussibe,gublish/subscribe
communication pattern is also of interest in replacing tireent communication
based on IP addressing. A project calledblish-Subscribe Internetworking
Routing Paradigm(PSIRP) [103] focuses on this topic. Several scientific pub-
lications introduce different aspects of the routing pagadon lower layers.
In [103], a general overview on the PSIRP architecture ismgiwhereas [110]
focuses on an experimental driven approach to evaluate RRPSiototype in
current Future Internet test facilities, like PlanetLaf][6nd FEDERICA [93].
Another approach with the same goal is [96] the LIPSIN emrinent, where
a linespeed supporting publish/subscribe system is inted. LIPSIN can be
considered as another underlying forwarding fabric toitRjlar to Ethernet. The

30

2.4 Related Work

evaluations of the implemented prototypes showed simdkydperformance just
like a standard Linux-based IP-router. Since our applbcaticenario considers
the communication of software components the shift of thelipb/subscribe
communication to lower layers is an optional step which righuseful in future
network environments.

Summary

The previous section discussed related work introducing approaches to
implement an efficient publish/subscribe enabled seragin typical environ-
ments, a system is dimensioned and installed, based onatieais of existing
pieces of software and hardware. To get an idea how the systefiorms under
varying load conditions and in different use-cases, a perdoce evaluation of a
system is necessary which is the focus of the next sectioglded work.

2.4.2 Benchmarking Approaches for Message-Oriented
Middleware

JMS is a wide-spread and frequently used middleware teoggol herefore, its
throughput performance is of general interest. Severatnsagddress this aspect
already, but from a different viewpoint and in different tiep

JMS Benchmarks

The throughput performance of four different JMS servergdmpared and
evaluated in [71]: FioranoMQ [117], SonicMQ [132], TibcoEM143], and
WebSphereMQ [122]. The study focuses on several messagesmed)., the
durable, persistent message transmission mode. But itdnesnsider filtering,
which is the main objective in this work. The authors of [5&)nduct a
benchmark comparison for the Sun OneMQ [139] and IBM Web&We

[122]. Additionally, there exist several other performanstudies, with the
focus on providing comparisons of the server capaciti&s, 4 comparison of

31

2 Background and Motivation

FioranoMQ and the SonicMQ [118], or the SonicMQ vs. the IBMdSphereMQ
series [134]. Also some of the vendors provide their ownesufor testing
the JMS server performance, like done by IBM Hursley [123pni§ test
harness [133], or JBoss [125]. The results of the differest suites consider
the throughput performance in various message modes apdyiicular, with
different acknowledgment options for the persistent mgssaode. They also
examined simple filters but they did not conduct parametiicliss, and no
performance model was developed. The objective of our veoitka development
of such performance models to forecast the maximum messageghput for
given application scenarios.

The Apache working group provides the generic test tool éMfetr through-
put tests of the ActiveMQ [113]. However, it has only limitkahctionality such
that we rely on an implementation developed by us to automatexperiments.

Another benchmarking testbed is implemented by Pang [503. designed
to compare two message-oriented middleware servers, gart®IRV and Son-
icMQ. The tests evaluated the system’s capacity consigengssage throughput,
memory consumption, and CPU utilization. Also some sthbtiests are per-
formed, to test the system under high loads and resourgztitin. The tests con-
sider the publish/subscribe pattern, as well as the poupiint communication.
In comparison to our tests, the introduced load is an ordenagnitude lower
which prevents the authors from detecting some effectssiteer crashes with
unlimited message publishing. Also our tests focus on therifiig performance
of the publish/subscribe engines since that is the cruaidlgd the system.

In [102], the authors introduce an approach to benchmarkidM@neral. For
their evaluations, they designed a message load congidiwéntraffic mix of a
standard supply chain as observed in a supermarket scewiiah is described
in [91] and [90]. An extension of the IMSspec2007 benchmygikdalitional load
scenarios and evaluating a current version of the ActiveM@es is presented
in [101]. The process of the benchmark considers similaeetspas provided
in our experimental evaluations, like message size and aumbconsumers.
The considered server software is in line with the systemseveduated and

32

2.4 Related Work

leads to comparable results. In contrast to their work, wendbprovide a
standardized scenario with a fixed set of parameters. Fiegenmeters are
required by the IMSspec2007 benchmark for reasons of caiifigr with not
yet evaluated servers. Our approach supports a flexiblettmteof bottlenecks
in adapted scenarios. Additionally, we provide models tedast the throughput
performance of the system for a given scenario and investiha impact of the
internal queuing behavior of the server software.

Generalized Pub/Sub Benchmark Approaches

Another proposal for designing a “Benchmark Suite for Distred Publish/Sub-
scribe Systems” is presented in [45] but without measurémesults. The setup
of our experiments is in line with these recommendationsie&a benchmark
guidelines were suggested in [52] which apply both to JMStesys and
databases. However, scalability issues are not considetedh is the intention
of our work. Baldoni et al. present a generalized matheraltiodel for a general
pub/sub scenario in the durable mode with focus on messé#gsidn without
filters in [54]. The authors enhanced their analytical medeld validated it by
simulations in [79]. In the work of Baldoni also the filter wgid intervals are
considered, since their focus is on modeling a distributethiebased system. In
our work, a mathematical model is presented for the througperformance for
a single server in the non-durable mode including diffefidter configurations.
We evaluated our modeling approach by measurements and foasivalid and
in line with the work of Baldoni.

In [80], the memory requirements of different filtering aligoms for pub/sub
systems were studied theoretically and experimentallymbty consumption
during message processing is a key performance issue. Irexq@ariments,
we therefore carefully observed the memory usage, so it doegpresent a
performance bottleneck in the system.

In the context of mobile networks, a publish/subscribe esysbenefits from
the asynchronous communication. A performance evaluaifodMS servers

33

2 Background and Motivation

regarding the throughput is presented in [68], where theaatemulate different
network conditions typical to wireless networks. Since natwork conditions
remain constant, we do not see any effects like slow consjmeoving sub-
scribers, or changing network conditions. However, theeerpents conducted
in this work can be extended to consider varying network &tan.

As already stated in the design oriented section of relata#t QoS guaran-
tees in a pub/sub network are a good approach to ensuremparioe. In [66], an
empirical approach is considered to evaluate, if a JMS sés\able to hold the
chosen configuration and requirements set by the clientsudmvork, we do not
explicitly evaluate QoS parameters, but mention duringrtkasurements, where
the observed behavior differs from the one configured.

An experimental driven evaluation of two different JMS dmlns, namely
JBoss MQ and is done by Laranjeiro et al. in [94]. Their focien robustness,
which is part of benchmarking evaluations, and securityenehhey evaluate the
servers by different well-known problems in this field to wheulnerability and
the protection against it. Since our experiments do notf@rusecurity aspects,
we switched off any features regarding security. We assuha,in a closed
data center network the security aspect can be handled ky etttities in the
system. The robustness aspect is a crucial aspect and ddnetiee stress-testing
approach we followed. By using our models we can predict #dopmance
limits of the software, in order to prevent failures duriresiyn of an application.

2.4.3 Other Messaging Approaches and JMS Servers

For the evaluation part we selected a set of JMS servers asiliiEs in the
following experimental chapter Chapter 3 of this work. Galewe consider not
only the selected servers. Several other servers and apeoavere tested and
discarded, since they crashed in our test scenarios, omtligravide the desired
feature set. But still, they might be interesting approadhé¢he publish/subscribe
application middleware field.

34

2.4 Related Work

Messaging Product Vendors

That there are major differences in performance and foctvedem the different
vendors becomes apparent if we look at the history of segefédare products.
For example Oracle completed their portfolio be acquiring tompanies Bea
and Sun including their messaging servers. The former ptedyf Bea and Sun
are still available as standalone software in the produdfqm of Oracle. In the
area of open source the development of the ActiveMQ serveichnis part of
our evaluations, moved from a small company to the Apachedation, where
it matured to a industry accepted application. The forméM I@search project
Gryphon [31], which included a large set of mechanisms dgesl in science,
became part of the IBM WebSphereMQ server. The WebSphereBi®ion
including all optimizations introduced by Gryphon is paftour performance
evaluation.

Other major vendors, like Amazon, do not focus on the JMS éwaark, while
implementing own versions of a large scale publish/subs@ystem. Th&imple
Notification Servicd SNS) with focus on real time event communication and the
Simple Queue Servid®QS) focusing on the decoupling of communication by
introducing a queue, are good examples for highly scalablgigh/subscribe
systems. Since these services are only available as a alovidesand not as a
standalone product, we did not consider them in our research

Application-Layer Communication

An important part while using pub/sub systems is the undeglgommunication
protocol. From a vendor point of view a large variety of conmication protocol
standards have to be supported to reflect the different refélde customers and
guarantee their interoperability. But the selection of application-layer com-
munication protocol has a high impact on the overall perforae of the system,
e.g., if amessage is transmitted in plain text, or seridltpea binary data stream.
In our scenarios we used the application-layer transpotbpols, as configured
by default. We payed attention to consider only protocolsictv transmit the
messages in a binary stream and do not include text baseatplatlike JSON

35

2 Background and Motivation

[105], SOAP, HTTP, or even e-mail. One of the most commonquais used for
binary data transmission is the so-callédvanced Message Queuing Protocol
(AMQP) [104]. AMQP describes an open protocol specificataond defines
efficient application message formats, which are calledévavel” formats in
the AMQP documentation. The AMQP documentation describeessemantics
of broker services which is in competition with the JMS fravoek. Many
vendors, like the ActiveMQ software, use the AMQP protogmdfications for
application-layer transport and offer the interfaces aefiby the JMS framework
to the customer applications. The RabbitMQ [108] software aecent product
fully supports the AMQP framework while being based on theSi&mework.
Since RabbitMQ does not directly offer IMS adapters, wegprife ActiveMQ
software as an open source representative in our evalsatitowever, our tests
can easily be extended to test the RabbitMQ software as Welincrease the
performance by using alternative physical connectionrteldgies an approach
is introduced in [95] where the AMQP protocol is applied ofidiBand, a very
powerful transmission technology using copper cables.

Other JMS Servers

There is a huge amount of industry standard JMS brokersaéaibn market.
A list of current implementations can be found at [109]. Far evaluations,
we consider the server implementions of FioranoMQ [116MM/ebSphereMQ
[122], Bea WebLogic Application Server (now Oracle) [103lyn Java System
Message Queue (now Oracle) [139], and ActiveMQ [112]. We dtok at
different JMS middleware software, like JORAM [99], JBos3M100], and
open source implementation OpenJMS [92]. JBossMQ (verdi6rBSP1), in
the version we have tested, crashed while handling the iéfea of our test
clients, as described in the next chapter Chapter 3. Therefe implemented a
special rate control in our test clients, to perform our expents, but since they
do not fully apply to our test requirements we do not consitdem in this work.
OpenJMS completes our test scenarios successfully, boxétsll performance
is too low to be considered in our results.

36

2.4 Related Work

General Pub/Sub Prototypes with Focus on Research
In contrast to the previously introduced industry focuseftwgare components,
there are multiple research projects providing prototygras grown up environ-
ments to test and support new approaches in science.

One of the first implementations of a content-based pub/ystem is the
Scalable Internet Event Notification Architect(®lENA) [30] and [137]. The
focus of the SIENA system is on an Internet-scale deploymeith efficient
overlay connections for routing events and subscriptiBHENA is a very flexible
and extensible approach, but not of use in a productive @mvient. The detailed
description of the event handling introduced by SIENA sufgpos by designing
efficient filtering tests. Since SIENA does not support IMSde@ot consider it
in our evaluations.

Another flexible approach for a distributed event-baseddieiglare is intro-
duced by Pietzuch in [75] and called HERMES. A characteristihe presented
work is the integration of an evaluation of the introducedoaithms by a
distributed simulator. We do not simulate our scenarios,pesent analytical
models derived from our experiments.

The Java Event-Based Distributed Infrastructuf@EDI) [40] organizes the
distributed brokers, calleévent dispatchersin a tree like structure. Each
subscription is propagated upwards in this tree structutied root element. This
kind of architecture supports a dynamic organization ohed@déssemination, but
lacks robustness. We did not consider this approach sirioglements only a
very simple not-optimized filtering engine. Another reasat to consider the
three approaches, SIENA, HERMES, or JEDI is that they do uygpart the IMS
framework.

SpiderCast, introduced in [89] by Chockler et al., is a tdmsed distributed
pub/sub system focusing the optimization of well-cormedegubscription patterns
using a simple distributed heuristic. In [89] the results arostly evaluated on
an empirical level while the authors provide a theoretiggdraximation of their
approach in [88]. Overall, this approach introduces a vdiigient distributed
pub/sub system, but is limited to the topic-based pub/sutneonication pattern.

37

2 Background and Motivation

One of the few scientific prototypes including adapterstierdMS framework
is the Narada Brokering service, introduced in [46]. Sinige focus of this
approach is on a distributed broker service for grid conmgutand Narada
implements an XML-based text-oriented message processago not consider
it for our server evaluations. Pereira et al. introduce la@oXML-based approach
in [43]. The authors claim that this approach is high perfammin terms of
message throughput. However, the performance evalualimms in the work of
Fox and Pereira show that the achievable message througégatmance is in
the medium range of the systems we evaluate.

Corona, which is presented in [86], is another distributiglo/pub system with
focus on polling based message reception by the subscrifseigateresting part
of the work is the evaluation of the system in the PlanetLaltbt, which is
distributed all over the Internet. However, we consideraldestbed to ensure
repeatability of our experiments regarding the messagmitfimput performance.
This cannot be guaranteed by using the PlanetLab enviranwigle it supports
a large-scale test of software functionality.

Summary

All approaches and methods in this section help us to urateisthe key
performance issues in a publish/subscribe system. BaseHeoliterature, we
start out to design a testbed for evaluating critical patarseof a centralized
publish/subscribe system based on the JMS framework. Tleetiem of the

evaluated servers is based on the products available on daheetmsupporting
our data center-oriented scenario, and representing a naitige of different
implementation options, which leads to different perfonee characteristics
during evaluation. In the following we consider the servapliementions of
FioranoMQ [116], IBM WebSphereMQ [122], Bea WebLogic Amgalfion Server
(now Oracle) [107], Sun Java System Message Queue (nowe)ifad9], and

ActiveMQ [112]. The next chapter introduces the experirakrnvironment,

which enables the message throughput measurements, amal bigdis for our
modeling and analytical approaches.

38

3 Experimental-Based System
Evaluation

In this section, we use the maximum throughput based on measuts of

different JMS servers as a performance measure. The olgjeictito assess
and characterize the impact of specific application scesaon the server
performance. In particular, we consider different filteersarios, as they are
essential for the use of a JMS server as a general messagegrplatform. We

explain the experimental facility setup and conduct sdyeeameter studies to
explore their impact on the JMS server throughput.

3.1 Experimental Environment and Experiment
Design

The objective of this section is the assessment of the meshagughput of dif-
ferent IMS servers, supporting the publish/subscribe aamization pattern, by
measuring the performance under various conditions. She@nplementation
of the JMS framework is up to the vendor, we build a testbeddexign a set
of experiments to evaluate the server performance chaistate. This approach
identifies system critical parameters which might presetitdnecks.

For comparability and reproducibility reasons, we firstalié®e the hardware
components involved, the network setup, and the configuraidf the operating
system. Then, an overview of the considered JMS server imgi¢ations and
their configuration is given. Finally, we describe the céti parameters, the
overall experiment design space, and the measurement doddiyy.

39

3 Experimental-Based System Evaluation

3.1.1 Experimental Environment Setup

For our experiments, we use dedicated hardware and a payrieest client
software. The experimental environment is defined by a wankfivhich is partly
automated.

Hardware Setup

Our dedicated test environment consists of a number of 12paters as
illustrated in Figure 3.1. Up to 10 of them are client machkiaged two are used for
control purposes, e.g., controlling jobs like setting ugt szenarios and starting
measurement runs. The 10 client machines have a 1 Gbit/®reinterface
which is connected to a single Gigabit switch. They are qupdpwith 3.2 GHz
single core CPUs and 2 GB system memory. The operating systepenSuSe
Linux 9.1 in standard configuration. To run the JMS environtnese install the
Java SDK 1.5.0 in default configuration. The control machiswe connected over
a 100 Mbit/s interface to the Gigabit switch. The hardwarmiastalled operating
system is tested by performing a system level benchmarkhnikicepeated in
case any hardware component or system software changegediiles of the
benchmark are stored as default values and the state of stensys called
calibrated

Design of the Test Client

In our experiments, ongerver machings used as a dedicated JMS server.
Up to four publisher machinesire exclusively used to run publishers and one
or up to 8subscriber machinesun the subscriber applications depending on
the experiment. If two or more publisher or subscriber maehiare used, the
emulated publishers or subscribers are distributed ggbaitween them. We
implemented test client software in such a way that eachighdsl or subscriber

is realized as a single Java thread, which has an connectitretJMS server
component. A management thread collects the measuredsviatue each thread
and appends these data to a file in periodic intervals.

40

3.1 Experimental Environment and Experiment Design

Dedicated JMS server machines

Figure 3.1:Hardware and network setup in the testbed.

Workflow of an Experiment

In general, anexperimentis a set of singlemeasurementswhere only one
parameter is changed, while all others are left unchangadh Eheasurement
is repeated several times aseasurement runt increase confidence in the
resulting mean value. The different measurement runs a@ tescalculate the
standard deviation and the corresponding confidence IEiglire 3.2 depicts
a chronological overview of three different phases fromehkperimental setup
over conducting the measurement runs up to the analysis efréhkulting
data. Phase 1 considers the design of a single or compleximqgre, and
defines the parameters to evaluate. In case a experimeriteggadesign, a
manual interaction is necessary. This can occur if a cedairfiguration and
the corresponding measurement runs always lead to a failutbe overall
experiment, which might be the case if the JMS server faceftaare error.

41

3 Experimental-Based System Evaluation

Experiment Configuration |,) Run Recalibrate
Design Files Measurements Testbed
. Update Validate Benchmark
Redesign Configuration Results Testbed
Preprocess Add Results Analyze Data /
Data to Database Visualization

Figure 3.2:Measuring and experimenting workflow.

Automation of the Experiment Workflow

The next step is to create and deploy configuration files feratlitomated test
environment. Phase 2 consists of two subordinated tasksh Eeasurement
produces results, which are automatically validated by té#s environment
considering the constraints defined for the experiment.\viibkation of a given
constraint is detected, the results of this particular mesment run are rejected,
and a re-run with an updated configuration is scheduled. Oegalar basis
or if the constraints are violated multiple times, the tedtie-calibrates itself,
by rebooting all machines and conducting a system level lmaadk of each
machine. The result of the benchmark is again validatednagai previously
measured default value. In case the benchmark result tedidegatively, a dump
of all system relevant data is performed, e.g., log-files H&dcounters. The
measurement is set on halt for manual interaction. Addiflgna new default
benchmark value is generated after each system upgradeaféeg introducing
new security patches. During the last phase, a post-prioges$ all data is
performed, in order to make them available via a databasefate or as result
figures, e.g., as shown in this work.

42

3.1 Experimental Environment and Experiment Design

3.1.2 Evaluated JMS Server Environment

For our performance evaluations, we focus on existing so#wmplemented
by different vendors. All these vendors have slightly difet implementations
regarding the pub/sub communication pattern. Therefbeedifferent software
products are shortly introduced in this section. The itetiah and configuration
specialities of the five considered server types are briefgcdbed, where the
basic idea is to keep the default configuration when possible

Table 3.1:JMS vendor: Overview on evaluated JMS servers.

Vendor Product name Version Open source

Fiorano Inc. FioranoMQ 7.5 No

Sun Microsystems Sun Java System MQ 3.6 No

IBM WebSphereMQ 6.0 No

Bea Inc. WebLogic App. Server 9.0 No

Apache Foundation ActiveMQ 4.0 Yes
Fiorano MQ

The FioranoMQ[117] version 7.5 server components is installed as JIMSeserv
software. The vendor’s default configuration is used as/eledd with the trial
version. The server has to be executed with superuser momss otherwise
user restrictions can limit the number of simultaneouslyrested clients to the
FioranoMQ kernel.

Sun Java System Message Queue (SUnMQ)

We install theSun Java System Message Qu&u2005Q1 platform edition
(version 3.6) [139], which is shipped with a trial licenselirding all features of
the enterprise edition. We use its default configuratiorepkéor the following

modifications. To enable the publish/subscribe mode, weauged customized
default topic. Normally, a large buffer is reserved for ining messages.

43

3 Experimental-Based System Evaluation

However, as it is too large for our experiments, we limit itaanaximum of

10,000 messages and switch on the flow control to avoid message tidbe a
incoming buffer. Otherwise, if the incoming message buffiee is set to the
default value, the server starts dispatching messagesetsithscribers after
receiving all messages from the publisher since we send themnsaturated
manner. Additionally, we increase the maximum thresholdsimultaneously

connected subscribers from 100 to 400.

IBM WebSphere MQ (WebSphereMQ)

We install the|IBM WebSphere MQ 6.@rial version [122] on the server
machine with the default configuration except for the follmgvmodifications.

For performance reasons, we disable the security modules siur experiments
do not focus on security issues. We raise the internal o#isini regarding the
number of parallel connections to the queue manager frordefault value 100
to 500. The WebSphereMQ software offers to use athird patygub engine. To
conduct our experiments, we use the WebSphereMQ'’s inetypatb/sub feature.

BEA WebLogic Application Server

For evaluation of thé8EA WebLogic Application Servéversion 9.0) [107] we
use the evaluation version provided by BEA as a binary. Wesadhe heap-size
of the Java Virtual Machine, such that 1 GB of memory is atdddor the server.
Furthermore, we define the upper and lower bounds for theafidee internal
message queue, which triggers the internal flow controk Bacomes necessary,
because the server does not slow down the publishers inltdetaiguration,
even with an exhausted queue space. This leads to unptadittehavior and
the server software fails.

Apache ActiveMQ

Finally, the open source produgictiveMQis considered for evaluation. The
ActiveMQ software is maintained by the Apache software ftation. Besides
the official documentation [112], an insightful descriptifor ActiveMQ is

44

3.1 Experimental Environment and Experiment Design

available as work-in-progress in [136]. In our tests, welai@ and compare
several versions of the ActiveMQ software, also in varyiogfiurations. This
helps us to separate software bugs from software perforenagicavior. For the
results presented in this work, we focus on the versions ddd4al. ActiveMQ
relies on system files to maintain connections and softwaaisdility states. To
run ActiveMQ with larger numbers of publishers and subsasbit needs more
system file handles at the same time than the Linux kernebalby default. We
increase the number of allowed parallel file handles in therang system to
an arbitrary chosen value ©6,384 compared to the default value $f096. This
value proved to be sufficient for all experiments.

3.1.3 Measurement Methodology

Our objective is the measurement of the JMS server messamegtiput capacity.
Therefore, we load the JMS server in all our experimenteedod00% CPU load
and verify that no other bottlenecks like system memory dwagk capacity
exist on the server machine. The publisher and subscribehimes must not be
bottlenecks, i.e., they should not run at an average CPUdreekding 75%. This
ensures that there is enough switching capacity left forethalated publishers
or subscribers. To monitor these side conditions, we usd.ithex tool “sar”,
which is part of the “sysstat” package [119]. We monitor tHelUCutilization,
1/0, memory, and network utilization for each measurement e use a per
second interval for recording our measurement values. adfita running JMS
server software, the CPU utilization of the IMS server maekioes not exceed
2%, and a fully loaded server must have a CPU utilization déast 96%, by
holding a 95% confidence level. This means that the measuezdge of the IMS
server's CPU utilization during a measurement run shoule llmmean value
which does not violate the 95% confidence level. To illusteasetting of a typical
experiment, Figure 3.3 shows the CPU utilization of the {sinalr, subscriber, and
server machines. We observe that the CPU utilization fod M8 server machine
remains above 95% at any time during the measurement rurhvighibe desired
behavior.

45

3 Experimental-Based System Evaluation

100
= 80r
c
g JMS server machine
[}
£ 60f
c
Re]
©))
N 4ot Subscriber machine
5 Publisher machine
-}
o
O 20f|4 A

0 20 40 60 80 100
Measurement time (s)

Figure 3.3:CPU utilization of a typical measurement run.

Experiments are conducted as follows. The publishers rsatnrated mode,
i.e., they send messages as fast as possible to the IMS stowaver, they are
slowed down if the server is overloaded since publisher sidssage queuing
is used. To save system processing resources during theiraeesnt phase, all
JMS messages are created in advance. For the same reasengaBary network
connections are established before the measurementskare & depicted in
Figure 3.4, the control machine initiates the system moinigoat first. After
that, the server components are initialized, followed leyghbscriber, as passive
receiving elements. If they are successfully up and runrting publishers are
initialized to standby. After a short period and verificatiof system readiness,
an execute command is sent almost simultaneously to théspebd and they
start sending their predefined messages.

Each experiment typically takes 600 s. Several experimshtsved that
a shorter experiment duration might include only warmupeaf. Since we
observed warm-up and cool-down effects, we cut off the firdtlast 50 to 100 s,

46

3.1 Experimental Environment and Experiment Design

Publisher applications
Subscriber applications
JMS server
Control machine
>
moi:tag:ing :;ri:r i:fl‘)n ihabr.‘ Measurement period Shudoun mcf\;ilt?)?'ing Time (S)

Figure 3.4:Schedule of a measurement run.

depending on the results of the system calibration. We cihnbverall number
of sent messages at the publishers and the overall numbeceiffed messages
by the subscribers within the remaining 400 to 500 s intetvatalculate the
server’s rate of received and dispatched messages. Féicaton purposes, we
repeat the measurements several times. In most cases, éage&ved overall
valid measurement data within our constraints, their tesuérdly differ such
that confidence intervals are very narrow even for a few runs.

Messages arriving at the JMS server sent by the publishersadiedreceived
messageand the ones sent out to the subscribers are cditgdtched messages
respectively. The sum of received and dispatched messadesated byverall
message throughputf a message sent by one publisher is dispatched to
different subscribers, it is replicated and sertimes by the JMS server and we
call r thereplication gradeof the message.

3.1.4 Experiment Parameter Design Space

In Figure 3.5 we depict a categorization of the differentpaeters, which impact
the JMS server performance. This applies also for desigantydimensioning
a JMS server deployment in practice. Each of the four maircsogerver uti-
lization, information granularity network/subscriber utilizatigrandthroughput
represent a domain of parameters, which are either ad)astgbthe designer
or given by the desired application scenario. Our goal isusing a common
experiment design, to test each parameter in an isolatétbanent and vary it
within in reasonable limits.

47

3 Experimental-Based System Evaluation

Filter types
Filter installation time Number of topics
Number of filters Complex filters
Expressiveness / \ (logical operators)
granularity
- Number of network connections
Redundancy / Resilience (TCP connection / JMS sessions)
Backup- LAN vs. WAN
capacity Network / (delay / loss)
Server .
utilization subscriber Capacity of
Local e e
memory utilization subscribers
1/0 access utilization Replication grade
Message
Size of message throughput Messaging mode
(persistent / durable / transacted)
Number of filters Number of clients

Figure 3.5:Parameters and tradeoffs for IMS performance.

A list of experiments is shown in Table 3.2. We start with sobasic
measurements in order to retrieve valuable input for oursmesment setup,
like the impact of the number of publishers and subscrilf&irsce our goal is to
measure the soft capacity of the JMS servers, we had to detethe minimum
number of clients necessary to fully load the server machine

The chosen performance measure is the overall messagehipuduof the
JMS server in terms of nhumber of messages. Also the impact \&drgng
message body size influences the data throughput perfoem@fbasic interest
is the performance impact, by enabling the filtering engifieis is done by
an experiment considering simple filters. In realistic eswinents, the basic
experiments help to identify the overall limits of the systeThe performance
of such a system depends mostly on the amount of informatsoscriber likes
to receive. This influences the complexity of the filter idiwoed to the system.

48

3.1 Experimental Environment and Experiment Design

Table 3.2:0verview on conducted experiments.

FioranoMQ
SunMQ
WebSphereM(
Bea WebLogic
ActiveMQ

Experiment

Basic Experiments

Impact of publishers x x x x X
Impact of subscribers x x x x X
Impact of messagesize x X X X X
Impact of topics x x X
Impact of simple filters x x x x X

Complex Filtering

Impact of AND-filters x x x X X
Impact of OR-filters x x x X X
Impact of IN-filters

x
x

Subscription / Connection Handling

Impact of TCP connections

x
x

Impact of flash-crowds X X

Within the complex filtering experiments, we evaluate th@tjimpact of the
number of involved subscribers and the replication graderotled by a varying
filter complexity.

In most systems, the subscribers are the dynamic elementthainstallation
and removal of filters might influence the overall system qanfince. A high
rate of system configuration changes, in terms of numbertefdiand connected
subscribers, is also known as busy-hour or flash-crowd sicerfaflash-crowd
scenario occurs typically after a system failure.

Another parameter is the observation that long runningesysthave an aging
behavior. We performed several long running experiments,the impact of
the system aging is too specific for the used environmentaw dome general

49

3 Experimental-Based System Evaluation

conclusions. Thus, we present only results for a reasornaibeexperiment run
time as described in the experiment setup. Reasonable nie@in&e have to
capture all short term effects, but slow long term perforogaimpacts are not
captured.

Since our major goal is not to compare the different vendoestienchmarking
manner, but provide a methodology to identify bottleneaks,did not repeat
each experiment for all considered servers.

3.2 Testing Basic System Performance

Using the experimental setup and parameters describe@ iprévious section,
we present in this section the results of the different erpents. The objective
is to assess and characterize the impact of basic applicatienarios in order
to calibrate our experiments and to obtain knowledge aboeitlitnits of the
examined JMS servers.

3.2.1 Impact of the Number of Publishers

In our first experiment, we study the impact of the number dflighers on
the message throughput. Two machines carry a varying nuofbeublishers
and one machine hosts a single subscriber. Figure 3.6(a)sstie received
message throughput at the JMS server in the persistent megddéost messages
are retransmitted by the JMS server and messages are pradityiwritten
on a disk for recovery purposes. FioranoMQ achieves theeligheceived
message throughput wig2,000 msgs/s, followed by SunMQ and Bea WebLogic
with 9,500 msgs/s. ActiveMQ achieves abotifs500 msgs/s received message
throughput and WebSphereMQ orily)00 msgs/s. Thus, the message throughput
spans several orders of magnitude. From the results wewamthat FioranoMQ
requires 40 publishers to achieve its maximum throughptiereas SunMQ
and WebSphereMQ need only 5 publishers to achieve a tygioalighput. For
ActiveMQ and Bea WebLogic 10 publisher threads are suffidergenerate a

50

3.2 Testing Basic System Performance

typical message throughput. We assume a measured thrduaghpypical if its
value is close to the maximum measured throughput and irsavsufficiently
large interval of the examined parameter. As a consequ&eepnsider in the
following experiments at least 10 or more publishers.

To assess the impact of the non-persistent mode, we regaztpleriment runs
with non-persistent messages where the server does notchaentain a central
storage. The results are collected in Figure 3.6(b). Theived throughput is
about 100,000 msgs/s for FioranoMQ13,500 msgs/s for SunMQ, ané,500
msgs/s for WebSphereMQ. ActiveMQ with ;000 msgs/s and Bea WebLogic
with 6,000 msgs/s also show an increased throughput. ActiveMQ capaserits
throughput abous.8 times, whereas Bea WebLogic can only achieve a factor of
about1.3. Thus, the message throughput is significantly increasepatticular
for WebSphereMQ. However, especially for WebSphereMQ, lseove a high
packet loss rate of about 8% under full load. All other ses\discard less than
5% of the offered message load.

We repeat both experiment series at least five times andlatdcine 98%
confidence intervals on this basis. They are shown for allessrin Figure 3.6.
For the persistent mode, they are very narrow for all senwdish results from
hardly varying system conditions. For the non-persisteatlen the confidence
intervals are narrow except the ones for the FioranoMQ sewiich might
be a result of the outstanding increase of throughput betlee persistent and
the non-persistent mode. For our scenarios we cannot aceegstage loss, thus
we consider only the persistent mode. We omit the presentati confidence
levels in the following figures for the sake of clarity. Netvegless, our internal
validation algorithm checked them after each experimenthvguarantees that
our constraints are not violated.

51

3 Experimental-Based System Evaluation

35— ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

f—f 777777777777777777777
30r / |
FioranoMQ

25; *]

201 | SunMQ]
Bea WebLogic

157 WebsphereMQ
ActiveMQ

| /
= o

Received throughput (1000 msgs/s)

0 20 40 60 80 100 120 140 160

Number of publishers

(a) Message transmission in persistent mode.

120— T T ‘ ‘
@«
& i
@ 100 JNI -
£ / —
g |t *
S 80 ‘ FioranoMQ 1
2w
< 60r . |
%’ Bea WebLogic
é 401 4 SunMQ ActiveMQ |
8 WebsphereMQ x
= I
§ 20 = U
o 7 |

0 20 40 60 80 100 120 140 160

Number of publishers

(b) Message transmission in non-persistent mode.

Figure 3.6:Impact of the number of publishers on the received message
throughput.

52

3.2 Testing Basic System Performance

3.2.2 Impact of the Number of Subscribers

Similar to the previous experiment, we investigate the ichjoé the number of
subscribers. To that end, we have 10 publisher threadsmarom one machine
and vary the number of subscribers on two other machinesré&g}7 shows the
received and the overall message throughput for differemviess.

The received message rate, as depicted in Figure 3.7(agades significantly
with increasing number of subscribers. Considering for example the Bea
WebLogic this starts with a measured received throughp@ %0 msgs/s for
one subscriber and ends with abdit msgs/s for 320 subscribers which is
omitted in Figure 3.6(a) for the sake of clarity. All othengers observe a similar
decrease for the received message throughput. This carpteéreed as follows.
No filters are applied and all messages are delivered toladkcsibbers. Thus, each
message is replicated times and we gain a replication graderof m for this
experiment. This requires more computational effort fapdiching messages
and increases the overall processing time of a single meséag consequence,
the received message rate is reduced because the ovevaljiiput capacity of
the server remains constant. Hence, the replication gradst be considered
when we compare the performance measures from differeetiexgnts.

Furthermore, it can be observed that the overall messageighput, as
depicted in Figure 3.7(b), increases for all servers to dividual maximum of
each server besides Bea WebLogic. If we consider the Bea bgbkerver, the
overall message throughput starts with a valud @500 msgs/s and increases
it to a maximum throughput of abot8,000 msgs/s for 80 to 160 subscribers.
If the number of connected subscribers is larger than 1&0owerall throughput
decreases to a value of aba®,000 msgs/s for 320 subscribers. According to
our monitoring tools, the server CPU is still the only baitiek in the system.
This phenomenon can also be observed for all other servestipt only to
a minor degree. The reason might be that the persistent stdh® messages
introduces additional delays beside the pure I/O acces$id is also discussed
for ActiveMQ in the corresponding development community.

53

3 Experimental-Based System Evaluation

35 ; . .
1
301 |]
\
)
251\ FioranoMQ J
20t \\ ActiveMQ b

Bea WebLogic
SunMQ

WebsphereMQ

Received throughput (1000 msgs/s)

e — T | S
00 10 20 30 40
Number of subscribers

(a) Received message throughput.

120 T T T T T T
100+ 1
|
|
SOT FioranoMQ]
Bea WebLogic |

60f

ActiveMQ — > 1

SunMQ \

VI

40!

WebsphereMQ \
0 50 100 150 200 250 300 320
Number of subscribers

20

Overall throughput (1000 msgs/s)

(b) Overall message throughput.

Figure 3.7:Impact of the number of subscribers on the message throtighpu

54

3.2 Testing Basic System Performance

3.2.3 Impact of the Message Size

The throughput of a JMS server can in addition to the measuneeissages per
second hessage throughpuibe measured in transmitted data volume per second
(data throughput The message body size has certainly an impact on bothsvalue
A larger message payload increases the data throughputarger messages
may also take more time for processing and reduce the messemeghput.
To quantify this tradeoff, we test the maximum throughpupeteling on the
message size. For each server type, we use such a set upetbattbr achieves
a sufficiently high throughput, i.e., 10 publisher threadstwo machines. We
use 10 subscriber on two machines for all servers. Figurst®8/s the overall
throughput depending on the payload and the correspondasgamge body size.
The calculation of the corresponding total message sizstiako account various
message headers, i.e., 40 Bytes JMS header, 32 Bytes TCérh2adytes IP
header, and 38 Bytes Ethernet header, as well as TCP fragtioen(T his value
slightly varies for the different servers, since differapplication-layer transport
protocols are used.

Figure 3.8(a) shows that an increasing message body sizeades the
message throughput and increases the data throughpuicsigtly, as depicted
in Figure 3.8(b). For small message sizes with a body sizebgfés, the message
throughput is limited by61,000 msgs/s for FioranoMQ and,000 msgs/s for
WebSphereMQ. For large message bodied®B884 bytes, the throughput is
limited by 4,400 msgs/s an@,400 msgs/s. Thus, the capacity ratio between the
server types changes. The performance degradation of thersénas different
shapes and depends also on the application scenario ofrtlee, $&., the number
of publishers and subscribers, the message replicatiotegrnd the filters.
The overall consumed bandwidth is between 336 Mbit/s and\eii#/'s for the
different servers. This is very large, but it does not yethethe TCP transmission
limit of our network for which we measured 820 Mbit/s in boihedtions. In our
experiments, the default value for the message body sizg i® © bytes. This
reduces the influence of the systems I/O performance.

55

3 Experimental-Based System Evaluation

Total message size (bytes)

x

NXN
> \V% \‘3’ \°~’ q‘,’gb Q‘)bb Q)b?/ \"(o ri’/ bP‘Q ’\/\ N
70

|
|
|
i
I

~ FioranoMQ
~

a
o
T

N
o
T

/ ActiveMQ

—

P SunMQ o

e

W
o

—x

L

—e—

Bea WebLogic
t WebsphereMQ ~a

N
o

-
o

Overall throughput (1000 msgs/s)

SO & & D® D P>
N o O\ @ QG QY P
v NP Q&
Message body size (bytes)
(a) Impact on the message throughput.
Total message size (bytes) >
o AV
v
R SRR R ,\\‘0 qg, b9 ’\’\ >
600 T T T T T T
500} FioranoMQ —
400! ActiveMQ \

SunMQ
300r

Bea WebLogic
200r
WebsphereMQ

1001

Overall throughput (Mbits/s)

0 e :)))
OO0 o &, @ & ® P
D BN RO RN SN Iy

Message body size (bytes)

(b) Impact on the data throughput.

Figure 3.8:Impact of the message body size on the overall throughput.

56

3.2 Testing Basic System Performance

We observe for basic network measurements without anyagtjan interference
that smaller payloads decrease the maximum achievableretiroughput. But
even with small packet sizes the network does not presenttieitseck in our
experiments. Hence, the effects of the filtering experimant more significant.

3.2.4 Impact of the Number of Topics

Messages published to a specific topic are only dispatchedrisumers who
have subscribed to this particular topic. Thus, topicsvaklovery coarse form
of message selection. In this section, we evaluate the imgfabe number of
topics on the message throughput for two different repbeagrades. In our
experiment, 10 publisher threads are installed on one ghlimachine and
two machines host up to 20 subscribers. We vary the numbespiaég on the
JMS server. Each publisher is connected to every topic andssmessages to
them in a round robin manner. A replication gradis obtained by registering
subscribers for each topic. A subscriber can be registeraulttiple topics at the
same time.

Figure 3.9 shows the message throughput for FioranoMQ, Sunkhd
WebSphereMQ. Since the benefit of the message throughpultsrés limited
for the topic scenario, we do not repeat the measurementadiveMQ and
Bea WebLogic. In our experiments FioranoMQ achieves thbdsgthroughput
followed by SunMQ and WebSphereMQ. The throughput congesgymptot-
ically to a value that is specific to the message replicaticade. This value
increases mostly with the replication grade. This holde far all three server
types. The throughput limit for many topics and a replicatgrader = 20
amounts t028,000 msgs/s for FioranoMQ16,000 msgs/s for SunMQ, and
4,000 msgs/s for WebSphereMQ. Installing more topics on the setfeads to a
decrease of the overall message throughput performandeh wéin be observed
for all three servers. Hence, topics can be used for coarssage selection
with a moderate performance loss for many topics. In pdgicihe impact
on message throughput is weaker for an increasing numbempafst than the
message replication grade.

57

3 Experimental-Based System Evaluation

w w » S
o &) o &
T
/
|
*
|
=
1
n
o

7:77727(}"‘F~~’77::*7 -]

FioranoMQ 7

N
o
T

~

Fos o SunMQ\

=~ _ _ WebsphereMQ \ 1

Overall throughput (1000 msgs/s)
;5 o 3
*

o
!
I
I
¥
I
|
|
I
—
|
|
I
[}

0
Number of topics

Figure 3.9:Impact of the number of topics on the message throughput for
different replication grades.

3.2.5 Impact of Filter Activation

In the next experiment, we evaluate the impact of filter atiiin on the message
throughput. Figure 3.10 shows the overall message thrauglgpending on the
number of subscribers with and without filters. We used 10lighirs in all
experiments.

FioranoMQ achieves its maximum throughput for 10 subscsib@bout
100,000 msgs/s for all subscribers without filters, but oBi§,000 msgs/s with
application property filters, which are part of the dynanéSImessage header.
We omitted the maximum throughput of FioranoMQ without fidtan Figure 3.10
for the sake of clarity. ActiveMQ, SunMQ, and WebSphereM@Quiee both 20
to 40 subscribers to reach their maximum throughput%900 msgs/s23,000
msgs/s, and 1,000 msgs/s, respectively. Bea WebLogic reaches its maximum
throughput of51,000 msgs/s between 50 and 200 subscribers. In contrast to
FioranoMQ, all four competitors show only a slightly deed capacity with

58

3.2 Testing Basic System Performance

l —— No filters
- > — Application property filters -

FioranoMQ

o
o

W
o

Bea WebLogic/ h

== N

n
(=}

WebsphereMQ SunMQ

e

50 100 150 200 250 300 320
Number of subscribers

Overall throughput (1000 msgs/s)
—_ B
O o

O

Figure 3.10:Impact of filter activation and the number of subscribers loa t
message throughput.

activated filtering. Thus, they are hardly slowed down byfthering engine in

this experiment. However, this finding is only valid if the ssage replication
grade increases with the number of subscribers, which itherartificial case.
In Chapter 4, we study the joint impact of filters and the gilon grade for
each server type in detail. After all, we learn from thesellteghat at least 10
subscribers are required for future experiments to get @eseptative value for
the maximum overall message throughput. As already arguretthé number of
publisher the choice of a typical message throughput alsymées the number
of subscribers for our further experiments.

59

3 Experimental-Based System Evaluation

3.3 Impact of Complex Filtering

A single client may be interested in a differentiated sub$etessages which can
be distinguished by a set of application header propeffiestefore, an enhanced
filter, we call it complex filtey can be installed on the server. A complex filter
consists of multiple simple filter components connectedigycal operators, like
"OR” or "AND". The following section evaluates the impactdifferent complex
filter types on JMS server throughput performance.

3.3.1 Impact of OR-Filters

If a single client is interested in messages with differgmplization property
values a logical "OR”-operator is required. There are twitedent options to get
these messages. The client sets up subscribers

(1) with a simple filter for each desired message type.

(2) with a single but complex OR-filter searching for all dedi message
types.

We assess the JMS server performance for both options. Viietheeeplication
grade at-=1. The publishers send IDs from #1 to #n in a round robin fashion

(1) To assess simple filters, we set up for each different |Bctyx one
subscriber with a filter for that ID.

(2) To assess complex filters, we set up 5 different subgsriiembered from
0 to 4. Subscribey searches for the IDs(# - i+ j) with i € [0; & — 1]
using an OR-filter.

In this experiment we use one publisher machine with 10 phbli threads and
one subscriber machine with a varying number of subscribeg subscribers,
respectively.

Figure 3.11 shows the message throughput depending,onhich is the
number of components in the complex OR-filter or the numbedifierent

60

3.3 Impact of Complex Filtering

wW
o

e —— Complex OR filters
- = - Simple filters

X

AchveHO/

Bea WebLogic

N
(&)
T

N
o
T

\ =
¥ WebsphereMQ ~ =2

R~
FioranoMQ

—
o
T

Overall throughput (1000 msgs/s)
o o

0 50 100 150 200 250 300320
Number of different IDs / simple filters

Figure 3.11:mpact of simple filters and complex OR-filters on the message
throughput for a replication grade o 1.

simple subscribers per client. Firstly, we observe thatrtiessage throughput
decreases significantly for an increasing number of iretadimple filters. This
is unlike in Figure 3.10 and the difference is caused by thallemreplication
grade which isr = 1 instead ofr = n. Thus, the number of filters decreases
the message throughput considerably if the messages afernatrded to all
subscribers, which is usually intended to avoid with filt&scondly, we observe
that complex filters lead to a larger throughput than simpteré but the extent
of the performance gain depends strongly on the server fgeFioranoMQ,
complex filters lead to a slightly larger throughput than tiplé simple filters
per client.

For SunMQ, complex filters yield a performance gain of roygh000 msgs/s.
For WebSphereMQ, complex filters even avoid the performdaosse that is
observed for simple filters. Thus, the handling of simple enchplex filters by
WebSphereMQ takes the same computation effort. Howevisrfittding holds

61

3 Experimental-Based System Evaluation

doubtless only to a certain extent. ActiveMQ outperformotier servers. The
throughput for the simple filter experiment is mostly lowear the throughput
for the complex OR filters experiment. Also for the Bea Wehikdle throughput

achieved with complex OR filters is higher than the one withgge filters, except

for 40 to 80 installed simple filters. This behavior can belaxgd by the results
of the basic experiments, where the maximum throughpubpagnce is reached
at about 80 subscribers.

3.3.2 Impact of AND-Filters

In the application header part of a message, multiple ptigsee.g.,P, ..., Pk,
can be defined. Complex AND-filters may be used to search fwipmessage
types. In the following, we assess the JMS server througigouomplex AND-
filters. Note that complex AND-filters are only applicable &pplication property
filters but not for correlation ID filters. We use one machinighwvtO publisher
threads and one machine with = 10 subscriber threads. The subscriber
machines are numbered B¥ [1; m].

We design two experiments with different potential for ap#ation of filter
matching. The subscribers set up the following complex Aflers of different
lengthn, whereP,, denotes an application property:

(1) for subscribey: Py =#j, Po=#0, ..., P, =40

(2) for subscribey: Py =#0, Po=#0, ..., P, =#j
The corresponding messages are sent by the publishers imd robin fashion
to achieve a replication grade of= 1. Then in experiment (1), the filters can
already reject non-matching messages by looking at thefifilest component.

In experiment (2) the JMS server can only reject non-matcimessages by
looking at alln filter components. The experiments are designed such tiiat bo
the replication grade and the number of subscribers renwainstant, and that
only the filter complexityn. varies. To avoid any impact of different message
sizes in this experiment series, we define- 25 properties in all messages to
obtain the same number of filter components.

62

3.3 Impact of Complex Filtering

—=— Filter differs in first component |
- » - Filter differs in last component

O\/\(:tweMO o x,,,,,w:

N
o
T

a——
*X

—_
(&)}
T

—_
o
T

(&)
T

X~
WebsphereMQ - ==
o

U — —= =%

20 25

Overall throughput (1000 msgs/s)

FioranoMQ™~ = ~ - — . _

00 5 10 15
AND-filter complexity

Figure 3.12:Impact of an early non-match decision for AND-filters on the
message throughput depending on the filter complexity.

Figure 3.12 shows the message throughput depending ontgrecimplexity
n. The filter complexity reduces the server capacity signifiigafor all servers
beside the WebSphereMQ. Experiment (1) yields a consitlelatyer message
throughput than experiment (2). Thus, an early reject dwtisf the filters
shortens the processing time of a message and increasebythiie server
capacity. As a consequence, programmers should care fordkee of individual
components within AND-filters: components with the leasttahaprobability
should be checked first. For WebSphereMQ, the message tipouds neither
affected by the filter complexity nor by the position of thergmonent, which is
decisive for the rejection of a message. As a consequencepmatude that the
filter logic of WebSphereMQ has a relatively high generagfitiverhead without
optimization for complex AND-filters. This holds, since gila filter expressions
take the same filtering effort as complex filter expressicegardless of the early
reject mechanism. Again, the ActiveMQ server outperforihether servers.

63

3 Experimental-Based System Evaluation

3.3.3 Impact of IN-Filters (Presence Use-Case)

In the following experiment, we consider a more realistiersrio, the presence
use-case as described in Section 2.3.2. It considers dgalegtenario where a
basic version of a presence information system is impleetkeriypically, each
user participating in such an environment can be identified bnique ID. If the
presence status of a user changes, a message will be saeaihoanthe senders
ID as application property. All entities interested in thegence information
subscribe with a complex filter for the desired identifiersr Bur experiment,
we compare two design options:

(1) considering IN-filters, where IN-filters describe a sklf¥s, and
(2) a complex OR-filter searching for all IDs as complex fitemponents.

For this experiment, we set a constant replication grade ef 1. We scale
the number of active users from = 50 up tom = 1,000. Each user is
interested in the status d&f = 5;10;20 other users including himself. The
number of different IDs sent by the publishers is definednby = m - k.
Overall, 20 publishers send messages with application epties | D="val”,
where vale {“0000”,...,n;p — 1}. If necessary, we prefix leading zeros to
the value in order to get a string of constant length. We asgtiat each of the:
users is interested inspecific IDs. In order to balance the experiment design, we
ensure that user i is interested in the ID rafigé; + £ — 1) mod (n;p — 1)].
The experiment is conducted in two different ways by cowgthe interested ID
range

(1) an OR-filter, or
(2) an IN-filter

on one subscriber in order to emulate one user. The serveesthanaintain at
maximum1,000 TCP connections at the same time.

64

3.3 Impact of Complex Filtering

35 . . .
- —— Interested in k=5 users
g 30} * - Interested in k=10 users |
o — > — Interested in k=20 users
€
o 25 i
S y
s 20F / ActiveMQ |
5 N
o 15 N |
= 10F ~ J
= ~ o R X x
e ~ X.
0>J 5 \ Sel) 1
o) x X

Bea WebLogic Twe

0 ‘ ‘ i S
10 50 100 500 1000
Number of subscribers
(a) Impact of OR-filters.
35 : . :
—— Interested in k=5 users
30k x- Interested in k=10 users |
‘ - = — Interested in k=20 users
*_
25r ‘\@X 1
ActiveMQ — >
201 1
Bea WebLogic

— -
o [&))

Overall throughput (1000 msgs/s)
a1

10 50 100 500 1000
Number of subscribers

(b) Impact of IN-filters.

Figure 3.13:mpact of the presence scenario on overall message thratighp

65

3 Experimental-Based System Evaluation

The measurement results for Bea WebLogic and ActiveMQ inufeig3.13
show that the overall message throughput performance dfitis is always
better than the one observed for the corresponding ORSfiltemajor decrease
in the overall message throughput can be observed for théileR when the
number of filtered users on the subscriber side increases. Whereas a larger set of
IDs in the IN-filter scenario leads to a small throughput dase for ActiveMQ,
and a slight decrease of the throughput for Bea WebLogic. @essurement
results show that ActiveMQ outperforms the Bea WebLogiweseby a factor
of about two. In general, we can recommend to use IN-filtesuizth a presence
use-case.

In Chapter 4 we introduce various models to predict the sehmughput
performance using complex OR and AND-filters. By adaptingséhmodels, a
varying replication grade can also be extrapolated for the IN-filters, respectively
the presence scenario.

3.4 Impact of Subscription Aggregation and
Registration

Besides the message throughput performance, we identiiiedther scenarios
of interest, the time to register a set of registrations &edrhpact of subscription
aggregation. Both scenarios are of interest for our expariai environment and
in real appliances. The time to register connections cotygrisal flash crowd
scenarios, like observed after a failure or during busiess. The aggregation
of subscriptions might reduce programming overhead if glsimachine has to
maintain multiple virtual subscriptions at the same time.

66

3.4 Impact of Subscription Aggregation and Registration

3.4.1 Impact of Aggregation Options for Multiple
Subscriptions

A test of the impact of different aggregation levels is parfed in this section.
The JMS API offers several connection types:

(1) Network connection
(2) JMS sessions
(3) Subscriptions

Each subscriber establishes a network connection, e.dCRiIFP connection
to the JMS server. Several IMS sessions can be aggregakéd suich a network
connection. A JMS session possibly contains multiple sgtsens installed by
the client application, whereby a single subscription cald lat most one filter.
When multiple subscriptions are set up between a subscnifaahine and a
server, a different number of network connections and JMSises can be used
to support the same number of subscriptions. In the follgnérperiment, the
impact of different aggregation options are evaluatedtfo96 subscriptions.

20 publisher threads are set up to send messages with salogsvfrom
“0000” to “4095”. On the subscriber side,096 different subscriptions are set
up, each of them having an application property filter foratlyaone of the
above numbers to assure a message replication grage Dfnsupscriptiondifferent
subscriptions are bundled into one JMS sessionagdondifferent IMS sessions
into one network connection of whiclhework €Xist. Thus, a valid configuration
must fulfill the equatiomsubscription® Tsession* Mnetwork= 4,096. The overall server
throughput is measured for different configurations.

Figure 3.14 shows the results depending on the number of #dSaoms for
Bea WebLogic and ActiveMQ. We observe an overall messagrigffput for
Bea WebLogic of aboug00 msgs/s for all considered configurations. Hence, the
aggregation options for multiple subscriptions have aeagimall impact on the
performance of Bea WebLogic. For ActiveMQ we observe a slijgtiifferent

67

3 Experimental-Based System Evaluation

2000

X= =
1500F)

1000 2 / Bea WebLogic

500 ——1 TCP connection

-x—-8 TCP connections

- * — 64 TCP connections
x-- 512 TCP connections

1 8 64 512 4096
Number of sessions per TCP connection

Overall throughput (msgs/s)

Figure 3.14Impact of the aggregation of 4096 subscriptions into a céffe
number of TCP connections and JMS sessions on the server
capacity.

result. ActiveMQ benefits from grouping several JIMS sessittsing one JMS
session per TCP connection, the achieved message thrdtighpticeable lower
than for 8 or more JMS sessions per TCP connection. This wditsam holds for
all numbers of TCP connections. Furthermore, the highesughput, with a
throughput rate about 17% higher than the other configursitie achieved with
512 TCP connections each carrying 8 JMS sessions. In generassiene that
the impact of the aggregation options, as also observed dar\BebLogic, can
be neglected in our experiments.

As a result for further experiments, we propose to estabfisreach JMS
session a separate network connection and for each suimt@pseparate IMS
session. If the number of subscriptions in the experimdatgger than the number
of network connections supported by the server, severatsiions are grouped
into one JMS session.

68

3.4 Impact of Subscription Aggregation and Registration

3.4.2 Evaluation of the Registration Time for
Subscriptions

In this section, we investigate the time duration which igdexd to register
different numbers of subscriptions. This is a crucial aspate the registration
of new subscriptions costs processing power. Furthermarease of flash
crowds, i.e., of multiple simultaneous subscriptions, tesponse time of the
server depends on the time needed to register the subsogptThis is an
important issue if we consider the so-called failover sderdescribed in [114].
In this scenario the message server, to which all clientganeected, fails and
all clients have to reconnect to a backup server.

Scenario with Inactive Publishers

To observe the impact of the subscription process itselftway first a scenario
where subscribers register to the JMS server, but the pasfisdo not send

messages. In general, the registration of a subscriptiotriggered at the

subscriber by calling the synchronosabscribe()method. The subscription is
successfully performed from the point of view of the sulisariby the time the

method finishes. However, the JMS API states that it is notaquaed that the

subscription is already active on the server at that timéhénexperiments, the
registration of all subscriber threads is started simelbarsly and we measure
the timetreg until the last thread returns from tiseibscribe(Jmethod call. Three

different types of filters are considered in the experiments

(1) two simple filters,
(2) OR-filters with two components, and
(3) IN-filters with two components.

The experiment is performed for ActiveMQ and Bea WebLogicthwi
m € {128;512,1,024; 2,048; 4,096; 8,192; 16,384; 32,768; 65,536} subscrib-
ers. The subscribers are run on up to 4 different machinesvda & CPU

69

3 Experimental-Based System Evaluation

bottleneck on any of the subscriber machines. For eachtfjper; the experiment
was repeated five times. The results of the different runseasesimilar such that
the resulting confidence intervals are very small. Howehey are omitted in the
following figures for better readability.

Figure 3.15(a) shows the overall time to register all subscs. The reg-
istration time scales almost linearly with the number of ssuitbers for Bea
WebLogic. The overall subscription registration time forctikeMQ server
increases slightly more than linear. On the one hand, thphgehows that
the registration of a large set of subscribers takes up terakseconds for
Bea WebLogic and up to several minutes for ActiveMQ. On theeohand, a
significant difference cannot be observed for the subsoripgtmes of different
filter types.

Figure 3.15(b) illustrates the average time for the regiigin of a single
subscription, i.e.,%. For Bea WebLogic this duration decreases with an
increasing number of subscriptions and finally converges tealue of 0.6
ms. This result is counter-intuitive at first sight. Howevier a small number
of subscribers, a measurement overhead is observable. Bogeanumber of
subscribers the results are more reliable. Another reasghtroe, that it takes
more time to install the first subscriptions. Until the imtak data structures are
large, the internal overhead increases to maintain thenaltelata structures. We
can also observe the same behavior for ActiveMQ up,®06 subscribers. With
more simultaneous subscribers, the time to register aesswdscription clearly
increases again for the ActiveMQ server.

70

3.4 Impact of Subscription Aggregation and Registration

10° (- ; : : ‘ ‘ ‘ ‘ ‘
—— Simple filters

- = - OR filters

<IN filters Y

ActiveMQ

Overall registration time (s)

Bea WebLogic

> U R P D O
U o F S F O P
N S

P W D R
Number of subscribers

(a) Overall time for the registration of all subscribers.

7t —— Simple filters 1
- = - ORfilters
gl * INfilters

5 L i
ActiveMQ % x

ol \ k]

3l X N]

\\\\\ Bea WebLogic

Single registration time (ms)

> P & o> D 0
Yo 9 @ AP oS
S S SR A
Number of subscribers

(b) Average time for the registration of a single subscriber

> v o>
NS & &

Figure 3.15:Time to register simultaneously starting subscriptiongiriactive
publishers.

71

3 Experimental-Based System Evaluation

Thus, only for Bea WebLogic we can notice that the regisiratime for a
filter does not increase with the number of already existirigssriptions. Again,
no significant difference is observed among different filigres, except the
impact of simple filters on the registration time for ActivéM

Scenario with Active Publishers

We perform a similar experiment with active publishers, ipeiblishers sending
messages that are not matched by already registered silsi Hence we set
a replication grade of = 0. This works well with the ActiveMQ server, but the
experiment cannot be conducted with the BEA WebLogic JM8esethe server
server stops accepting new subscriptions and blocks fattisrom sending and
never returns to its normal operation without displaying tailure notifications.
Thus, we focus on the results for the ActiveMQ server.

Figure 3.16 shows a different representation of the medsiata. The figure
considers on the x-axis the experiment run time and depitthe y-axis the
observed received message throughput. During a singleurggasnt run, one of
m € {128; 512; 1,024; 2,048; 4,096; 8,192; 16,384} subscriptions with a simple
filter are connected to the ActiveMQ server. The figure shdearty the warm-
up phase and the stable throughput conditions before thexriexpnt starts. After
this point in time the received throughput clearly decreabet the shape remains
remarkably constant for all numberssaf If the desired number of subscriptions
is reached, we can observe a slight impact of internal regerments of the
JMS server, while it eventually converges to a certain lefebceived message
throughput. Several repetitions of the same experimentlead to the same
result, so we again can omit the confidence intervals. We takeep in mind
that the y-axis is scaled logarithmic, so the stable phase ef 16,384 is still
reached at about 200 msgs/s.

With about 230 s for installing: = 8,192 subscribers, the scenario with active
publishers is an order of magnitude slower than the one wéhtive publishers,
where it took about 10 s to connect.

72

3.4 Impact of Subscription Aggregation and Registration

20000} \ Start of experiment |
° / -~ e m e m— oy 128
o 10000 1 g
£ o] 3
— 5000 T 1512 s
g N o
S 2000/ 11024 P
o \ ... o
= 1000f \:* 12048 §
§ 500 /(\’K;: TTTTTTTToo40% g
‘© [v] o
8 T = - 8192 3
[0 ActiveMQ
© 2001 M -116384
100

15 30 60 120 240 480 900
Time (s)

Figure 3.16:mpact of number of parallel subscriptions on receiveduffput.

The time to register a single subscription is in the order dfisaconds. As
a consequence, the registration of large set of subsangptinay take several
minutes. This is a critical issue for failover cases.

Evaluation of the First Message Delay

In a realistic scenario, the currently connected subsgiblso receive messages,
while new subscription registrations arrive at the JMS eerVhe experiment
conducted in this section considers a constant rate of nbacsption registra-
tion arrivals while dispatching messages to the alreadynected subscribers.
We monitor the delaytis between the start of the registration request and
the finished subscription. A subscriber is registered, wihersubscribe()API
method execution is completed. Additionally, we monita tielaytma between
completion of thesubscribeAPI method and the time until the first message
arrives at the newly registered subscriber. There arerdiffevays a JMS server
can handle new subscriptions. It can accept a new subseripid return as

73

3 Experimental-Based System Evaluation

fast as possible to block the subscriber for a minimum amaofinime. This
might lead to an internal queue of registration request&reviive assume that
tima differs from tys. Otherwise, the subscriber can block until all internalkdat
structures are fully updated, which becomes difficult intriisited JMS server
environments. Hence, the execution of théscribe()API method does only
guarantee that the connection between the subscriber andMI$ server is
established. But a subscribers registration process aiMt& server cannot be
assumed as successfully completed until the first sucdessfssage delivery.
The delay between a successful return of the APl method anéirgt message
is a crucial aspect, since the subscriber assumes it is ctathedut in reality it
experiences message loss.

In order to quantify the delay betweeén andtma Wwe designed an experiment
considering realistic conditions. We connect 20 publishier the ActiveMQ
server. Each publisher sends messages in saturated mdde witique appli-
cation property set and a property to identify the sendinblipbier. Thus, we
assume that at any point in time, a message is available odM& server
for dispatching, by using internal monitoring capabiltief the JMS server.
Furthermore, we can measure which messages are availahllésfatching on
the JMS server for a new arriving registration. This allovesta calculate the
number of lost messages. We connect up to 320 subscribefsusing a simple
filter for a unique application property. In order to balative experiment and to
avoid discarding messages, each unique application gyoigeiiltered by up to
16 subscribers. Also the subscribers register for the enjmoperties in a round
robin fashion. The inter-arrival time of the registratiogset to a constant delay
of 2 seconds, which is larger than the maximum observedesiegistration time.

In Figure 3.17 theomplementary cumulative distribution functi@®CDF) of
the observed single registration delay tim%@is plotted. The single registration
time tus increases for the subscribers exponentially. The delayetfitst message
arrival tima increases similar to the single registration time. Overabre than
10% of the registrations take longer than 500 ms. The deldawesn the
successful registration and the first message has an avefdifims for our

74

3.5 Concluding Remarks

10 <<

g \ Time to detect first message
O N /
o o \
— 10 ¢ O

A ‘n\w\\

> N

= 107 \

o

© \

[

o Time to register a single subscription -

1 0_:3 L L L \\\ AN
0 500 1000 1500 2000
Time t (ms)

Figure 3.17ActiveMQ: Delay between a single registration and detectime
first message.

scenario. During this period of time we measured an average 6f about
100 messages in our saturated scenario. We can concludarthegplication
considering a high rate of registrations has to considetr osssages or to
establish a synchronization mechanism between the concating partners,
especially for a failover scenario and in distributed JM&eeenvironments.

3.5 Concluding Remarks

In the preceding chapter, we measured and evaluated theagestsoughput of
the FioranoMQ, SunMQ, WebSphereMQ, Bea WebLogic, and AMi® JMS
servers under various conditions. The introduced testbedtitze measurement
methodology enables a reliable and controllable measurebased evaluation
of all kinds of servers. We also present a set of basic mewsnes, i.e., the client
scalability, data and message throughput, and messagticel® identify the

75

3 Experimental-Based System Evaluation

impact on the measured middleware environment and thefonpesince limits.
The enhanced measurements show that the throughput ctegpénds on the
replication grade and the number of filters and their conipleXhe measured
throughput performance for the five investigated serveedygpans over several
orders of magnitude.

The next chapter introduces a rather complex experimeigsskased on the
results of the experiments presented in this chapter. Theigdo evaluate the
joint impact of filters and the message replication grade bgsurement and to
propose mathematical approximation models of the messagessing time for
each server type. Using these models, we can predict theage#wsoughput for
specific application scenarios and can omit dedicated measunts.

76

4 Evaluating Message-Oriented
Middleware

In natural sciences it is common to observe and measureqathysistems and
to describe the results with an abstract model. Dependinthersystem this
model can be very complex. If we consider software packatpesnumber of
implemented methods, features, and their interdepenelemeay have a major
influence on the overall performance of the software package

Our approach to retrieve a rough model for system performamoughput
estimation is divided into the following major steps:

1. Design and run a set of experiments, which supports theratahding of
the system.

2. Based on the results of this experiment, apply a modeltwtaitows the
set of chosen parameters.

3. Calculate the system specific parameter set by multigeession and
least squares approximation.

4. Validate the model by applying the calculated system eslusing
additional measurement runs.

Using this approach we are able to find a rough estimating hiodall IMS
servers. We can even extend the models in order to coveri@ulispects by
varying the design parameters of the experiments.

77

4 Evaluating Message-Oriented Middleware

We know from the filter activation experiment in Section 3.2nd the
complex filter experiments in Sections 3.3.1 and 3.3.2 tliférdnt numbers
of installed filters and the replication grade have a majqudot on the server
capacity. Therefore, we start with an experiment seriesigeduch that we can
study the joint impact of filters and replication grade onnessage throughput.
As a result, we propose a simple analytical model to desc¢hibelependencies
and fit the model parameters to the measurement data.

Furthermore, the impact of different filtered propertiestsas correlation
ID filters and application property filters are evaluated: i@ SunMQ and the
WebSphereMQ servers an adapted model is proposed, sinceghavior cannot
be modeled using our basic assumption. In addition, for ttt&/&MQ server, we
present an extended model, which considers not only diffdiléer types and but
also lengths to the simple filters evaluated for the otheressr

This chapter starts with a general introduction to multiplgression and least-
squares approximation in Section 4.1. In Section 4.2, almetel is introduced
and evaluated for several IMS servers. Since this model isid for all servers,
we show some adapted models for the WebSphereMQ and the SsaMe€X in
Section 4.3. Due to the fact that the first experiments do aosider a complex
filter scenario, we enhance our basic model and validater ithfe ActiveMQ
server in Section 4.4. The concluding section presents alicapion of the
evaluated models and some remarks on the results.

4.1 Background: Multiple Regression and
Least-Squares Approximation

Linear regression is a method of modeling a dependent \arlatas a function

of a single variabler and is used in our approach to calculate the system specific
parameters, which characterize the performance of a nedtdiS server. In
systems with increased complexity we have to use multipabkesz, .. ., z,.

If these variables are independent and the response on aaictble can be

78

4.1 Background: Multiple Regression and Least-Squaresadxamation

modeled by a linear influence, the dependent variablean be written more
generally as a set affunctions considering independent variables

Yi = Bo+ fizi1 + Pexiz + ... + +0nTin + €, (4.1)

where the errog; is a variable with mean zero and variance The mean

EYi] = Bo + Bizia + Bexiz + ... + BuTin 4.2)

of the multiple linear regression model is defined such thé also a linear
function of regression parametets, 51, - . ., Bn.

To fit the model, we associate a least-squares function etefrom Equa-
tion (4.1), which has to be minimized with respect®Q 1, . . ., Bn:

i i n 2
L= Zei = Z <yk - Bo — Zﬁjxkj> (4.3)
k=1 k=1 j=1

Using multiple regression models, it is convenient to userdated variables and
operations in matrix notation. Hence, Equation (4.1) catrdesformed to

Y =XB+e (4.4)
In generalY is an ¢ x 1) vector of the observationsy is an ¢ x n) matrix of

the levels of the independent variabl@sis a (» x 1) vector of the regression
coefficients, and is an ¢ x 1) vector of random errors:

79

4 Evaluating Message-Oriented Middleware

Y1 1 11 Zi2 ... Zin
Y2 1 221 22 ... Ton
Y = X =
Yi 1 zi xi2 ... Zin
Bo €1
B1 €2
B= €=
ﬁn €4

The vector of least-squares estimators is searched, whiimimes

L=> e =¢e=(y—Xp)(y—Xp). (4.5)
k=1

The problem stated in Equation (4.5) can be reformulateahusie Euclidean
vector norm. The Euclidean vector norm for vector x is defiagd

2, =

(4.6)

With the Euclidean vector norm, the minimization problemb® solved using
Equation (4.5), is
min | X8~ y]l,. (4.7

One problem with the solutions provided by the above desdrifpproach
is that negative values might be valid solutions and repteae‘best fit". In
statistics, the problem can be divided in several classémedr least-squares
problems that have to meet additional inequality constsaiA very common

80

4.2 Modeling the Server Capacity

class consists of those with non-negativity constraimshis work, we calculate
overhead times, which means that the regression coefficibptdefinition, can
only have non-negative values. This problem is known asitimenegative least-
squaregNNLS) problem and can be formulated as

min|| X —yl, (5> 0). (4.8)

The Nonnegative Least Squares problem is a standard problemamerical
linear algebra [111], [128]. A number of commercial [147148], [142],
and open source libraries [64] provide approximation atgors to solve the
problem.

In our work, we use thesQNONNEGfunction of the MATLAB software suite
[142]. The algorithm starts with a set of possible basisatscand computes the
associated dual vectox. It then selects the basis vector corresponding to the
maximum value in\ in order to swap out of the basis in exchange for another
possible candidate. This continues untik 0. LSQNONNEGuUSses the algorithm
described in MATLAB documentation [128].

The least-squares approximation is only one possiblesttati method for
fitting. The method of maximum likelihood can be used as wdibwever,
it can be shown that the least squares estimates of the semrgsarameters
Bo, B1, ..., B: are maximum likelihood estimates. Thus, we decided to tatieu
only the least-squares approximation.

4.2 Modeling the Server Capacity

In the following sections, we present and evaluate perfaomamodels for
the servers measured in Chapter 3. In general, the sectiatrustured as
follows: We describe the experiment series for the desiextles, suggest a
suitable mathematical approximation model for the sedwenughput, and fit the
corresponding model parameters. The evaluation is coedlbg a validation of
the proposed model.

81

4 Evaluating Message-Oriented Middleware

Publisher JMS server Subscriber

@ — e —_11e

Receiving Filtering Dispatching

@~ _1O~_1@

\ \ /
I @—~110—~11@

Message processing time

Figure 4.1:Motivation for the modeling process.

4.2.1 Performance Model for the Message Processing
Time

As identified in Chapter 3, the maximum message throughpat I¥S server
can be used as a measure. Thus, it is interesting to modeh#asure to design
or dimension a real-world system. Our goal is to present afdaly performance
indicators for a JMS server in combination with an analyticeodel. This
approach reduces the effort for dimensioning the perfonmarf new hardware
and application scenarios, by reducing the necessary megasnt points for
calibration. The focus on certain critical parameters,ohltian be adapted to the
application scenario, differs our approach from pure beraking. Therefore,
the following assumptions have to be made.

We assume first, based on the results of our measurementhehmocessing
time of the JMS server for a message consists of three comfmnfs depicted
in Figure 4.1, the overall system consists of three parties,publisher, the
subscriber, and the JMS server itself as relaying elemdstifiternal processing
of the server can be divided into three partitions. On messagval, the server
has to move this message to an internal queue. Another grpoeseeds with the
message filtering task. After the filter evaluation, the sehas to dispatch each
message to the desired subscriber, which might also be sesiseparate task.
The experiences from the measurements show that the mgasagssing can

82

4.2 Modeling the Server Capacity

Overall message Time per Time for a
processing time B installed filter tgy, single dispatch ty,
a M M
4) .
E >
Time
Time to receive Time to dispatch
a message amessager - ty

Time to process/
filter a message
Nt - Lier

Figure 4.2:Basic model for the system utilization at the JMS server.

be assumed as an independent process for each messagevd bas,aggregate
the waiting space. This leads to an overhead time model astddjin Figure 4.2.
For each processed message, there is

e a fixed timet,cy which is almost independent of the number of installed
filters for a constant message size.

o a fixed timetsy, which the JMS server needs to evaluate if a filter matches
a message. If there amy filters installed on the server, the time needed to
match all filters isue - taer. This value depends on the application scenario.

e a fixed timet to forward a message. It depends on the message
replication grader. The time to forward a message to all recipients is
r - t, Which corresponds to the time the server needs to forwaapies
of the message.

Combining the described parameters leads to the followiegsage processing
time B:

B = tev+ nar - tir + 7 b (4-9)

Within time B, one message is received andnessages are sent on average.

83

4 Evaluating Message-Oriented Middleware

Therefore, the received and overall throughput can be Izl by% and Tjg,l,
respectively.

We call the model in Equation (4.9) our “base model”. Not alivers follow
the linear scale in the same way as our base model proposte hext section,
we first evaluate a separate validation of the model for tloealRioMQ, the Bea
WebLogic, and the ActiveMQ JMS server, where the base mqujsies.

4.2.2 FioranoMQ

The observations from the FioranoMQ server inspired majartspof the

presented model. Thus, we start our evaluation and vatidatf the previously
introduced model using this server. Different measurerseries for calculating
the parameters and verifying the model are conducted. Thawiag section

starts with a description of the measurement series setlipeanlts gained from
the measurement runs. The results are validated in a ses&@tion.

4.2.2.1 Experiment Setup and Measurement Results

The overall testbed setup includes three measurement neschone as a
publisher, one as a subscriber emulating machine, and aatedi FioranoMQ
server machine. The following experiments include expernits for correlation
ID and application property filtering. Both parameters aeet pf the JMS
message header, where the correlation ID is part of the fieadldr and the
application property is part of the user-defined header. anda expect that
the correlation ID filtering is close to the maximum achideaperformance
by a specific server, whereas the application propertie$ nepresent the
more realistic scenario. A detailed introduction to the JM&der is given in
Section 2.2.

Five publishers are connected to the JMS server and sendagesssvith
correlation ID #0 or application property value #0 in a sated way. Further-
more,m3%.+ subscribers are connected to the JMS sewvef,them filter for

application property value #0, while the othefdd, subscribers filter for value

84

4.2 Modeling the Server Capacity

#1. Hencem?2%9.4-r filters are installed altogether. This setting yields a rages

replication grade of-. We choose replication grades o {1;2;5; 10; 20; 40}
and m243, € {5;10; 20; 40; 80; 160} additional subscribers. The scenario with
n = 0 is covered by the filter activation experiment.

Table 4.1:FioranoMQ: Empirical values for the model parameters oftiessage
processing time in Equation (4.9)

parameter trev (S) tiitr (S) tix (S)

corr. ID filtering ~ 8.52-1077 7.02-107°% 1.70-107°
app. prop. filtering 4.10-107¢ 1.46-107° 1.62-1075

Figures 4.3(a) and 4.3(b) show the received and overall agesthroughput
for application property filters depending on the number redtalled filters
ne = m&3 4+ and on the replication grade. The solid lines depict the
measured throughput. An increasing number of installegt$ilbbviously reduces
the message throughput of the server. An increasing réiplicgrade decreases
the received message throughput, but it increases thellavessage throughput
of the server to a certain extent. We obtain similar measen¢icurves with about
100% more throughput for correlation ID filters. Since thayghof the curves is
identical we skipped the corresponding figures. In additreeconduct the same
experiment series with the23%.non-matching filters set to #1, . . .y, They
lead to the exactly same results as in Figures 4.3(a) and)4Bfus, we cannot
find any throughput improvement if the same filters are usstbad of different
filters. This implies that the model can also be used to ptéaécperformance in
scenarios where different filters are used, which might beemealistic.

4.2.2.2 Validation of the Model by Measurement Data

The results in Figures 4.3(a) and 4.3(b) visualize the veckiand overall
throughput. Within timeB, one message is received amdmessages are
dispatched by the server. Thus, the overall throughput iengby t* and

corresponds to the measurement results in Figure 4.3(b).

85

4 Evaluating Message-Oriented Middleware

—— Measured throughput |
- = — Analytical throughput

N w » ol [=2]
T T T T T

Received throughput (1000 msgs/s)
[

0 ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120
Number of application property filters

(a) Received message throughput — measurements and ealadigtia.

35 . .
—— Measured throughput
- = — Analytical throughput |

301
25h r={1,2,5,10, 20, 40} B
20r

15

101

Overall throughput (1000 msgs/s)

0 50 100 150 200
Number of application property filters

(b) Overall message throughput — measurements and amhlytita.

Figure 4.3:FioranoMQ: Impact of the number of filtersy, and the message
replication grade.

86

4.2 Modeling the Server Capacity

The parameterss, regarding the number of installed filters andegarding
the replication grade used for the message processing nifagquation (4.9) are
known from the respective experiments. We fit the parametgrs., andt by
the least squares approximation described in Section 4dapt the linear model
in Equation (4.9) to the measurement results. The resuti@mgmeter values are
compiled in Table 4.1 for correlation ID and application peaty filters. The
time tqy to filter a message is of an order of magnitude faster for tatioam 1D
filtering than processing application property filters. @ircorrelation IDs are
part of the fixed header, the internal filtering can processetkind of messages
more efficiently. This behavior might also lead to an impbugessage receiving
time tcy, Whereas the time to dispatch a messageremains constant. The
improvement of the,c, by an order of magnitude is also caused by the multiple
regression method, which tends to prefer the first regregsoameter. But this
does not affect the quality of our performance evaluation.

We calculate the message throughput based on these vatliEgjaation (4.9)
for all measured data points, and plot the results with dhdmes in Fig-
ures 4.3(a) and 4.3(b). The throughput from our analyticadieh fits very well
with our measurements for all numbers of filtexg and all replication grades
considering the result as a rough estimation of the oveyatiesn performance.
Additionally measured data points in the defined range, vaie not considered
in the regression process, enabled a double check of thizygofthe model.

4.2.3 BEA WebLogic Server

The server configuration for the following validation of tABea WebLogic is the
same as described in Section 3.1.2.

4.2.3.1 Experiment Setup and Measurement Results

We set up 20 publishers on a single machine, which send ongsages with
ID #0 to the server. According to our observations in the erpental chapter,
this increased number of publishers is necessary to sattir@tJMS server. To

87

4 Evaluating Message-Oriented Middleware

achieve a message replication graderpive set upr subscribers with a filter
for ID #0. Furthermore, we instaln29% € {5; 10; 20; 40; 80; 160} additional
subscribers with a filter for ID #1. Thus, the overall numbésobscribers or
filters on the server isuy = m2.+ r. We vary this number of subscribers
equally distributed over two subscriber machines. Sinae mmysical machine
might present a bottleneck, we increased the number of sbbsenachines.

Figures 4.4(a) and 4.4(b) show the results for complex eatitin property
filters for different settings ofuir and r. Both the received and the overall
throughput slightly decrease with an increasing numberltaf$i. However, the
message replication gragehas a larger influence on the throughput. Again, an
increasing replication grade decreases the receivedghput while it increases
the overall throughput.

We also conduct another experiment where &, additional filters are
different, but we obtain exactly the same results as in [Eigdr4(a) and 4.4(b).
Hence, the BEA WebLogic JMS server does not take advantaggmeé filters in
the system. Furthermore, we perform the same experimeesder correlation
ID filters and the results showed a slightly larger throughput the throughput
curves are qualitatively similar. Therefore, we omittee figures.

4.2.3.2 Validation of the Model

Again, we derive the values farey, tir, andiyx by the least-squares approxi-
mation based on the model in Equation (4.9) and the expetahessults for the
received throughput for all parameter combinationssefandr. Table 4.2 shows
the obtained model parameters for both application prgpert correlation ID
filters.

Table 4.2:Bea WebLogic: Empirical values for the model in Equatio9)4.
parameter trev (S) tiitr (S) tix (S)

corr. ID filtering ~ 7.6239 - 10™° 3.1410 - 10~" 1.6944 - 107°
app. prop. filtering 8.0182 - 107° 5.3332-10"7 1.7319-107°

88

4.2 Modeling the Server Capacity

12 . !
—— Measured throughput

- = — Analytical throughput
101 1

r={1,2,5,10, 20, 40}

Received throughput (1000 msgs/s)
(2]

4l J
2 - 4
n— ¥
0 . . .
0 50 100 150 200

Number of application property filters

—
Q

) Received message throughput — measurements and ealadtia.

60

—— Measured throughput

- = — Analytical throughput
501 - 1

401

301

10+ r={1,2,5, 10, 20, 40}

Overall throughput (1000 msgs/s)

0 50 100 150 200
Number of application property filters

(b) Overall message throughput — measurements and amhlytita.

Figure 4.4:Bea WebLogic: Joint impact of the number of installed filtensl the
replication grade on the message throughput for applicatioperty
filters.

89

4 Evaluating Message-Oriented Middleware

We use these parameters to analytically calculate the ghput for the same
parameters sets as in the experiments in Section 4.2.3.drandthe results as
dashed lines in Figure 4.4(a) and Figure 4.4(b). The amalythroughput is
similar to the measured data for the evaluated parametgeramoking at the
received throughput, the model tends to underestimate uheer of received
messages for lower values afbut is still a good estimator of the overall system
performance.

4.2.4 Apache ActiveMQ

The configuration of the ActiveMQ server is also used wittenyt modifications,
as described previously in the experimental chapter.

4.2.4.1 Experiment Setup and Measurement Results

The publishers send only messages with ID #0 as a propertyeiapplication
property part. To achieve a replication grade 1qf we set upr different
subscribers, which filter for ID #0. We used the same values-foy, and
m24 as in the previous experiments. The measurement runs adeicted with
20 publisher threads on one publisher machine and with ablarinumber of
r+m24_subscribers equally distributed over two subscriber nrashi

The solid lines in Figure 4.5(a) and Figure 4.5(b) show, that measured
received and overall throughput slightly decreases fomareasing number of
installed filtersuqy for the above described experiments. The message throughpu
is also clearly influenced by the message replication grade illustrate this
effect, we provide in Figure 4.6(a) and Figure 4.6(b) anrafidve presentation
of the same data with the replication grade on the x-axis apdrsite curves for
the number of additional non-matching filters. Figure 4.&(@d Figure 4.6(b)
show that the received throughput decreases and the otferalghput increases
with an increasing replication grade. Comparing Figur¢ad.&nd Figure 4.5(b)
with Figure 4.6(a) and Figure 4.6(b) leads to the concluthanthe impact of the
message replication grade on the message throughputés them the impact of
the number of installed filters.

90

4.2 Modeling the Server Capacity

16 " "
—— Measured throughput
- — = Analytical throughput

14

101

Received throughput (1000 msgs/s)
fee]

0 50 100 150 200
Overall number of installed filters

(a) Impact of the number of filters on the received throughput

70t —— Measured throughput
- — — Analytical throughput

Overall throughput (1000 msgs/s)

0 50 100 150 200
Overall number of installed filters

(b) Impact of the number of filters on the overall throughput.

Figure 4.5:ActiveMQ: Joint impact of the number of installed filters atié
replication grade on the message throughput for applicatioperty
filters.

91

4 Evaluating Message-Oriented Middleware

The before observed effect becomes obvious when the réplicgrade
increases tor = {20,40}. At this point the observed overall throughput
decreases again, which might be caused by another systédenbaok. We cannot
specify the bottleneck with the considered parametergeSime CPU utilization
in all scenarios is close to 100% there might be another I/Ddmeck, e.g., the
hard disk performance.

Table 4.3:ActiveMQ: Empirical values for the model parameters of thessage
processing time in Equation (4.9).

parameter trev (S) thier (S) tix (S)

corr. ID filtering ~ 4.58-107% 1.46-1077 1.64-107°
app. prop. filtering 4.88-107®> 1.62-1077 1.54-107°

The throughput is the same, regardless if we use the samderedi filters
that do not match. For this server implementation each fitevaluated, without
considering that the same filter has to be evaluated multiples. The same
experiment for correlation ID filters leads to very similasults and therefore we
omitted showing the results in detail.

4.2.4.2 Validation of the Model by Measurement Data

The curves for replication grade = 20 andr = 40 do not follow the trend
of the curves for replication gradese {1;2;5;10}. Therefore, we consider
only the experiments with replication grades {1; 2; 5; 10} in the least squares
approximation and obtain the model parameters printed bieTd.3. We use
these parameters to calculate the analytical throughpithaik illustrated in
Figures 4.5 and 4.6 by dashed lines. For small replicatiedegr = {1;...;10}
the analytical throughput is in good accordance with thesuesl throughput.
We also evaluated the performance of the correlation IDrdiltelowever, we
measured only slightly different values for the messageutinput and we can
therefore omit a rather complex model.

92

4.2 Modeling the Server Capacity

16 . .
¥ —— Measured throughput
- = — Analytical throughput

1413
12

10

Number of
additional
non-matching
filters

Received throughput (1000 msgs/s)
fee]

0 10 20 30 40
Message replication grade

(a) Impact of the replication grade on the received throughp

—— Measured throughput {
- = — Analytical throughput

-
o
T

(o2}
o
T

u
o
T

Number of additional
non-matching filters

N w
o o
T
L

Overall throughput (1000 msgs/s)
= B
o o

0 10 20 30 40
Message replication grade

(b) Impact of the replication grade on the overall throughpu

Figure 4.6:ActiveMQ: Impact of the replication gradeand the non-matching
additional filters on the throughput.

93

4 Evaluating Message-Oriented Middleware

As mentioned above, the capacity curves for message répticgrades
r =20 andr = 40 in Figure 4.5(b) are lower than expected from an intuitive
extrapolation of the other curves. The reason for this olagien might be a
maximum internal transmission capacity of the server shahthe server CPU is
no longer the limiting criterion. For the FioranoMQ and thesBNebLogic server
we do not encounter such a phenomenon since the overheaéssf fiervers
for message filtering was significantly larger than the omeAfttiveMQ. As a
consequence, the transmission capacity of the FioranoM@&Bea WebLogic
was sufficient even for a large message replication grade-cf0. However, we
expect to observe similar saturation effects for all sexviénve further increase
the message replication grade in this experiment series.

Besides the observation that another parameter might timitmodeling
capabilities, as seen for the ActiveMQ, there are otheresénaplementations,
which have a completely different internal message praegsstrategy. The
next chapter introduces adapted models for the SunMQ and/éixsSphereMQ
server.

4.3 Adapted Performance Models

For the SunMQ and the WebSphereMQ server, the basic modsirdieapply.

Several measurements showed a clearly different behavierefore, we decided
to evaluate separate models for the two server types. Inrgleniis approach
shows the ability to enhance our procedure to unknown or maydated

server behaviors. This is also a clear difference to basichiearking, since
our approach supports to understand and identify possjisteers bottlenecks,
whereas pure benchmarking leads only to a comparative measu

4.3.1 SunMQ: Increased Impact of Different Filters

From our previous measurements we observed some kind ofdjitenization
behavior. In order to verify and evaluate this behavior wepaed the experiment
design and the model for SunMQ, which leads to an increasexgblexity in the
model. The configuration for the SunMQ server is describeskiction 3.1.2.

94

4.3 Adapted Performance Models

4.3.1.1 Experiment Setup and Measurement Results

First, we performed the same experiment series as in théopegections for
SunMQ and found out that it matters whether non-matchingréilare the same
or different. Thus, we redesign the experiment series ih suway that we can
study the impact of the replication gradethe number of different filteradi,
and the number of overall installed filterd! on the message throughput. The
publishers send only messages with value #0. To achieveliaatpn grade of
r, we set up- subscribers with a filter for value #0. Furthermore, we ihsi3i
other different filters for values from #1 tonZ. We set up these additional
filters f times and callf, the filter replication factor in this experiment. For
our experiments we use the following values fore {1;2;5;10;20; 40},
n3% e {1;2;5; 10; 20; 40; 80; 160}, and f,- € {1;2;4;8}. Overall we installed
5 publisher threads and varied the number of (n33 . f,.) subscriber threads
accordingly.

Figures 4.7 and 4.8 show the received and overall messagegthput for this
experiment series. The server capacity clearly decreasas fncreasing number
of different filtersn33® An increasing message replication gradeeduces the
received message rate, but it increases the overall messt@gd he four related
figures differ with a varying filter replication gradfe, but they look very similar
at the first spot. The impact of the number of all filtef = r+ (n3¥ - f,) is
clearly visible when we compare the right margins of the #gwsince the number
of all filters only differs significantly if the number of aditinal different filters
nd%is large. Thereby, we observe that using the same filtersrathces the

throughput even though they do not match.

4.3.1.2 Modeling the Message Processing Time

The message processing time is the inverse of the receivesage throughput.
Figure 4.7 shows that it depends on the number of additiotesh32, the filter
replication factorf,, and the replication grade We propose a simple model for

the message processing tifethat relies on all filtersidy = r+ (3% f,.) and

95

4 Evaluating Message-Oriented Middleware

the number of different filteradil = nadd4 1:

all diff

B = trov+nfy - thy +nf - 4+ b (4.10)

The parametet,, is still the fixed time overhead for each received message.
The filtering effort increases linearly with the number dffiters ngl and the

time to check a single filter . Different filters impose an extra overhead of
ndit . ¢4 Finally, ¢ describes the time to dispatch and to send a single message
for a matching filter.

4.3.1.3 Validation of the Model by Measurement Data

The results in Figure 4.7 show the overall throughput reiggrceceived and sent
messages. The parametefly, nil, andr for the message processing tinfe

are known from the respective experiments. Again, we carhditpgarameters
trov, £, 9 and ¢y by the least squares approximation to adapt the model in
Equation (4.10) to the measurement results. The resultsted in Table 4.4 for

application property filters.

Table 4.4:SunMQ: Empirical values for the model parameters of the ageEss
processing time in Equation (4.10).

parameter trev (S) i () th (5) tx (S)
app. prop. filtering 1.12-10~* 2.20-107% 1.76-107% 4.01-107°

We calculate the message throughput based on these valde&qra-
tion (4.10) for all measured data points, and plot the reswlth dashed lines
in Figures 4.7 and 4.8. With the proposed adaption in the htbdethroughput
from our analytical model fits well with our measurement fesu

Thus, only the extra effort for different filters differs frothe basic model.
So we assume that the main difference between the servéwiftg the basic
model and the SunMQ is the internal filter evaluation stnateg

96

4.3 Adapted Performance Models

Received throughput (1000 msgs/s)

Received throughput (1000 msgs/s)

-~

——Measured throughput
- * - Analytical throughput

N W s o o

[N

2

50 100 150
Number of different non-matching filters

(a) Filter replication grad¢,. = 1.

——Measured throughput
6l - = - Analytical throughput

N

0
0 50 100 150
Number of different non—matching filters

(c) Filter replication gradgf,. = 4.

Received throughput (1000 msgs/s)

Received throughput (1000 msgs/s)

~

——Measured throughput
- * - Analytical throughput

[}

&l

I

w

r={1,2,5,10, 20, 40}

N

[N

00 50 100 150
Number of different non-matching filters

(b) Filter replication gradgf,. = 2.

~

——Measured throughput
- = - Analytical throughput

[

&)

i

w

N

r={1,2,5,10, 20, 40}

N

o ;
0 50 100 150
Number of different non—-matching filters

(d) Filter replication gradgf,- = 8.

Figure 4.7:SunMQ: Impact of the number of different filtersiil and the
message replication gradeon the received message throughput for
different numbers of additional identical filters.

97

4 Evaluating Message-Oriented Middleware

Overall throughput (1000 msgs/s)

Overall throughput (1000 msgs/s)

Figure 4.8:SunMQ: Impact of the number of different filtersi and the
message replication gradeon the overall message throughput for

98

——Measured throughput
- _ - *4 Analytical throughput

20

15

10

r={1,2,5, 10, 20, 40}

00 50 100 150
Number of different non-matching filters

(a) Filter replication grad¢, =1.

——Measured throughput
- = - Analytical throughput
r={1,2,5, 10, 20, 40}

20

15

10

0

0 50 100 150
Number of different non—-matching filters

(c) Filter replication gradg, = 4.

Overall throughput (1000 msgs/s)

Overall throughput (1000 msgs/s)

——Measured throughput
- * - Analytical throughput

r={1,2,5,10, 20, 40}

00 50 10 150
Number of different non-matching filters

(b) Filter replication gradg,. = 2.

——Measured throughput
- = - Analytical throughput

r={1,2,5,10, 20, 40}

0 50 10 150
Number of different non—matching filters

(d) Filter replication gradd,- = 8.

different numbers of additional identical filters.

4.3 Adapted Performance Models

4.3.2 WebSphereMQ: Impact of Filtering Dominates
Dispatching

The WebSphereMQ requires a substantially different modeltlfie message
processing time compared to the basic model, e.g., apmi€doranoMQ, and
the one presented for SUunMQ.

4.3.2.1 Experiment Setup and Measurement Results

We set up the same series of experiments as for the Fioranal8€cdtion 4.2.2.1.
Figure 4.9(a) shows the received message throughput degendthe number of
installed filtersuay = m2%%+ and on the replication grade The solid lines show
the measured throughput. An increasing number of filteraaesl the received
message throughput of the system which is independent aéplieation grade
for the considered scenarios. This is different to the tegalind for the servers
following the basic model in Section 4.2.1, like for Fior&h@. It is even
different from the one applied for SunMQ in Section 4.3.3% assume, that
this observation results from a dominating filter procegsiime in comparison to
the time to transmit a message. Figure 4.9(b) shows thetirgsolverall message
throughput. It decreases also with an increasing numbditerfsij but it rises with
the replication grade. We have performed the same expetsnfiencorrelation
ID filters, too, and obtained the same measurement restilts, Torrelation ID
and application property filters lead to the same througbptt for SunMQ and
WebSphereMQ.

4.3.2.2 A Simple Model for the Message Processing Time

Figure 4.9(a) shows that the message processing time deperig on the
number of filtersnsqy. In contrast to the servers following the basic model and
SunMQ, it does not depend on the replication grad&hus, the time to send
messages is obviously so small that it is not noticeable feplication grade of
up tor =40.

99

4 Evaluating Message-Oriented Middleware

—— Measured throughput
- = — Analytical throughput |

=
T

X
L

o
©
:

r={1,2,5, 10, 20, 40} 1

N o
S o
: :

Received throughput (1000 msgs/s)
o
N

(=)

0 50 100 150 200
Number of application property filters

(a) Impact of the number of filters on the received throughput

=
o

—— Measured throughput
- = — Analytical throughput

oo
T

r={1,2,5,10, 20, 40}

Overall throughput (1000 msgs/s)

0 50 100 150 200
Number of application property filters

(b) Impact of the number of filters on the overall throughput.

Figure 4.9:WebSphereMQ: Impact of the number of filtersy, and the
message replication gradeon the received message throughput —
measurements and analytical data.

100

4.3 Adapted Performance Models

Table 4.5:WebSphereMQ: Empirical values for the model parametershef t
message processing time in Equation (4.11).

parameter trev (S) tier (S) tix (S)
app. prop. filtering 7.03-10"* 1.02-107° 0.0

A linear model like for the other servers does not work fordpgroximation
of the measured results. Therefore, we propose the foltpwirodel for the
message processing tinfie

B = trev+ nir o/ (i) < b 7 b (4.11)

The parametet,, is a fixed time overhead for each received message. The
filtering effort affects the processing time with a suppletra ny - v/ (nitr) - i -
Hence, it increases more than linearly with the number daltesd filtersniy .

4.3.2.3 Validation of the Model by Measurement Data

As mentioned in Section 4.2.1, the received and the ovdradughput can be
analytically calculated by}§ and Tgl. Again, we adapt the model parameters
trev, tir, aNdi in Equation (4.11) by a least squares approximation androbta
them for the values in Table 4.5. As a characteristic for treb®phereMQ, the
result for the time to dispatch a message is a very small valherefore, we
neglect it in our further evaluations and assume it as zero.

We calculated the received and overall throughput for alisneed data points
based on these values and Equation (4.11), and plot themdasthed lines in
Figures 4.9(a) and 4.9(b). The throughput from our anajtivodel corresponds
very well with our measurement data for all numbers of filtess and all
replication grades. The model predicts the overall message throughput of the
server quite accurately for a wide range of realistic vafoeshe parameterss
andr.

101

4 Evaluating Message-Oriented Middleware

As observed for the basic model, for higher replication gsadhan the
one considered in the experiments, other parameter valught fimit the
server throughput performance. Thus, we can observe thiavi® for the
WebSphereMQ for replication grades larger thas 80. To capture additional
bottlenecks we propose an extension of our models in theseetion.

4.4 Performance Model Considering Complex
Filtering

Our main objective in this section is to characterize thedotf different filter
types on the message throughput. We focus on three diffeirahof filter types:
simple filters, complex OR-filters, and complex AND-filteFar all experiments
we use one dedicated ActiveMQ JMS server machine. The Adtyaserver is
chosen due to its open source character. In case of faulgvirhwe are able to
track the errors down, whether it is a measurement artefacsoftware error.

Filters evaluate user defined message headers where weusdtadgde String-
Properties as application properties. We use for the Rrimgerties a String
representation of four digit numbers with potentially legpzeros. The following
experiments are based on a common principle. The publigerd messages
with a certain header value and® subscribers filter for this value such that
each message is replicated = nf° times. The additionahg® filters do
not match, but they cause additional workload on the sefaus, altogether
m = nhe° + ngeo subscribers are connected to the server and they are dtstlib
over two subscriber machines.

102

4.4 Performance Model Considering Complex Filtering

4.4.1 Complex Filter Design Options

In the following, we describe the arrangement and experiroenfiguration for
the investigation of simple filters, complex OR-, and comp&ID-filters.

Simple Filters

We already examined the impact of simple filters in Sectidh53with the
following experimental setup. The publishers send onlysagss with ID #0. As
depicted in Figure 4.10, we instaif.° matching filters searching for ID value #0.
Additionally, we installng:® different non-matching filters that search for values
between #1 and(#g:").

One property key
——

ID

Filter, 0 r= n’,;fs

- - r

Message ID =0 : H identical matching

Filter, 0 filters
Filtery | 1 m-r=ng?

: : distinct non-matching
Filter,, : m-r filters

Figure 4.10:Simple filters arrangement.

Complex OR-Filters

We consider OR-filters Witi’nﬂtn’1p components. As illustrated in Figure 4.11,
we install nf° identical complex OR-filters, searching for ID #0 set in the
last component. As the matching filter component is in thé pasition, no
early match can save processing power when the server tesltize filter
components from left to right, as defined by the JMS standEnd. publishers

send messages with ID #0 to produce a message replicatida gfa = nf".

103

4 Evaluating Message-Oriented Middleware

n identical property keys
ID ID ID ID

FiIt_er1 1 . 2---n_—1 0 r= “Zf

: H : H identical matching
Filter, 1 24001 0 filters
FiIt_er,+1 1) 2+ -n:1 n m-r= n;;’g

: : H : distinct non-matching
Filter,, 1 2eeip-1 nenfes-1|) filters

Figure 4.11:Complex OR-filters arrangement.

The last components of thels? non-matching filters take values fron#,) to

#(n + nge? — 1) with n = nim,.

Complex AND-Filters

We consider AND-filters wittn!s" components. The publishers send messages
with value #0 for each component JDwherei ={1;...;n} withn= nﬁ%p. As
illustrated Figure 4.125° subscribers install matching filters. The values set in

the last component of thej;.° non-matching filters take values between #1 and
Hngoo.
n different property keys
/_A_ﬁ
ID; ID, 1D,4ID,
ID{ 1D, ID, Filter, 0 0:+0 O r=”ZzOS
- - - - r
[Message 0 0 '+ 0 ﬁj\> : : R identical matching
Filter, 0 0::0 O filters
_ : _ ,neg
n=ng F'”ferm 0) 0 0 1 m-r=ng,
: : : : distinct non-matching
Filter,, 0 0::0 nie filters

Figure 4.12:.Complex AND-filters arrangement.

104

4.4 Performance Model Considering Complex Filtering

4.4.2 Results of the Measurement Experiments

We present the results for the experiments described ind®edt4.1 for the
parametersif° € {1;2;5; 10;20; 40}, nge? = {1;5; 10; 20; 40; 80; 160}, and
nﬁi{]p ={1;2;4;8}.

The solid lines plotted in Figure 4.5 and in Figures 4.1364show the
measured message throughput of the ActiveMQ JMS serverrddeived and
the overall throughput is plotted in separate figure seN@s.observe in all
experimental studies a similar behavior. With an incregsiomber of filters,
the received and the overall throughput is only slightlyuszt. An increasing
message replication grade decreases the received meésagghput, but it
increases the overall message throughput. The figuresdanérall throughput
show a limitation of the overall throughput at approximgt&),000 msgs/s. We
take this observation into account for fitting the model paeters in the next
section.

4.4.3 Extended Performance Model for the Message
Processing Time

We use the measurement results from Section 4.4.1 as inptitdaanalytical
model of the message throughput. This model improves theratahding of the
server performance of the ActiveMQ as well as the impactfiédint parameters
like the number of filters, the filter type, and the replicatgrade.

Our model assumes three different parts of the processimgftir a message.
Each message requires a constant overligadThe processing timén, per
installed filter depends on the overall number of installédrm = nho® 4 nge?
and on their lengtmi. Finally, the potential replication and transmission of a
message takes, time per outgoing message. Thus, the message processig tim
B can by calculated by

B =ty + nggwp -m -t + 7 - fixe (4.12)

105

4 Evaluating Message-Oriented Middleware

The empirical service time can be derived from the receivedsage through-
put of the measurement results in Section 4.4.2. The paeasied, tar, and
tix are fitted to the proposed model by a least-squares appro@imaNe
consider only those curves that are not limited by 53¢000 msgs/s margin.
The parameters are derived separately for the simple, @n@R-, and complex
AND-filters. Table 4.6 summarizes their values. We obsehne¢ these empirical
values of the model parameters are similar for all three @t series.

Table 4.6:ActiveMQ: Empirical values for the parameters of the modeég in
Equation (4.12)

trev thitr tx

Simple filters 488-107°s 1.62-107"s 1.54-107°s
Complex OR-filters 4.79-107>s 1.96-10~"s 1.69-107°s
Complex AND-filters 5.19-107°s 1.86-107"s 1.71-107°s

Based on the model and the parameters, we calculcate thgiealalalues for
the received g) and the overall throughpulr—y). They are plotted as dashed
lines in Figure 4.5 and in Figures 4.13-4.16. For small \alfethe replication
grader = {1; 2; 5; 10} the analytical data estimates the measured data very well.
If the replication grade inreases, i.e.= {20;40}, the limit of 50,000 msgs/s
for the overall throughput of the server is reached and tladyical model tends
to overestimate the measured throughput.

106

4.4 Performance Model Considering Complex Filtering

——Measured throughput

" ——Measured throughput
ISR - = - Analytical throughput

157 - = - Analytical throughput

r={1,2,5,10, 20, 40} @2.5.10,20,40)
r={1,2,5,10,20,

10 10

Received throughput (1000 msgs/s)
Received throughput (1000 msgs/s)

o) 4 [0} 4
0 50 100 150 200 0 50 100 150 200
Overall number of installed filters Overall number of installed filters
: fltr _ i fitr _
(a) Filter lengthn?,;7 = 1. (b) Filter lengthn], " = 2.

——Measured throughput

——Measured throughput
151 - « - Analytical throughput

15 - = - Analytical throughput

10 10

r={1,2,5,10, 20, 40}

r={1,2,5,10, 20, 40}

Received throughput (1000 msgs/s)
Received throughput (1000 msgs/s)

o) [0}

0 50 100 150 200 0 50 100 150 200
Overall number of installed filters Overall number of installed filters
(c) Filter lengthn /1" = 4. (d) Filter lengthn[/!" = 8.

Figure 4.13ActiveMQ: Measured and analytical received message
throughput for complex OR-filters depending on the message
replication grade.

107

4 Evaluating Message-Oriented Middleware

~
=}

~
=}

——Measured throughput
= - Analytical throughput

——Measured throughput
- = - Analytical throughput

)
=)
)
=)

o
=)
o
=)

[FRN
S o
[FRN
S o

N
=)
N
=)

r={1,2,5,10, 20, 40}

r={1,2,5,10, 20, 40}

Overall throughput (1000 msgs/s)
Overall throughput (1000 msgs/s)

10 10
0 0
0 50 100 150 200 0 50 100 150 200
Overall number of installed filters Overall number of installed filters
(a) Filter lengthn /1™ = 1. (b) Filter lengthnf!t" = 2.
70 70
——Measured throughput ——Measured throughput
60| - = - Analytical throughput 60| - = - Analytical throughput
r={1,2,5, 10, 20, 40}
50 50

N
=)
N
=)

w
=)
w
=)

N
=)
N
=)

=
1S)
=
o

r={1,2,5,10, 20, 40}

Overall throughput (1000 msgs/s)

Overall throughput (1000 msgs/s)

o

o

0 50 100 150 200 0 50 100 150 200
Overall number of installed filters Overall number of installed filters
y Ffltr _ ’ fltr _
(c) Filter lengthny, " = 4. (d) Filter lengthn?, ;> = 8.

Figure 4.14:ActiveMQ: Measured and analytical overall message thrpugfor
complex OR-filters depending on the message replicaticiegra

108

4.4 Performance Model Considering Complex Filtering

——Measured throughput
- = - Analytical throughput

——Measured throughput

15 15 - = - Analytical throughput

r={1,2,5,10, 20, 40} @2.5.10.20,40)
r={1,2,5,10,20,

10 10

Received throughput (1000 msgs/s)

Received throughput (1000 msgs/s)

o) [0} 4

0 50 100 150 200 0 50 100 150 200
Overall number of installed filters Overall number of installed filters
(a) Filter lengthn /11" = 1. (b) Filter lengthn[/!" = 2.

——Measured throughput

——Measured throughput
15 - = - Analytical throughput

15 - = - Analytical throughput

10

r={1,2,5,10, 20, 40}

Received throughput (1000 msgs/s)
Received throughput (1000 msgs/s)

[0}
0 50 100 150 200 0 50 100 150 200
Overall number of installed filters Overall number of installed filters
(c) Filter lengthn /1" = 4. (d) Filter lengthn[/!" = 8.

Figure 4.15ActiveMQ: Measured and analytical received message
throughput for complex AND-filters depending on the message
replication grade.

109

4 Evaluating Message-Oriented Middleware

~
=}

~
=}

——Measured throughput
- = - Analytical throughput

——Measured throughput
- = - Analytical throughput

)
=)
)
=)

ENEC]
o o
ENC)
o o

w
=)
w
=)

N
=)
N
=)

r={1,2,5,10, 20, 40} r=(1.2,5.10.20,40)

Overall throughput (1000 msgs/s)
Overall throughput (1000 msgs/s)

10 10
0 0
0 50 100 150 200 0 50 100 150 200
Overall number of installed filters Overall number of installed filters
(a) Filter lengthn /1™ = 1. (b) Filter lengthnf!t" = 2.
70 70
——Measured throughput ——Measured throughput
60| - = - Analytical throughput 60| - = - Analytical throughput
r={1,2,5, 10, 20, 40}
50 50 e

N
=)
N
=)

w
=)
w
=)

N
=)
N
=)

=
1S)
=
o

r={1,2,5,10, 20, 40}

Overall throughput (1000 msgs/s)

Overall throughput (1000 msgs/s)

o

o

0 50 100 150 200 0 50 100 150 200
Overall number of installed filters Overall number of installed filters
y Ffltr _ ’ fltr _
(c) Filter lengthny, " = 4. (d) Filter lengthn?, ;> = 8.

Figure 4.16:ActiveMQ: Measured and analytical overall message thrpugfor
complex AND-filters depending on the message replicatiadgr.

110

4.5 Application of the Models as Best-Practice Example

4.5 Application of the Models as Best-Practice
Example

To conclude this chapter, the feasibility of the presentederfs is shown by an
application of the evaluated models. This illustrates thedfits obtained from
the analytical models for a system engineer. Overall, a samzaing evaluation
and comparison of the performance for the different sepysed is given.

We assume a distributed notification service, i.e., produgenerate so-called
events and consumers are notified about them. A JMS servebearsed to
implement such a service. We assume many producerst@ncbnsumers. There
are many event types, but each consumer is interested ironalyThe consumers
may use filters witm3! = 100 to get only the relevant events; otherwise, they
are notified about all events and have to process a higher Tdaconsumers
are interested imd" < {1; 10; 100} different events. We predict the JMS server
throughput based on the results of our study, in particdadifferent message
replication grades. Large replication grades occur if several clients filtertfe
same events. If no filters are used, the throughput is deteidhidy the results of
the filter activation experiment as depicted in Figure 3Ii@lters are applied,
we use Equation (4.9), Equation (4.10), and Equation (4aith) the respective
parameters for application property filtering to calculdie server capacity. We
have compiled the throughput of received messages at thersen Table 4.7.

The use of filters increases the received throughput pegiocmin these ap-
plication scenarios for FioranoMQ, ActiveMQ, Bea WebLggiad for SunMQ,
but not for WebSphereMQ. However, the use of filters is noy setommended
to increase the server throughput but also to protect thesuroars from
undesired load if they are only interested in 1% or 10% of thessages.
Considering the messages per second as a measure, we irelyedialize
that ActiveMQ and Bea WebLogic are superior to FioranoMQ &uhMQ
in all considered application scenarios. WebSphereMQ ipestormed by all
other server implementations. Since FioranoMQ, Bea Weld,.agd ActiveMQ
are based on the same prediction model, we discuss only tfierpance of

111

4 Evaluating Message-Oriented Middleware

Table 4.7:Received throughput capacity of the FioranoMQ, SunMQ,
WebSphereMQ, Bea WebLogic, and ActiveMQ JMS server for
different application scenarios with 100 subscribers ancbeerall
number ofnill = 100 filters if filters are used.

repl. FiorMQ SunMQ WebSph. BeaWeb. ActiveMQ

nd grade capacity capacity capacity capacity capacity
r (msgs/s) (msgs/s) (msgs/s) (msgs/s) (msgs/s)
- 100 456 228 90 532 487
100 1 676 1817 85 6629 12416
10 1 676 2566 85 6629 12416
1 1 676 2676 85 6629 12416
10 10 615 1333 85 3260 4549

ActiveMQ and SunMQ. Without filters, ActiveMQ has about teithe capacity
of SunMQ and each consumers receives all messages. Witmallmers having
a filter installed, the throughput increasesliy416 msgs/s for ActiveMQ, and
for SunMQ to1,817, 2,566, or 2,677 msgs/s if the number of different filters
ndi are100, 10, or 1. This holds for a message replication grade ef1. In this
case, the clients get only 1% of all messages. For a repicgtiade ofr = 10,
the clients get 10% of all messages. Then, ActiveMQ achievéssoughput of
4,549 msgs/s and SunM@,333 msgs/s ifndil = 10. Thus, ActiveMQ has four
times the capacity of SunMQ if filters are applied.

Comparing the same performance measure for SunMQ and BM@n
the performance of FioranoMQ is reduced by half, even if &0MQ is on
the same performance level as ActiveMQ without any filtestated. These
conclusions can also be drawn from the overhead values ile #a®, which are
retrieved from the analytical models. FioranoMQ has theslsivoverhead while
receiving messages. ActiveMQ is very efficient in procegditers, followed
by Bea WebLogic. Dispatching overhead is for all servershiea $ame order
of magnitude, besides the WebSphereMQ, where the filteregaiing overhead
dominates the overall performance.

After all, only ActiveMQ and Bea WebLogic can be considered hagh

112

4.6 Concluding Remarks on Performance Models

Table 4.8:Comparison of the overhead times from the regression aBalys
Time to receive Time to process Time to dispatch

a message a filter a message
trev thir tx
WebSphereMQ 7.0-107"s 1.1-107°s -
SunMQ 1.1-107%s 2.1-10"%s 4.0-10°s
FioranoMQ 85-107"s 7.0-107%s 1.7-107%s
ActiveMQ 4.9-107°s 1.6-107"s 1.5-1075s
Bea WebLogic 8.0-10°s 5.3-107"s 1.7-107°s

throughput performance JMS platforms. From a throughpdopaance point
of view, WebSphereMQ is clearly inferior to all others. Haee WebSphereMQ
comes with a variety of other functionalities. Thus, the enswnsideration of the
throughput performance of its IMS module is certainly notifficsent criterion
against this solution. In particular, if high throughputfpemance is not required,
this kind of server might still be a good choice.

4.6 Concluding Remarks on Performance Models

In the previous sections, we presented some basic modeldifferent JIMS
servers. An adaption of the basic model is given for servéfsrihg from the
standard behavior. We additionally extended the model tmeced scenarios,
like filter length or type.

Overall, we investigated the joint impact of the number ¢éfg and the repli-
cation grade on the server capacity of FioranoMQ, ActiveNB®a WebLogic,
SunMQ, and WebSphereMQ. ActiveMQ, FioranoMQ, and Bea Webt lead to
enhanced throughput for correlation ID filters comparedpioliaation property
filters while the filter type does not lead to different resuior SunMQ and
WebshpereMQ. Only SunMQ implements an optimized filter imatgalgorithm
such that identical filters can be handled more efficientyntdifferent filters.

113

4 Evaluating Message-Oriented Middleware

The message replication grade has an impact on the messaggsg§ing time
for all compared solutions, but not for WebSphereMQ as long aeplication
grade ofr = 40 is not exceeded. The filtering effort for ActiveMQ, Bea
WebLogic, SunMQ, and FioranoMQ increases at most lineaitly the number
of installed filters, whereas WebshpereMQ shows a limitedrfécalability in
the experiments. As a consequence, our models for the mepsagessing time
have to be differentiated according to the server type. Spiaid WebSphereMQ
have a substantially different capacity model than thersthe

In general, the models are useful to predict the server dgpfae specific
application scenarios. Thus, they can be used to dimengienntmber of
servers in an application server network. The throughpuparison of the
different server platforms helps to decide which of thedatgms satisfies the
requirements of a special distributed application from Equemance point of
view. The generic methodology used to evaluate the predesgpsers is not
limited to them and can be easily applied for any other IMSubitiph/subscribe
server implementation. A major difference from classicahchmarking is the
flexibility in choosing the set of evaluated parameterssTdniables a focused
analysis of important parameters, as in our scenarios tiné¢ ijmpact of the
number of applied filters and the replication grade.

The evaluation of this aspect shows that there are sevetidéiecks where
the filtering, the heart of content based routing, is theiafymart of the system.
We identified filtering in combination with the replicatiomagle as one of the
most important limiting factors for scalability.

Using the presented modeling methodology, a good estinoatthé system
throughput performance is achievable. However, anothegcidor characteriz-
ing a JMS server is its interal system performance in termmessage queuing,
delay, and configuration issues. These aspects are the éddhe following
chapter.

114

5 Analytical Assessment of JMS
Server Performance

In the previous chapters, we have measured the maximum geegsaughput of
a JMS server depending on the number of clients, the numbestafled filters,
the filter type, and the replication grade of a message. We learned from
the prior experiments that both the number of filters and éptication grade
impact the JMS server capacity in terms of message througBasged on our
basic model for the meah|B] of the message processing tiBeand the mean
E[R] of the message replication graftén a certain application scenario, we can
predict a JMS server’s capacity.

Our goal is to characterize the average waiting times of agess passing a
JMS server. Therefore, we pick the FioranoMQ JMS server asxample and
model it based on a//GI/1 — oo queuing system. Since both, additional
filters and redundantly sent messages reduce the JMS sapacity, it is of
interest to apply such a model in a realistic environment émitor and predict
performance bottlenecks in realtime. For calculating th&ing timedistribution
function (DF), the numerical inversion of its Laplace-StieltjesnsBrm is
necessary which cannot be approximated with sufficientigicecin reasonable
time. Considering an on the fly evaluation scenario in oradepitedict and
react on abnormal behavior, a fast response of such an thigois required.
Even available approximation methods are numericallyeratitractable, or they
are specific to the used service time distribution. Theeefare propose in a
simple approximation of the waiting time DF for arbitraryngee time DFs

115

5 Analytical Assessment of IMS Server Performance

in Section 5.1. It is based on the Gamma-distribution, floeee we denote it
Gamma-approximatiarit takes into account the first, second, and third moment
of the service time DF.

In addition to the characterization of the JIMS server thhpug performance it
is possible to improve system performance by avoiding Icidguian appropriate
system architecture. So we compare two design alterndtivetistributed JIMS
systems regarding their capacity, the so-capiedlisher-side server replication
(PSR) andsubscriber-side server replicatidi®SR).

We start this chapter with an abstract introduction anddedion of the
Gamma-approximation in Section 5.1. Then we review som&dabout the
M/GI/1 — oo queuing system, and apply it to the FioranoMQ JMS server
in Section 5.2. Using the queuing system, we analyze the ageswaiting
time caused by the FioranoMQ server. Finally, we conclude dhapter with a
comparison of the JMS system design alternatives PSR andrS&#ttion 5.3.

5.1 Gamma-Approximation of the M /GI/1—o0
Waiting Time

Many problems in telecommunication networks can be modéledjueuing
systems. If the customers are flows, their inter-arrivaletifollows usually a
Poisson process [44]. Thus, the analysis of the waiting tfitee M /G1/1—o00

queuing system is often required. The Takacs recursionuiaralows a simple
calculation of the k-th moments (cf. Equation (5.112) ing)2 The Pollaczek-
Khintchine formula yields even the Laplace transform oféhére waiting time
DF [140]. This formula can hardly be numerically evaluatétiaugh there are
some methods [24, 28, 76]. Explicit expressions in the tioraan exist only for
a few special cases like thd /M /1—o0, the M /D /1—co queuing system [131],
or some long-tail service time distributions [32]. Appnmétions of the waiting
time DF exist for general service time DFs i /GI/1— oo [145] and even
for general inter-arrival time DFs, i.e., f@¥I/GI/1— oo [27]. However, they

116

5.1 Gamma-Approximation of thel /GI/1—oco Waiting Time

are quite complex and must be adapted for specific serviedistributions, or
provide feasible results only for specific parameter ranges

Discrete time analysi€DTA) can be used to calculate the waiting time of any
discrete timeGI/GI/1— oo system with a finite inter-arrival and service time
distribution [18]. We first show that DTA can be also used far approximation
of a continuous time71/GI/1 — co queuing system. Then, we apply DTA
to validate the accuracy of the waiting time DF obtained bg tBamma-
approximation.

We apply the new approximation method for a wide range offmienfts of
the variationcva B] of the service time3 and the system utilizatiop.

The remainder of this section is organized as follows. Firstview of existing
approaches is given to calculate or approximate the wattmg distribution
function of anM/GI/1 — oo queuing system. Then, we propose the Gamma-
approximation for this task.

5.1.1 Review of the M/GI/1—o00 Queuing System

The M/GI/1— oo queuing system consists of a Poisson arrival process with
rate), i.e., the inter-arrival timed of the customers is exponentially distributed
(Markov, M) with meanE/[A] = % and their service timé follows anidentically

and independently idtributed (iid.) general distribution (Gl) with mea#[B].

The k-th momentsE[W*] of the waiting timelV can be calculated by Takacs’
recursion formula. However, the DF of the waiting time canbe directly
computed in the time domain. The Pollaczek-Khintchine tmtuprovides a
formula solely for its generating function [140]. The ingertransform into time
domain is difficult and can be done analytically only for sospecial cases.

117

5 Analytical Assessment of IMS Server Performance

The Takacs Recursion Formula

The k-th moments of the waiting time of all customers can be cated by the
Takacs recursion formula in [126]:

k .
A k\ E[B™] i

EWr = -—2—. . -E[B"! 1

W lpz() BT, (5.1)
with p= % being the utilization of the system ad€{1¥°] = 1. Thus, the first

and second moments of the waiting time are
\- E[B?]
EW] = ———————, 5.2
N (R &2
\- E[B?]

EW? = 2.EW]+ =1 5.3

W] W1+ 57 T=7) (5.3)

In particular, we need the first and second moment of the mgpitme regarding
only waiting customergwc). As the waiting time probability isw = p, they are
given by

EWa = o (5.4)
BWE = E[;VQ]. (5.5)

The Pollaczek-Khintchine Solution

TheLaplace-Stieltjes transforif. ST) X *(s) of a DF X (¢) for a random variable
X is defined by

X*(s) = /O T e tax (1), (5.6)

118

5.1 Gamma-Approximation of thel /GI/1—oco Waiting Time

The LST of the waiting time DF is given by the well-known forlaby Pollaczek
and Khintchine (1)
* S - —p
= 7
W) = s B (5.7)
with B*(s) being the LST of the service time DF. There are means to get
numerical results from this expression [24, 76, 144], bet @kailable tools are
neither precise nor fast enough to calculate these nunhezmats, especially for
the inverse of the LST.

Explicit DFs for Special Cases

For some special cases, it is possible to obtain the inveesesform of the
formula in Equation (5.7) such that an explicit DF is avaiga®Ve present two of
these special cases in the following.

The waiting time DF for thél/ /M /1 — oo system can be calculated by

Wt)=1—p.e AP t/EB] (5.8)
The solution forM/D/1 — co is somewhat more complex and numerically
challenging (cf. Equation (2.122) in [131]):

oo n

W =1-(1-p)- Y e**“"'E[B]*”A%(wE[BH)” (5.9)

n=m-+1

withm = Lﬁj . Other explicit solutions are given for a class of long-aitvice
time DFs in [32].

Approximative Solutions for the DF

There are also approximative solutions of the form

WE)=1—(a-e P4y (5.10)

119

5 Analytical Assessment of IMS Server Performance

if some preconditions regardin are met (cf. Section 4.4.1 in [145]). The
parametersy, 3, v, andd are quite complex to calculate and there is not always
a solution for them.

Another, simpler approximation for the waiting time DF ofetlgeneral
GI/GI/1—00 system is given in [27] of the form

WHt)=1—a-e " (5.11)

The rate parameteyis approximated based on the properties of the service time
DF and there are various specialized formulae to agdptthe exact type of the
service time. We can calculate the waiting time DFAdy Gamma/1— oo with

the following parameters:

2.0y |- clBP
"= TremBE (1 —(0=n-37 +cVar[B]2)) (5-12)
a = n-E[W. (5.13)

The latter equation assures the correct mean waiting tirtieeafpproximated DF.
This approximation works well ip is sufficiently large. A similar approximation
has been applied in [135] to calculate the quantiles of ngitimes (cf. Section
1.3in[135]).

In the following we present the Gamma-approximation. Wedeae the
approximation by DTA. But DTA is limited to smaller values pf Therefore,
we use the approximation presented in this section for thidateoon of large
values ofp.

5.1.2 The Gamma-Approximation

We introduce first the Gamma-distribution and some of itpprbes. Then we

use the first and second moment of the waiting time of the mgitustomers

inan M/GI/1— o0 system to determine the- and S-parameter of a Gamma-
distribution to get an estimate for its DF in a tractable way.

120

5.1 Gamma-Approximation of thel /GI/1—oco Waiting Time

The Gamma-Distribution

The base for the Gamndistribution I'(«, 8) is the Gammdunction I'(z),
which is defined by

0 ifz<0
I'(z) = et e (5.14)
JoorTheTtdr ifo <t

The most important properties of the Gamma-funcfign) are

IN'z+1) = z-I'(z2)ifz>0 (5.15)

T(k+1) = klifkeNo (5.16)
1

r<5) - VT (5.17)

These are interesting properties of the Gamma-functiarthey are not required
in the following. The Gamma-distributiofi(«, 8) is given by itsprobability
density functiofPDF)

0 ift <0
Jrp() = a1 (5.18)
- 2 'tr(al)'e—t/ﬁ if t > 0.

The calculation of its DFF1(,,5) and even of its inversiom?;(;ﬁ) is imple-
mented by many tools for statistical analysis, e.g., in Bafl142]. However,

explicit solutions forFT(,, g) exist only for integral values af. Then, we have

7 0 0 ift <0 (5.19)
I'(e, = i . .
@2 RS S L S)

2!

Thus, the Gamma-distribution (k, %) equals the Erlang-distribution
Erlang(k,\). Therefore, the Gamma-distribution can be viewed as amsixte

121

5 Analytical Assessment of IMS Server Performance

of the Erlang-distribution towards € R™. The mean, the variance, and the
coefficient of variation of the Gamma-distribution are

EX] = a-8 (5.20)
VAR[X] = a-p? (5.21)
] X] = % (5.22)

Hence, the Gamma-distribution may be used to approximatsluitions with a
given mean and variance.

Estimation of the M /GI/1—oc0 Waiting Time Distribution by the
Gamma-Distribution

The first and the second moment of the waiting time of the ngitustomers of
anM/GI/1—oo queuing system can be calculated by Equations (5.4) anjl (5.5
We use them to set the parametersand 5 of the Gamma-distribution after
manipulating Equations (5.20) and (5.21) by

_ EWP _ EWP
VAR[W] = E[W?2] — E[W]?’ (5.23)
s = % (5.24)

The resulting DFFyr(,,3) describes then the distribution of the waiting time
of customers that are not immediately served upon arrivhé Waiting time
distribution of all customers is thus given by

F(t)=1=p+4p- Fr,p(t) (5.25)
If the service time inV{ /GI /1—oc is exponential, we get the simpld /M /1—c0

system. As the waiting time DF of its waiting customers isangntial, we have
cvar[W] =1, and thereforeq =1 (cf. Equation (5.22)). In this case, the Gamma-

122

5.1 Gamma-Approximation of thel /GI/1—oco Waiting Time

approximation meets the exponential distribution exaetith the same mean
E[W]. The question arises: how exact is the Gamma-approximéionther
distributions of the service time? This is the issue we disdn the validation
part. To that end, we compare its results with the ones of thA Bnd the
approximation given in Equation (5.13).

5.1.3 Discrete Time Analysis and its Accuracy

In this section, we explain thdiscrete time analysi€DTA) for the discrete time
GI1/GI/1-D™** queuing system with bounded delBy*** [18,26,27]. We use
it to approximate the continuous tind¢l /G1I /1—oco queue and identify potential
sources of inaccuracies. Finally, we compare its resuftthi® waiting time DF
ofanM/D/1—o0 and anM /M /1— oo queuing system with analytical results
and show that its accuracy depends on the parameters of thepdroximation.

DTA of the GI/GI/1—D™*" Queuing System with Bounded
Delay D™

The discrete tim&'I /GI/1—D™** queuing system with bounded del&y™*

is based on discrete time units, i.e., the inter-arrivaletiof its customers is
distributed according to an iid. general distribution. <heir holding time
follows an iid. general distribution. The respective ramdeariables are denoted
by A and B. The value range of both distributions contains only midspof a
common basic time unit.

State Transitions of th€7/GI/1-D™** Queue We analyze the discrete time
GI/GI/1—D™** queue by consideringdiscrete time Markov chai(DTMC)
whose state represents the unfinished work in the buffertwikidescribed by the
random variablé/. Upon arrival of a new customer, the unfinished work in the
buffer is incremented by the new customer’s service tindf this exceeds the
delay boundD™** of the buffer, the unfinished work is set to this delay bound.
Afterwards, the unfinished work is decreased by the pasgimg units until the

123

5 Analytical Assessment of IMS Server Performance

next customer arrives. Renewal points of the process existlg before (-) and
after (+) the arrival instants. We number thefnandt,” and the state&/,, and
U,F, accordingly. The Markov chain evolves based on the folguiecursive
stochastic equations.

U,pw = maxU, —A,0) (5.26)
Uiy min(U,4+1 + B, D™). (5.27)

Discrete Time Analysis An early use ofdiscrete time analysi¢DTA) can be
found in [18, 19, 21, 23, 26] with application to packet netkgo The concept of
DTA works as follows. An iteration algorithm starts with attibutionz of the
system state at the first renewal point. The distributign, of the system state at
renewal point+1 is calculated based on the distributiopn of the system state
at renewal point: and the distributiory of the factors. The calculation itself is
described by a state transition function from one renewaitgo the next one,
i.e., itis denoted by the recursive stochastic equation

Xpt1 = f(Xn,Y). (5.28)

If the Markov chain is aperiodic, the series of thg converges to the stationary
state distribution which characterizes the distributibthe system states at the
renewal points after a long time. We recognize convergengeractice if the
entries of two successive state distributiansand x,,1 differ not more than
e, Where typicallye. < 107°. If the Markov chain is periodic, there are
modifications to the iteration algorithm such that the setig converges also
to the stationary distribution [73]. The whole concept iseexed to different
types of renewal points, e.g., shortly before and after aocosr arrival, and
stationary distributions can be calculated for both tyddws, we can calculate
the distribution of the unfinished work in the buffer shortlgfore and after a
customer arrival by DTA using Equations (5.26) and (5.27}stage transition
functions. Note that the stationary state distributionrgadoefore a customer
arrival yields the waiting time distribution for new custers.

124

5.1 Gamma-Approximation of thel /GI/1—oco Waiting Time

Approximation of the Continuous Time GI/GI/1—oc by Discrete
Time GI/GI/1—D™ through DTA

The continuous tim&'1/GI/1— oo queue and the discrete tingel /GI/1—

D™ queue with bounded delap™* differ significantly regarding the nature

of their inter-arrival time and service time distributiondaregarding their buffer
size. In addition, DTA is a numerical algorithm that termesat a previously
given threshold. This might lead to inaccurate results.heseé issues may lead

to wrong approximation results, actions must be taken t@ ltke error small.
Table 5.1 shows an overview on the adjustable parametetedddTA. Smaller
values for all typeg increase the accuracy but also increase the computational
costs as a consequence.

Continuous and Discrete Time DistributionsThe DTA-approximation requires
the transform of the continuous DF. of the inter-arrival time and the service
time into discrete DF$; which are step functions. We achieve this by increasing
the step functionF,; to F. at the multiples of the basic time unit Thus, the
approximation quality can be increased by decreasing thie biane unitu.

Infinite and Finite Distributions The range of the inter-arrival time and the
service time may be infinite for the continuous tidd /G1/1— oo queue, but
it must be limited for the discrete tim@1/GI/1— D™ queue since this is a
requirement of the DTA algorithm. Thus we choose a valué for., such that
1—F.(tmax) < ¢ holds and sef; to

0 fort=0
Fa(t) =S Fo(n-u) fort < tmaxAte((n—1)-u,n-u (5.29)
1 fort > tmax.

Obviously, the approximation quality can be increased loyehesing: ;.

Infinite Buffer and Limited Delay The continuous timé&'[/GI/1—co queue
has an infinite buffer by definition, but the discrete tiGié/GI/1— D™ queue

125

5 Analytical Assessment of IMS Server Performance

requires a limited delay which lies in the nature of DTA. Thisobviously a
source for approximation errors. To avoid them, the delayndaD™** must
be set large enough, i.e., that the probabitityfor a customer to exceed this
delay boundD™* is very small. This can be controlled by having a look at
the stationary state distribution of the unfinished workréhafter the packet
arrival. If the probability for the unfinished work to B8™* is smaller thare,,
then the delay bound is sufficiently large. Thus, the appnation quality can be
increased by decreasing.

Table 5.1:Parameters of the DTA and their impact.
Parameter Description

Ec Stop criterion for the DTA.
€d Maximum probability for loss rate.
ef Quantile up to which a distribution is descretized.

Convergence Accuracy The iteration algorithm of the DTA terminates if the
difference of two consecutive distributions regarding Haene renewal point
differ less thare. in each component. Thus, the approximation quality can be
increased by decreasing.

Validation of the DTA-Approximation of GI/GI/1—o0

We first explain the generation of the factor distributionsthe DTA and then
compare the resulting DFs. Then, we show that the DTA-appration of the
discrete time71/GI/1— D™ system can be used to calculate the waiting time
DF of the continuous tim&'I/GI/1— oo system. To that end, we validate its
results by analytical values in the special cases of ¥heD/1 — oo and the
M/M/1—o0 system.

Generation of the Factor Distributions for DTA We determine the time
granularity by definingE[A] = n. - v and chooser, = 100 by default. As

126

5.1 Gamma-Approximation of thel /GI/1—oco Waiting Time

the DTA requires distributions instead of DFs to descriteefdttorsA and B,
we calculate them by

, 0 fork =0
PA =k) = (5.30)
FAk) - FA(k—1) fork>o0.

Note that the valué: corresponds to a duration &f- u. We limit the DFs for
A and B according to Equation (5.29) withy = 10~ by default and mark the
discretized random variables by a single quote, elgis the discretized value of
A. We test the system under a given utilizatj@nThus, the mean of the service
timeisE[B]=p- E[A].

Due to the discretization, the medfi[X] and the coefficient of variation
cvarl X | of the discretizedd’ and B’ differ slightly from the ones ofd and B.
The discretization error oft’ and B’ leads also to a slightly different system
utilization p’ = g[[ﬂ In general, there are different discretization methods
possible to keep the error small. The precision of the metltmpends on the
discretization unit and the shape of the DF, as discusseDin [

We use the exponential DE. (t) = 1—e /P[4l as the base for the inter-arrival
time DF forA’. Figure 5.1 illustrates the inaccuracy of the discretizqubeential
distribution A’ in relation to the continuous DF aofl. Figure 5.1(a) shows
the discretization erroRg[A’] = w regarding the meaf[A]. The
discretized distribution has a slightly larger mean, bt difference decreases
with increasingn,,. Decreasing the discretization parametgican improve the
result only up toe; = 0.0001. Figure 5.1(b) shows the discretization error
R..|A'] = %{jf’w regarding the coefficient of variatioaa[A]. The
discretized distribution has a slightly larger coefficiait variation, but the
difference decreases with increasing. In contrast to the mean, the accuracy

of the coefficient of variation is further decreased by a dasing: ;.

127

5 Analytical Assessment of IMS Server Performance

10 ; .

001

_ 70.001
__£=0.0001
£0.000001

[y
o
T

Inaccuracy (%)

10 s s ‘
0 100 150 200
Granularity n (u)
(a) Relative error of the mean rafeg [A'].
10° ‘ : :
_£70.01
_ £70.001
R _ _ _=0.0001
AN

S SNl £70.000001
g N
e -1
S 10
3
[8]
(8]
8 - -
E - = - -~

107 ‘ ‘ ‘

0 200

100
Granularity n, (u)

(b) Relative error of the coefficient of variatidRc,, [A’].

Figure 5.1:Discretization error for an exponential DF depending on the
discretization parameters, ande s .

128

5.1 Gamma-Approximation of thel /GI/1—oco Waiting Time

Comparison of Analytical and Approximated Distributionr€tions We com-
pare the waiting time DFs for an//D/1 — oo and anM /M /1 — oo system
calculated from the DTA-approximation of th&l /GI/1— D™** system and
from the analytical formulae given in Equations (5.8) and9)5They are
presented for a system utilization pf = 0.90 andp = 0.95 in Figure 5.2.
We have plotted theomplementary cumulative DEECDF) since this makes
the difference between the analytical and approximatedegaimore visible
on a logarithmic y-scale. The waiting time is given in mukp of the mean
service timeE[B] since this is the invariant component in most systems. The
approximations are shown fer, = 100, e; = 107*, ¢4 = 107'Y, ande. =
10~{678} for both considered queuing systems. The approximatioh ayit=
10~° yields significant deviations for large waiting times. Howg e, = 107
yields already a sufficiently good correspondence betwhenahalytical and
approximative CCDF and the curve for = 10~% coincides with the analytical
values. We observe within each of the figures that the inacguincreases for
the same . with increasing system utilization. When we compare theltegor
M/D/1—o00 and M/M/1— oo, we also realize that the inaccuracy increases
for increasing coefficients of variatiana/[B] of the service time, too. Thus, the
DTA leads to good and trustworthy results only for small odimen coefficients
of variationcva[B] and moderate system utilization.

From these observations, we use the discretization andration parameters
set ton, =100, ; =107%, e, =107, ande. = 10~® for the DTA analysis in
the following.

129

5 Analytical Assessment of IMS Server Performance

10 T T
Exact ar%alysis
SN g, =10
10°F :]
_e =107
= _ .08
glozf - 510 :
a
2> 1073 <«—p=0.95]
E
8,
S 10 \]
o A\
10°} A\]
p=090 7\
N\ .
107 L . 2
0 50 100 150
Waiting time t (E[B])
(@) M/D/1— oo system.
10° ‘ ‘ ‘ : :
Exact a_r(l)alysis
SN g,=10
10 ¢ 3
e =107
- C
~ _ 108
107} S5 =10]

< —P=095]

Probability P(W > t)

0 50 100 150 200 250 300
Waiting time t (E[B])

(b) M/M/1— oo system.

Figure 5.2:Analytical and approximated CCDFs of the waiting time.

130

5.1 Gamma-Approximation of thel /GI/1—oco Waiting Time

5.1.4 Validation of the Gamma-Approximation

In this section, we illustrate the accuracy of the Gamma@pmation by
comparing its complementary cumulative DF (CCDF) with thsuits obtained
from the corresponding DTA-analysis in Section 5.1.3 argr@ximative results
from the simple exponentiall /GI/1— oo approximation in Equation (5.13).
We consider first systems with a different coefficient of aiain cyar[B] of the
service time and different utilization levets Then, we study the impact of their
third moment on the approximation accuracy for which we usgrametric and
a strongly asymmetric service time distribution.

Impact of the First and Second Moment of the Service Time

The first moment of the service time determines the systelimaiton p = %

and the second moment determines the coefficient of vamiafithe service time
by cvarl[B] = 7”5“3;[15]15[312. Sincep andcyar| B] are more intuitive, we use them
to control our parameter studies instead®f3] and E[B2]. We use the Gamma-
distribution as service time since it can be easily adapieddet a giverp and
cvar|B] (cf. Equations (5.23) and (5.24)). We discretize the camirs Gamma-
DF according to Equation (5.29) to obtain approximated anitefiDF A" and
B’ as input for the DTA-analysis. For the sake of a fair comgerjsve use
E[B'], E[(B")?], andE[(B’)?] to calculate the first and the second moment of
the waiting time of waiting customers in Equations (5.4) éné) since they are
required to fit the parameters and 8 of the Gamma-distribution in Equations
(5.23) and (5.24). Then, we use this distribution togethith w' = g%lj/} to
derive the Gamma-approximation in Equation (5.25).

The four different parts of Figure 5.3 compare the CCDFs ef whaiting
time for the Gamma-approximation, the DTA-approximatiamg the exponential
approximation of Equation (5.13). We have chosen the caefiis of variation
of the service timecvar = {0.05; 1.5;2.0; 4.0} in these figures to perform a
parameter study. Note that the Gamma-approximation camgarameterized
to approximate the waiting time DF when the coefficient of $eevice time is

131

5 Analytical Assessment of IMS Server Performance

cvar[B] =0. Forevar[B] =1 it yields exactly the analytical results. Therefore, we
omitted this figure. The different values for the systemization p = % =
{0.7;0.9;0.95} within a single figure are obtained by varying the mean servic
time E[B].

The DTA-approximation is very good for low values of the gystutilizationp
and the solid lines of the Gamma-approximation coincideh thie dashed lines
of the DTA-approximation in all figures fop = 0.7 whereas the exponential
approximation shows significant deviations. It is knownnfrg27] that the
accuracy of the exponential approximation is only good &gé values of.
Thus, the Gamma-approximation yields very good approxonatesults for
small and medium system utilization. The DTA-approximati® quite accurate
for low coefficients of variation liké) < cvaB] < 1 and the solid lines of the
Gamma-approximation coincide with the dashed lines of th&-Bpproximation
for cvar[B] =0.05. For larger values af.a[B] and large values of, the accuracy
ec = 1078 of the DTA-approximation does not suffice to produce aceurat
results since the respective CCDFs deviate significantignfa straight line in
the logarithmic plot. In these cases, the correspondenteedfolid lines for the
Gamma-approximation and the dotted lines of the exporieagigroximation is
relatively good. Hence, the Gamma-approximation leadotm@pproximation
result for a very broad range a@fa[B] and p. The high resolution of our
numerical results proposes that it can be used to calcwate large quantiles
of the waiting time, e.g. the 99.999% percentile.

Impact of the Third Moment of the Service Time

The Takacs formula requires the third moment of the seriige to calculate the
second moment of the waiting time of waiting customers (cfu&ion (5.5)).
Therefore, we are interested in the impact of this value enGCDF of the
waiting time of anM/GI/1 — co and in the approximation accuracy of the
Gamma-approximation regarding this parameter.

132

5.1 Gamma-Approximation of thel /GI/1—oco Waiting Time

Probability P(W>t)
i
15

—— Gamma-approximation
- - - DTA-approximation
Exponential approximation

p=07,09,095

50 100 " 150
Waiting time t (E[B])

(@) cvar[B] =0.05.

Probability P(W>t)

—— Gamma-approximation
- - - DTA-approximation
Exponential approximation

p=0.7,09,095

N

200 800

400 600
Waiting time t (E[B])

(©) cvarB]=2.0.

Probability P(W>t)

Probability P(W>t)
i
15

—— Gamma-approximation
- - - DTA-approximation
Exponential approximation

p=0.7,09,095

)\

100

200 300 200 500
Waiting time t (E[B])

(b) cval B] =1.5.

—— Gamma-approximation
- - - DTA-approximation
Exponential approximation

p=0.7,009,0.95

500

1000 1500 2000 2500 3000
Waiting time t (E[B])

(d) cvar[B]=4.0.

Figure 5.3:The CCDFs of the waiting time from the Gamma-, DTA-, and
exponential approximation for akil /Gamma/1 — co system with
various coefficients of variatiot,|B] at various system utilization

levelsp.

133

5 Analytical Assessment of IMS Server Performance

Table 5.2:Symmetric and asymmetric distributions, both with a firsd aacond
moment of2[B] =100 u andE[B?] = 18000 ¢”.

Bsym=1(U) P(Bsym=1%) Basym=1(U) P(Bsym=1)

10 % 90 80
100 i 1
190 10 900 =

To that end, we consider two distributions with the same frsd second
moment. They are given in Table 5.2. The symmetric distidouhas a third
moment of£[B2,,,] =3.6 - 10° u® while the asymmetric distribution has a third
moment ofE[B3,,,.] =9.72 - 10° u®. We use both service time distributions to
calculate the CCDF of the waiting time for a system utiliaatof p=0.9, i.e., we
set the mean of the inter-arrival 9 A] = @. Figure 5.4 shows that the CCDFs
of the waiting times from the service timé,,, and B, sy differ notably, but
it also shows that both the DTA and the Gamma-approximatimowant for this

difference.

- - - Gamma-approximation
—— DTA-approximation

Asymmetric service
time distribution

-a|

Probability P(W > t)
5 5

!
@

10 / .
Symmetric service
time distribution
10_6 L L Y
0 50 100 150

Waiting time t (E[B])

Figure 5.4:The CCDFs of the waiting time from the Gamma- and DTA-
approximation for al /GI /1 — oo system fop=0.9.

134

5.1 Gamma-Approximation of thel /GI/1—oco Waiting Time

5.1.5 Concluding Remarks on Gamma-Approximation

The review of the general/ /G /1—co queueing system and of some approaches
to characterize the waiting time of waiting customers shtieg there is no
explicit expression except for some special cases. Theingaiime DF can
only be obtained by a numerical inversion of its Laplacel§és transform.
Approximation methods are numerically also not simple, taytare specific

to the used service time distribution. The proposed Gamppasaimation
estimates the waiting time DF by a Gamma-distribution basethe first three
moments of the service time distribution. The computatioretfor the Gamma-
approximation is negligible while the DTA-analysis takesuates or hours to
produce sufficiently accurate results, and for large caeffts of variatioreyal B]

and a large utilization it takes even days. This makes the advantage of the new
calculation method obvious: it provides quite accuratéreses very quickly.
Therefore, it is suitable for the implementation in reahdi systems. We can use
itto provide a prediction model for the waiting times of magss in a JMS server.
But it can also be used in real-time systems where QoS meabkeeguantiles

of the waiting time are needed to perform admission confrgjood accuracy of
the new Gamma-approximation has been shown, by the studyafaal range

of coefficients of variatiorevar[B] of the service time and the system utilization
p. The third moment of the service time has a minor impact orC@®F of the
waiting time, but it is also well covered by the Gamma-appra@tion.

After all, the Gamma-approximation is very simple to apgdlyhe Gamma-
distribution is available, which is the case in most of tdgayathematical
toolboxes. The fast calculation speed makes it appropf@tapplication in
technical control systems, like a JMS server supporting higssage throughput
rates. In the next section, we will introduce a model for thessage waiting
time of a JMS system based on &y GI/1— oo system and apply the Gamma-
approximation to calculate the numerical results.

135

5 Analytical Assessment of IMS Server Performance

5.2 Analytical Performance Evaluation of the JMS
Server Capacity

The models presented in Chapter 4 consider only averagesakgarding
the message throughput rates. To characterize the servirrpance in a
broader way, it is necessary to evaluate the time dynamiawet which

can be described by internal queuing or even blocking behaBased on the
performance model and parameters obtained for the FiorendMS server in
Section 4.2.2.1, we investigate the server by a messagmgviine analysis and
by careful queuing theoretical observations.

5.2.1 JMS Server Capacity

First, we investigate the mean message processing timediegeon the number
of filters, to get a first hint concerning for the capacity of thioranoMQ JMS
server. Second, we introduce an approach to predict thersepapacity.

Average Message Service Time

With the basic performance model for the message servieeitilequation (4.9)
it is clear that the message service time increases lin@ath/the number of
filters. Figure 5.5 illustrates the mean message servioe Efi3] depending on
the number of filtersiy and the average replication grafiéR). The results are
shown for correlation ID filtering and application propefiifering. For small
values ofngy, the mean message service tififB] is dominated by the average
replication gradeF[R] but for large values ohy the linear growth clearly
dominates the influence of the message replication grade tRat both the x-
and the y-axis have a logarithmic scale. Thus, the servine for a message
ranges over several orders of magnitude, which is due terdift message
replication grades, due to the linear growth®fB] with nsqy, and due to filter
type specific values df., tir, andtw. Hence, it is strongly application scenario
specific.

136

5.2 Analytical Performance Evaluation of the JMS Serverdcép

—E[R]=1
-~ -E[R] =10
- - E[R] = 100

Correlation ID Filtering

Mean Service Time (ms)

10" i 10°
Number of Filters N

Figure 5.5:Impact of the number of filtersqy, the average replication grade
E[R], and the filter type on the average message serviceHi[g.

Server Capacity

We define the server capacity by the maximum supportable iloadrms of
messages per second. If we allow a server CPU utilizatign we can compute
the server capacity in terms of received message throudgyput
max P
A = B (5.31)

Figure 5.6 shows the server capacity for a maximum server @Hization of
90% for the same application scenarios like above. It shoeserver capacity
A" depending on the same parameters like above but for the $akariy
we omitted the results for correlation ID filtering. Similar the service time,
the server capacity ranges over several orders of magnitu@eobvious that
the server capacity decreases both with an increasing nuofiffiéters nq, and
with an increasing average replication grddigz]. Filters protect the subscribers

137

5 Analytical Assessment of IMS Server Performance

100

 ER-1
- - -E[R] =10
- - E[R] = 100

10¢

0.1

Server capacity A" (1000 msgs/s)
=

10° 10" 10> 10°

Number of filters n
fltr

Figure 5.6:Impact of the number of filtersi.sy and the average replication
gradeE[R] on the server capacity™ for a maximum server CPU
utilization of p=90%.

from undesired messages, they reduce the replication gvetieh limits the
network traffic and improves the server capacity. Howeves, latter objective
is not always achieved, which is also shown in Figure 5.6c&ithe x-axis is
scaled logarithmically, the figure starts with one filter iggh But if we assume a
message replication grade Bf R] = 10 (100) without filters, it leads to the same
capacity reduction like a message replication grad&[dt] = 1 and nay = 22
(240) filters.

This leads to the question: when should a filter be applied dgimize the
server throughput? We consider an information consumtirat has installed
ng, filters on the server. Furthermore, we assume that thesesfikkeeive the
proportion pf .., Of all messages. On the one hand, the filters increase the
message processing time by, - tnr but on the other hand, they reduce it by

138

5.2 Analytical Performance Evaluation of the JMS Serverdcép

(1—plaen - tx- Thus, these filters increase the server capacity if theviatig
inequality holds:

n?lltr St < (lfp%atch) - b (5.32)

Taking the values of Table 4.1 into account, a single or twoetation 1D
filters (nd,, € {1;2}) should be used if their match probability is smaller than
58.7% or 17.4%, respectively. Three or more filters per comsuslow down
the server more than forwarding any message if no filters ate/s single
application property filterr{g, = 1) should be used if its match probability is
smaller than 9.9%. Like above, two or more filters per conswaanot lead to a
capacity increase of the JMS server. However, filters aregly used to protect
the consumers against too many unwanted messages and Warknagainst
overload.

5.2.2 Modeling of the Message Waiting Time

The objective of this section is the investigation of the sag® waiting time. We
first model the JMS server by a simple queuing system and shisearious dis-
tribution models for the message replication grade whigbaiats the variability
of the service time. Then, we study the mean, the distribytod in particular
the 99% and the 99.99% quantiles of the message waiting t@perdling on the
average server utilization.

A Simple Queuing Model for IMS Servers

For all servers we tested, the major part of the messagesumeed at the
publisher site due to a kind of push-back mechanism. As aetpreice, we
did not detect any message loss due to buffer overflow at th® Sétver. In
the following we consider only the the FioranoMQ server. Un experiments,
we use permanently sending publishers that are only sloweah dy the push-
back mechanism of the JMS server. However, in reality, thigadrprocess is

139

5 Analytical Assessment of IMS Server Performance

1O O
\ /‘

1O ||

20/30\

n Publishers ApprOXImatlon m Subscribers

B(n fltr »

EO

\

O

Figure 5.7:A simple queueing model for a IMS servef;/GI/1—oo.

stochastic, i.e., the publishers do not send in a saturatathen. If the JIMS
server is not overloaded and if its message buffer is largeigimto absorb all
arriving messages, we can well approximate the complexativeystem by a
single message queue at the JMS server site. This is defgtédgure 5.7.
Furthermore, we assume a Poisson model for the arrival gsanehe busy hour,
i.e., the inter-arrival times are exponentially distrigtitand the message arrival
rate is denoted by. The arrival rate\=) _,_, _,, \: for that queue is the sum of
the message rates from all publishers. This is a reasonable assumption since
technical processes are often triggered by human beingsaweonsider busy
hour scenario of a system and assume that the arrivahristeonstant.

Messages are served sequentially by the server with thetepsing time3.
This random variable follows a general distribution. Thug can model the
system by arf/G1I/1 — oo queue. The firsE[IW] and second mometd 172
of the message waiting time in this queuing system are giyeBduation (5.2)

140

5.2 Analytical Performance Evaluation of the JMS Serverdcép

and Equation (5.3), respectively. The utilization of thevee is defined by
p = \- E[B] [140].

Model for the Message Service Time

The equations for the first two moments of the message waiiing require
the first three moments of the message service time. Theceetive B for a

message is composed of a constant paet t.cy + nar - tir @and a variable part
V =R - tw such that the first three moments can be calculated by:

E[B] = E[D+V]=D+E[R] tx, (5.33)
E[B’] = E[D+V)’]=D"+D-tw- E[R]
+to - B[R], (5.34)
E[B"] = E[D+V)’]=D"+3-D*-tx-E[R]
+3-D-t3 - E[R*] + to - E[R%]. (5.35)

To conduct a parameter study of the waiting time distributiepending on
the meanE[B] of the service timeB and its coefficient of variation

E[B? - B[B]2

Cvar[B] = E[B] y

(5.36)
we calculate the required’[R] from Equation (5.33), and us&[R] and
Equation (5.34) to calculat&[R?]. Depending on the appropriate model for
the message replication gradg we getE[B?] by using Equation (5.35) and
the third moment of the respective distribution for the iegtion grade. In the
following, we discuss various distributions to model theligation gradeR.

Deterministic Distribution If the replication grade is constant, the distribution
of the message processing tiniis also deterministic and its coefficient of

141

5 Analytical Assessment of IMS Server Performance

variation is cval[B] = 0. Furthermore, the second and third moments of the
message replication grade are
E[R*] = EI[R?, (5.37)
E[R’] = E[RP. (5.38)

This model is very static and probably not appropriate toattarize real world
scenarios.

Scaled Bernoulli Distribution With a probability of pmach, @ message is
forwarded by allngg filters and with a probability oft — pmarch, the message is
not forwarded at all. This can be modeled by a scaled Berirdisttibution. The
corresponding first two moments are

E[R] = Pmatch" Mfitr , (539)
E[R?] = pmatch- Ny - (5.40)
The model parameters can be calculated vice-versaiby- —g[ﬁ] andpmatch=

ELR] £rthermore, the third moment is

fitr

3 E[RQ]Q

E[R?] = TR (5.41)
We are interested in the coefficient of variatian,[B] of the message service
time based on a message replication grade, which is diggdaccording to this
scaled Bernoulli distribution. This is calculated usinguBtions (5.36), (5.33),
and (5.34). Figure 5.8(a) showsx[B] depending on the number of filtersy,
the match probabilitpmatch and the filter type. The coefficient of variation [B]
converges for an increasing number of filters to values tepedd orpmarch and
the filter type. The coefficient of variation is at megt[B] = 0.65 and we cannot
find any larger values for any other parametersgfcn

142

5.2 Analytical Performance Evaluation of the JMS Serverdcép

0.7 - —
—Praten = 0.1
— 0.65r N - H
-~ *pmatch
O§ 0.6/ - pmatch:
& 055 . o 1
k= Correlation ID filtering
5 0.5 [¥ 1
> ’
o 0.45 Application property filtering
3 04 N]
e} P i T -
5 035 ||]
§ - -
03,
Ve
025 L L L L
0 20 80 100

40)
Number of filters Mo

(a) Replication gradé? distributed according to a scaled Bernoulli

distribution.
07 -
—Praten = 0.1
m 0.6h _ ,pmatch:OG,
L | _

og - = Prateh = 06

0.5 1
c
RS
% 0.4 Correlation ID filtering]
>
S 03]]
_5 ‘ Application property filtering
o
e
[}
e}
@)

0 ‘ ‘ ‘ ‘
0 20 80 100

40)
Number of filters N

(b) Replication grade® distributed according to a Binomial distribution.

Figure 5.8:impact ofngr andpmarch 0n the coefficient of variationya|B] of the
message processing tinie

143

5 Analytical Assessment of IMS Server Performance

Binomial Distribution The scaled Bernoulli distribution is probably not real-
istic enough to model the distribution of the message refiia grade. Now,
we assume that the filterg, match messages independently of each other with
a probability ofpmarch Then, the resulting replication grade follows a Binomial
distribution:

P(R=k)= <n]2tr> 'pfl’cﬂat(:h' (1- pmatch)nﬂ”_k~ (5.42)

Furthermore, the second and third moments [130] are

E[RQ] = Nfitr * Pmatch* (1 *pmatch) f (5.43)
E[R2]2
E[R]

E[R®] = E[R)’-E[R*)—E|R)- E|[R*]+2- (5.44)
We conduct the same study like above and observe in Figuie)stigat the
coefficient of variationc,ar[B] decreases quickly for an increasing number of
filters nsy to values between 0.064 and 0.033, depending on the filter typ

After all, the second moment of the service time is bound bydtgn (5.34)
and the second moment of the replication grade, cf. Equa{®37), (5.40), and
(5.43), respectively. Realistic coefficients of variatoof the message service
time lie betweerD.0 and 0.2 and coefficients larger thah65 are impossible.
Therefore, we work in the following exemplarily with the uek0.0, 0.2, and
0.4 because they cover realistic values in the considered sosna

144

5.2 Analytical Performance Evaluation of the JMS Serverdcép

10

= >
(%2}
g &
[J]
£ 3
o 10 2
£ a
% [0)
1
= 10'3
o s
@ 3
%] =
(0]
£ 5
910 m
E S
T L L L 100
0.5 0.6 0.7 0.8 0.9 1

Server utilization p

Figure 5.9:Impact of the server utilizatiop and the coefficient of variation
cvar|B] of the message service time on the average message waiting
time E[W].

5.2.3 Analysis of the Message Waiting Time

After evaluating a model for the message waiting time andaitgperties and
limits, we present the analytical results for this modeha following section.

Average Message Waiting Time

The average message waiting time at the JMS server can hdatatt using
Equation (5.2). Figure 5.9 depicts this depending on theesatrtilization p in

a specific application scenario withy = 100 application property filters and
a constant replication grade & = 1. The left y-axis shows the corresponding
waiting time in ms. It is obvious that the average waitingdif[W] increases
with p. We can generalize the result by indicating the waiting tamex multiple
of the average message processing ti#&] on the right y-axis, which also

145

5 Analytical Assessment of IMS Server Performance

— - - — M/D/1 exact computation
T M/GI/1 approximation

10 a\ \ D —\,\‘er k|
g \\Q \ 5 *\\\\\\\\
-2| | T
<107) _ 1
o Y\ p=0.7 =09
= \
S 3 \
10
[S] 1\
s 0
107 \
0 5 15

10
Message waiting time t (E[B])

Figure 5.10:Comparison of the exact and approximated CCDF for the wgitin

time of anM/D/1 — co queuing system for different utilization
valuesp.

approximates the mean queue length in packets. Based ondtrisalized y-
axis, we can easily compare the average message waiting Hiffi€] from
different application scenarios that have different mefafi3] and coefficients of
variationscva B]. Figure 5.9 illustrates that the mean waiting time is sérestb
the coefficient of variation of the message processing fivand that it increases
with cvar[B]. Note that the normalized diagram in Figure 5.9 provides als

lookup table for the average message waiting tiBj@V’] in any application
scenario with a matching coefficient of variatien[B].

Message Waiting Time Distribution

In addition to the mean waiting time, we are also interestedhie entire
distribution function. According taM/GI/1 — co results, the waiting time
probability for a message is, = p. With Equations (5.2) and (5.3) we know the

146

5.2 Analytical Performance Evaluation of the JMS Serverdcép

first and second moment of the message waiting time such #haaw calculate
the first and second moment of the waiting tifi&,. regarding only delayed
customers by

EW]

E[ch] = T) E[ch] = p

(5.45)

The Gamma-distribution has a positive range and can be di@sehe contin-

uation of the exponential and Erlang-distribution for diménts of variations

different from cvarl[X| = ﬁ k € N [127]. We approximate the waiting time
distribution of the delayed call® (W, < t) by fitting their two parameters
v and 8 = Elucl Thus, we get the waiting time distribution
function regarding all calls by

o =

PW<t) = (I—p)+p P(Wue<t). (5.46)

This Gamma-approximation is exact for an exponentiallyridisted service time
and leads to very good approximation results for other sertime distributions
as we have shown in [14].

To be aware of the error for other service time distributjoms consider an
M/D/1—o00 system for which the exact waiting time distribution can bku-
lated [131]. However, numerical instabilities arise sulehttthe corresponding
probabilities can be calculated only for small time valugd§]. Figure 5.10
shows a comparison of the exact and the approximated CCDWaitihg time
for M/D/1— oo for various system utilization valugs The approximation is
good enough to sufficiently estimate exact delay quaniitegarticular for large
values of the utilizatiorp. As the approximation works well fata[B] =0 and
evar[B] =1, we use it also in the following fdb < cvar B] < 1.

Figure 5.11 shows the CCDF of the message waiting tilndor a server
utilization of p = 0.9 and for a coefficient of variation af.a[B] = 0.0, 0.2,
and0.4 on a normalized (t&[B]) x-axis. The distribution functions are clearly
shifted towards larger waiting time values with increasing{B], which is

147

5 Analytical Assessment of IMS Server Performance

—— Binomial distribution for R
- — - Scaled Bernoulli distribution for R

Probability P(W > t)
B B

10t

6 L L L
0 20 40 60 80
Message waiting time t (E[B])

10

Figure 5.11:1mpact of the coefficient of variationa| B] and the distribution type
of the message replication graéeon the CCDF of the message
waiting timeW for a server utilization op=0.9.

consistent with the results obtained in Section 5.2.3. Bterdinistic, the scaled
Bernoulli, and the Binomial distribution coincide foy[B] =0 and thus lead to
the same waiting time distribution of the messages. Furtbez, we can hardly
see any difference between the waiting time distributiorcfion for the binomial
and the Bernoulli distribution of the replication graée Thus, we can neglect
the exact distribution type of the message service time an#l with its first two
moments instead. In the following, we assume a messageseéne based on
a binomially distributed message replication grdtle

Message Waiting Time Quantile

The p-quantile orp-percentile@,[W] specifies the lowest duration for which
P(W < Qp[W]) > pholds. It says p - 100% of all messages wait shorter than
Q»[W]" and yields thereby a “quasi upper bound” Bhif p is large. Figure 5.12

148

5.2 Analytical Performance Evaluation of the JMS Serverdcép

200 —
— cvar[B] -
- c\/ar[B] = ‘(‘
— !
50| - - %adl®) 1

99% Quantiles

99.99% Quantiles

Message waiting time (E[B])
o]
o o

oo

5 0.6 0.7 0.8 0.9 1
Server utilization p

Figure 5.12:Impact of the server utilizatiop and the coefficient of variation
cvalB] of the message service time on the 99% and 99.99%

guantiles of the message waiting time.

shows the 99% and 99.99% quantile of the waiting time on a abzed y-axis
depending on the server utilizatiprand the coefficient of variationa [B] of the
message service time. The 99.99% quantile of the waiting tsrsubstantially
larger than the 99% quantile. The quantiles increase withstrver utilization
p and they are substantially larger than the means of thengditine E[1V] in
Figure 5.9. The impact of the coefficient of variation,[B] is notable but the
impact of the server utilizatiop is much larger. If the probability for immediate
processingl — p., (p) is significantly smaller than the quantile valge the
quantilesQ,[W] are significantly larger than the corresponding me&ifE/]
(cf. Figure 5.9) and they are more sensitive to the coeffi@érariation cval B]
of the message service tinte

If we limit the server utilization tgp = 0.9, the message waiting time is less
than50- E/[B], i.e., a waiting time 060 - E[B] is not exceeded with a probability

149

5 Analytical Assessment of IMS Server Performance

of 99.99%. With that probability a maximum waiting time of miost 1 s is
guaranteed as long ds[B] is smaller than 20 ms. For this time limit and an
average replication grade &f[R] =1 for the above scenario, up to 1369 or 2845
filters may be installed on the JMS server for applicatiorpprty or correlation

ID filtering, respectively. However, in this case, the madximserver capacity is
only A7%5. o = 45 messages per second which is very low. Hence, for a system
designer the message waiting time can be neglected as lahg &sacceptable

for a server utilization op = 0.9 or less. Thus, if a sufficiently high throughput

is achieved, the waiting time is small.

150

5.3 Performance Comparison of Distributed JMS Server Agchires

5.3 Performance Comparison of Distributed JMS
Server Architectures

The capacity of a JIMS server is bounded by the performandse GHU. If it does
not suffice to support a certain message rate frgoablishers ton subscribers, a
distributed architecture might be useful to alleviate thebfem. We consider two
basically different simple architecturegublisher-side JMS server replication
(PSR) andsubscriber-side JMS server replicati@BSR).

5.3.1 Publisher-Side JMS Server Replication

With PSR, each publisher has its own local IMS server, foclwvbubscribers can
register. The concept is visualized in Figure 5.13. Eactiglvdr-sideM /G1/1—

oo system supports a message rateand their average message replication
grade isE[R;]. Since the messages are filtered already at the publisters, t
traffic load imposed on the network interconnecting pulgiiskand subscribers is

ZO§i<n Ai - E[Rz]

O X "T10O

O AT O
! sart | O

n Publishers and JMS Servers m Subscribers

Figure 5.13:Publisher-side JMS server replication (PSR).

A drawback of this distributed PSR architecture is the fhat all subscribers
have to register in parallel for JIMS servers at distributed publisher sites instead

151

5 Analytical Assessment of IMS Server Performance

oA
] OXAERI

O

O

—TO*AEYO

n Publishers m JMS Servers and Subscribers

Figure 5.14:Subscriber-side JMS server replication (SSR).

of a single one. This disturbs the elegant communicatiariate of IMS over a
single server. Thus, additional entities must be introduoeallow a transparent
communication like with a single server, but this is not seopthis work.

5.3.2 Subscriber-Side JMS Server Replication (SSR)

With SSR, each subscriber has its own JMS server for whichighdss can
register. The concept is visualized in Figure 5.14. Sineattkessages are filtered
only at the subscribers, the message rate for each subssided/ /G /1— oo
systemis\=3", ..., A:. Thus, the overall traffic carried in the networknis .

Sincem is an Lp;per bound oR;, SSR produces significantly more traffic in
the network than PSR. Like with PSR, the elegant commurmingtiterface of
JMS is also compromised by the SSR architecture becausg mwelisher needs
to multicast its messages to all IMS servemsatifferent subscriber sites instead
of to a single one. However, this problem is not our presentem.

5.3.3 Capacity Comparison of PSR and SSR

For the performance comparison of both architectures, wsider the following
scenario. All nodes have the same computation power. licpéat, we assume

152

5.3 Performance Comparison of Distributed JMS Server Agchires

that they have the same capacity as the machines in our s in Chapter 3
because our numerical study relies on the valtgs tmr, and tx that were
obtained for these machines. Furthermore, the message\tatéall publishers
are equal and the average replication gra#é®;] for their messages are the
same such that we can denote them uniformly ByR]. In addition, each
subscriber hasgq = 10 different filters.

For PSR, the capacity of the distributed JMS system

max . . max
APSR =N éniléln(/\z) (5.47)
is the n-fold multiple of the minimum of all individual JMS server pacities
A%, Similarly to Equation (5.31), it can be calculated under éitbove stated
assumptions by

PSR = p-n- (tev + m - i -t + E[R] - ttx)_l . (5.48)

Thus, the system capacity depends orend m and is thereby application
scenario specific. In case of subscriber-side JMS servécaépn, the capacity
of the distributed JMS system™ = ming<i<m (AJ***) is the minimum of
all individual JMS server capacitieg““. It can be calculated under the above
stated assumptions by

0% = p - (bew + 1 -t + B[R] - o) " (5.49)

In contrast to\'’2 5%, the expression fok¢'s is independent of andm.

Figure 5.15 illustrates the impact of the parameteendm on the capacities
PR and A5, of both distributed JMS systems. The results are calcufated
an average replication grade BfR] = 1, a maximum server utilization of =
0.9, and correlation ID filtering. The capaciyt%% for SSR yields a horizontal
line since it is independent of the parametarand m. The capacity for PSR
increases linearly with and decreases almost reciprocally for large values.of
PSR outperforms SSR for medium or large values ahd for small or medium

153

5 Analytical Assessment of IMS Server Performance

10°t m=10

w

@

(@)

2]

£

2>

g

8 10*

®©

o

£ o

[J]

2

% 0% m = 1000

o m = 10000

3 —— PSR
. -~ -SSR

10 ‘ ‘ ‘

10° 10" 10> 10° 10°*

Number of publishers

Figure 5.15:Capacity comparison of PSR and SSR scenario for a server
utilization of p = 0.9, an average replication grade BfR] = 1,
andm subscribers.

values ofm. Note that a largen can reduce the capacity of a single JMS server
so much that waiting time problems arise. For examplepfes 10* and a large

n the distributed system has still a large capacity but theaciéy of a single
publisher-side server is only 7 msgs/s leading to averagiingaimes of 1 s and

t0 99.99% quantiles of 10 s. We get similar results for catieh ID filtering.

The capacity lines in Figure 5.15 intersect where both Hqoat(5.48)
and (5.49) yield the same results. Thus, we conclude thatd@erforms SSR
if the following inequality holds

trev + M - e - tar + E[R] -t
trev + Mt - i + E[R] - tix

(5.50)

It gives a recommendation under which circumstances PSFS& should be
implemented to cope with a large number of publishers orcsuiess.

154

5.4 Concluding Remarks

In conclusion, PSR achieves system capacity scalabilith waspect to an
increasing number of publishers, but the capacity degradiésan increasing
number of subscribers. In contrast, SSR provides systeracitgpscalability
for an increasing number of subscribers but its capacitys cae scale with an
increasing number of publishers. Since both architecttgpresent an artificial
bound of the system architecture, the real system desigsidens something in
between, as done in practical systems, by clustering JM®@serachines. The
performance evaluation of such a system is out-of-scoplei®fitork. Although,
the methodology and models presented in this section casditas a first step
for evaluating JMS servers arranged in a cluster basedtectinie.

5.4 Concluding Remarks

The overall focus of the previous chapter is to analyze theuing behavior
of a JMS server in addition to our models based on mean valoeshé
message throughput. While developing the system modelsowsider a real-
time scenario which imposes time constraints on the numlezi@luation of our
prediction model. We fitted af//G1/1— oo queuing system for calculating the
message waiting times of the FioranoMQ JMS server.

However, there are no explicit expressions except for sqraeial cases. The
waiting time distribution function can only be obtained bguanerical inversion
of its Laplace-Stieltjes transform which is not numerigafeasible in our
scenario. We identified also other numerical approximatias not appropriate
for our scenario. Thus, we proposed the Gamma-approximadltiat estimates
the waiting time distribution function by a Gamma-disttibn based on the first
three moments of the service time distribution. We showedattcuracy of the
Gamma-approximation and proved that it is very accurate targhe calculation
of 99.999% quantiles of the waiting times. Overall, the Gavapproximation
is not restricted to our scenario, but can be used in genaraé€&hnical control
systems where fast numerical results for the waiting tinmesiacessary.

We observed from our experimental analytical parametetysiu Chapter 4

155

5 Analytical Assessment of IMS Server Performance

that the values for both the message processing time andittesponding server
capacity A" in messages per second range over several orders of magnitud
depending on the application scenario. Both additionarfland unnecessarily
sent messages reduce the JMS server capacity. Thus, wedsthidiphenomenon
and gave a recommendation for the configuration of subgsritee maximize
the JMS server capacity based on the message match probabifilters. We
modelled the JMS server by aW/GI1/1 — oo queuing system and presented
three different distributions for the message replicatioade, which lead to a
significantly different variability of the message prodeggime. We showed that
the average message waiting time is mainly influenced byehees utilization.
The sensitivity analysis showed that the processing timiabiity plays only a
marginal role. We used a normalized diagram which can beasadookup table
for various application scenarios. The 99.999% quantilegjia “quasi upper
bound” on the waiting time and an estimate on the requirefebspace at the
JMS server. Finally, we concluded that extensive waitinge8 do not occur as
long as the server is not overloaded and as long as its thpotigh medium or
high. These results are of general nature and are also wal@ttier servers than
the FioranoMQ.

Finally, we introduced two distributed JMS server archtitees: publisher- and
subscriber-side server replication (PSR, SSR). We cordpghgecapacity of both
alternatives by the use of our simple throughput model. Tapmacity \P% 5 of
PSR scales well for an increasing number of publishers andapacityA\ S of
SSR scales well enough for an increasing number of subssridewever, none
of them scales well for both requirements. We provided sagmemmendations
for the usage of PSR or SSR in order to design a real systemd&tision
which approach is closer to the requirements by the enviemirdepends on
the application scenario.

156

6 Conclusions and Future Trends

In modern software architectures, efficient applicatiorapplication communi-
cation is an important requirement. Introducingnassage-oriented middleware
(MOM) decouples the communicating partners by providirgndard interfaces.
This enables a flexible exchange of information even in betmeous applica-
tion environments.

In this thesis we investigated a messaging infrastructara aentral entity
in the application communication process. Such a messagfirggtructure may
become a bottleneck of the overall system. Therefore, weate the scalability
in terms of the overall message throughput. There are deepmEroaches
available, which support an efficient communication of aations. We picked
the publish/subscrib&eommunication pattern as a widely accepted architecture
which fulfills a large set of requirements of a modern appidca design,
like one-to-many communication and filtering of informati@according to
the subscribers’ interests. A key feature is the decouptihghe publisher’'s
and subscriber's communication. Many approaches areadaito design and
optimize a publish/subscribe system. However, in practicariety of different
implementations and combinations of filtering mechanisnespassible, which
increases the complexity for predicting a resulting sysgerformance. We
evaluated the limits of different messaging systems andtifilied the most
impacting parameters in order to give hints for dimensigrémd designing a
messaging system regarding different application scesari

Thus, we designed a measurement-based methodology tdfyderitical
parameters and evaluated them for different realizatiohshe Java mes-

157

6 Conclusions and Future Trends

saging service(JMS). Also, a categorization of the different parameteys i
given according to their system impact regarding servdization, message
throughput, subscriber utilization, and information granity. The proposed
measurement method assesses the software capacity ofréiee with respect
to the maximum achievable message throughput. To that emdent messages
to the server in a saturated manner by a test tool. The pexsentmerical
results are valid for the testbed and the JMS server configungaused in our
environment. Using different hardware components, esfigcurrent and future
hardware architectures, e.g., multi-core processor sstad optimized caching
strategies, may cause different behaviors in scalabAitparallel execution of
processes introduces additional overhead to the coderirstef synchronizing
each single thread. Also an optimal configuration of each Xd&er based
on its software capabilities can improve its overall perfance. Since these
optimizations typically consider a specific applicatiorersario, a generalized
performance prediction is limited. Therefore, we used thfaudt configuration
for all considered vendors, since it typically is optimizéml the “common
case”. The categorization of critical parameters and ttseriteed experimental
methodology is in general a good approach to evaluate a giagdaased system
in varying application scenarios. Using our method we cotetlh a series of
measurements regarding the number of connected clientthandessage size.
For the number of clients, we found that a sufficiently higimier of publishers
or subscribers is required to fully utilize the server maeland to obtain a typical
message throughput.

Considering this result, it can be concluded that the maximaystem
performance can only be achieved if a sufficiently large neindd clients are
connected to the messaging system. In case of informatientsm, we tested
the coarse-grained design option using topics and messaglehbased filtering.
Using header-based filtering, we can also differ the fixedlbeaart which is
more efficient for all measured servers but is limited in iplcability. Filtering
for the application header properties has increased flayjut — depending
on the filter complexity — impacts the throughput performeasignificantly. For

158

instance, the FioranoMQ servers message throughput pefae decreased
most with only activating simple filters. All other testednss experience a
minor impact by simply activating filters. The impact incsea if we introduce

complex filter scenarios where a filter consists of multigienponents connected
by a logical operator like “OR” or “AND”. The considered panaters in our

measurements have a different level of impact dependingp@sdrver type and
the application scenario. Therefore, parameters shoulevakiated during the
design phase of the development of a messaging application.

In addition, we tested three different options for the sapmieation scenario,
using simple filters, complex OR-filters, and IN-filters. Tihefilter operator is
the best option in terms of throughput performance but caip@onodified while
active. The simple filter option has the lowest performanaei® very flexible
for updating the filter parameters. Hence, during the desigm application, the
filter-type has to be chosen carefully. The presented measents focus on the
binary transmission of a message payload and header-b#eeddi In current
and future systems we notice also an increasing number téigbbhased filtering
approaches, e.g., based on an XML encoded message paytwaid€ring such
an environment, the expressiveness of a single filter and @msequence its
complexity might increase dramatically whereas the peréorce suffers from
extracting information out of the message payload. For agisg-systems with
a large message throughput we recommend, based on ouisressfilit of the
message payload and a header containing meta informatierlM'S framework,
considered in this work, supports only the header-basedlifif approach.

We further considered the impact of network transport graiand tested the
impact of different connection and session aggregatioelsesf subscriptions.
We found that there is only a minor impact while choosing gexi TCP-
connections or JMS session aggregation. A major impact easerved during
setup of the initial connections to a JMS server. This is kameple the case in a
busy-hour scenario, where a flash-crowd of clients trieotmect to the server
at the same time. Considering the Bea WebLogic server, fepgéncoming
subscriptions and therefore stalls delivering messagh&hamight lead to an

159

6 Conclusions and Future Trends

overload scenario. The ActiveMQ server tends to prefer agesslelivery which
results in large subscription registration times and aiptssnessage loss with
newly connected subscribers. Thus, we suggest to test fyeeciof network and
subscription handling in the desired application scenario

In order to dimension an application environment based oneasaging
infrastructure, it is important to predict the required ssge throughput per-
formance of the message-oriented middleware system. finereve proposed
a measurement-based approach to derive simple predictantelsr regarding
the impact of filtering and the replication grade. We wereedbl fit a base
model, which we adapted to special behaving servers, like ShnMQ or
the WebSphereMQ. Using a linear regression method we eadmlilsystem-
specific parameters from measurements. We were able tcat@lalr results
and observed a good match of the results of the model and oasurement
results. We also enhanced the models to cover complexfigfsdenarios. Thus,
the proposed mathematical approximation models for thesages processing
time are accurate enough to predict the message throughpatif application
scenarios. The proposed models consider the average ragsgéigation grade,
the overall number of installed filters, and the number ofedént filters. From
our results we can conclude that all server types have a dilgsidifferent
performance behavior, but we found individual models fateserver following
our measurement based approach. Finally, we illustratedpplicability of our
performance models by applying our models to four simpldiegion scenarios.

Since the message throughput prediction models are basaeeomge values
for the message processing time and the replication gradentnoduced an
M/GI/1— oo queuing system to estimate the message waiting times for the
overall system. This enables the prediction of the senad.I@hus, if we try
to predict and avoid failure scenarios, a very fast calauabf the numerical
values of the model is desirable. Since no numerical appration method is
efficient enough to calculate these numbers sufficiently ¥es proposed our so-
called Gamma-approximationvhich is based on the Gamma-distribution. The
computing effort needed to apply this approximation mettsodegligible and

160

therefore, the best choice for our scenario. The approimas also useful in
all other scenarios where a fast and accurate approximafidhe numerical

values of anM/GI/1 — co queuing system is necessary. Since the message

processing time and the corresponding message througapacity of the server
depends heavily on the application scenario, we gave a maenmation for the
configuration of subscribers to maximize the JMS server @phased on the
probability a filter matches. We showed that the average ageswaiting time
is mainly influenced by the server utilization. In contralg sensitivity analysis
showed that the processing time variability has only a mimact. Finally, we
concluded that extensive waiting times do not occur as lanthe server is not
overloaded and as long as its throughput is medium or high.

Since the messaging system represents a central entitgbiitya regarding
the overall message throughput can be achieved by distriptite server logic.
Therefore, we compared two diverse design options ptitdisher-side server
replication (PSR) and thesubscriber-side server replicatiofsSR) considering
our performance models. We found that the choice of the belsitacture heavily
depends on the application scenario, but our models candzktagdentify the
best choice. To support the choice we gave recommendatiorthd usage of
PSR or SSR.

In the course of the monograph, we showed that the carefuibresf
an application-to-application messaging infrastructoas several application-
specific impact parameters. Thus, we identified the limitd #me typical
performance values of such an environment by several merasmt series. We
developed a basic and an enhanced model to predict the reabsagghput per-
formance regarding the publish/subscribe model and usiegMS framework.
The performance models consider the joint impact of filgrémd replication
grade. Also deviations of the mean values can be considerexpplying our
queuing model. Following our approach, it is possible teetwetne the critical
parameters regarding the desired scenario and get an tsfonghe necessary
equipment needed for the deployment in an application stena

161

6 Conclusions and Future Trends

Future Trends

The presented methods and models are also useful in futatensyscenarios.
The scenarios presented in this work covered only a part ef pgbssible
application scenarios. Our scenarios are sufficient to gshevgeneric behavior
of a messaging system and its performance limits. Howe¥exei consider
stock trading applications, for example, the message tfimout and the time
constraints may be more mission critical and have to relyastef equipment
and components. To cope with this problem, some vendorsotiynplement
the messaging infrastructure in hardware. This is a réalisture scenario, if
reconfigurable hardware is powerful enough to be flexibleims of its possible
communication interfaces and the achievable messagegtpat:

In addition, the application of the publish/subscribe camination pattern to
lower network layers, as proposed by the PSIRP project [163n interesting
approach which requires a careful design of the architecand the used
algorithms. Although we focused on the JMS framework, oudet® can be
extended and applied to other frameworks and applicatienasos.

A clear trend on application-layer can be seen in combinpmieation-layer
communication protocols considering messaging. Curyeatllarge group of
vendors and open source developers decided to combineffoets to extend the
advanced message queuing protocol (AMQP) as an open stiafitiés enables a
flexible combination of different messaging approachesdiggia standardized
underlying protocol.

Several other models consider already our performance Isypdesented in
this work. Since we focused on the applicability of our aputg the effort to
adapt them to another application scenario and differequiirements is low.
Summarizing, messaging based on the publish/subscribenoaioation pattern
is an efficient and flexible communication architecture for tlesign of future
applications.

162

Bibliography of the Author

(1]

(2]

(3]

[4]

5]

— Journals —

M. Menth, R. Henjes, S. Gehrsitz, and C. Zepfel, “Thropgh Per-
formance of Popular JMS ServersACM SIGMETRICS Performance
Evaluation Review (PERYOoI. 34(1), 2006.

A. Binzenhofer, G. Kunzmann, and R. Henjes, “Design anthl§sis of
a Scalable Algorithm to Monitor Chord-based P2P SystemsiatiRRe”,
Concurrency and Computation: Practice and Experience -ctapéssue
on HotP2P 062007.

R. Henjes, M. Menth, and V. Himmler, “Throughput Perf@ante of
the BEA WebLogic JMS Serverinternational Transactions on Systems
Science and Applicationsol. 3, Number 3, 2007.

— Conference Papers —

T. Koulouris, R. Henjes, K. Tutschku, and H. de Meer, “lexpentation

of Adaptive Control for P2P Overlays”, ifProceedings Fifth Annual
International Working Conference on Active Networks, Ol€s:12 2003

Kyoto, Japan, 2003.

A. Binzenhofer, D. Staehle, and R. Henjes, “On the Flyifgation of
the Peer Population in a Chord-based P2P Systeni9ih International
Teletraffic Congress (ITC19Beijing, China, 2005.

163

Bibliography and References

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

164

A. Binzenhofer, D. Staehle, and R. Henjes, “On the Sighdf Chord-
based P2P Systems”, @LOBECOM 2005St. Louis, MO, USA, 2005.

G. Kunzmann, A. Binzenhdéfer, and R. Henjes, “AnalyzimglaModifying
Chord’s Stabilization Algorithm to Handle High Churn Rdtéa MICC
& ICON 2005 Kuala Lumpur, Malaysia, 2005.

A. Binzenhdfer, G. Kunzmann, and R. Henjes, “A Scalablgatithm to

Monitor Chord-based P2P Systems at Runtime”Third International

Workshop on Hot Topics in Peer-to-Peer Systems (Hot-P2&)rjunction

with the IEEE International Parallel & Distributed Proceisg Symposium
(IPDPS 2006) Rhodes Island, Greece, 2006.

R. Henjes, M. Menth, and S. Gehrsitz, “Throughput Perfance of Java
Messaging Services Using FioranoMQ”, 18t"*GI/ITG Conference on
Measuring, Modelling and Evaluation of Computer and Comication
Systems (MMBErlangen, Germany, 2006.

R. Henjes, M. Menth, and C. Zepfel, “Throughput Perfamoe of Java
Messaging Services Using Sun Java System Message Queudighn
Performance Computing & Simulation Conference (HPC&®)nn, Ger-
many, 2006.

R. Henjes, M. Menth, and C. Zepfel, “Throughput Perfamoe of Java
Messaging Services Using WebsphereMQ5ifiinternational Workshop
on Distributed Event-Based Sytems (DEBS) in conjuctioh WBDCS
2006 Lisbon, Portugal, 2006.

M. Menth and R. Henjes, “Analysis of the Message Waitfighe for
the FioranoMQ JMS Server”, i86t" IEEE International Conference on
Distributed Computing Systems (ICDCBisbon, Portugal, 2006.

M. Menth, R. Henjes, S. Gehrsitz, and C. Zepfel, “Thropgt Perfor-
mance of Popular JMS Servers”, ACM SIGMETRICS (short paper)
Saint-Malo, France, 2006.

[14] M. Menth, R. Henjes, C. Zepfel, and P. Tran-Gia, “GamAgprox-
imation for the Waiting Time Distribution Function of th&//G/1 —
oo Queue”, in2"?Conference on Next Generation Internet Design and
Engineering Valencia, Spain, 2006.

[15] R. Henjes, M. Menth, and S. Gehrsitz, “Throughput Perfance of
ActiveMQ JMS Server”, in15**Kommunikation in Verteilten Systemen
(KiVS), Bern, Switzerland, 2007.

[16] R. Henjes, M. Menth, and V. Himmler, “Impact of Complextérs on
the Message Throughput of the ActiveMQ JMS Serverniternational
Teletraffic Congress (ITCPttawa, Canada, 2007.

[17] D.Schwerdel, D. Giunther, R. Henjes, B. Reuther, andifldv] “German-
Lab Experimental Facility”, in3rd Future Internet Symposium 2010
Berlin, Germany, 2010.

General References

[18] M. H. Ackroyd, “Computing the Waiting Time Distributio for the
G/G/1 Queue by Signal Processing Method2EE Transactions on
Communicationsvol. 28, No. 1, 1980.

[19] M. H. Ackroyd, “Stationary and Cyclostationary FiniBaiffer Behaviour
Computation via Levinson’s MethodAT&T Bell Laboratories Technical
Journal Vol. 63, No. 10, 1984.

[20] P. Tran-Gia, “Zeitdiskrete Analyse verkehrstheaehier Modelle in
Rechner- und Kommunikationssysteme#8, Bericht Giber verkehrstheo-
retische Arbeiten, Universitat Stuttgaft988.

165

Bibliography and References

(21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

(29]

166

P. Tran-Gia and H. Ahmadi, “Analysis of a Discrete-TirGe" /D /1 —
S Queueing System With Applications in Packet-Switchingt8ys”, in
IEEE Infocom New Orleans, 1988.

International Organization for Standardization,fdmmation Technology
- Database Languages - SQL.” ISO/IEC 9075, 1992.

P. Tran-Gia and R. Dittmann, “A Discrete-Time Analysithe Cyclic
Reservation Multiple Access ProtocoPerformance Evaluatignvol. 16,
1992.

J. Abate, G. L. Choudhury, and W. Whitt, “Calculation thie GI/G/1
Waiting Time Distribution an its Cumulants from Pollaczekormu-
las”, International Journal of Electronics and Communicatipisl. 47,
No. 5/6, 1993.

P. A. Bernstein, “Middleware: An Archictecture for Ditbuted System
Services”, Tech. Rep. CRL 93/6, Cambridge MA, 1993.

P. Tran-Gia, “Discrete-Time Analysis Technique andAgation to Usage
Parameter Control Modeling in ATM Systems”,8th Australian Teletraf-
fic Research SeminaWelbourne / Australia, 1993.

J. Abate, G. L. Choudhury, and W. Whitt, “Exponential gkpximations
for Tail Probabilities in Queues I: Waiting TimedQperations Research
\ol. 43, No. 5, 1995.

J. Abate and W. Whitt, “Numerical Inversion of Laplaceamsforms
of Probability Distributions”,INFORMS Journal on Computing/l. 7,
No. 1, 1995.

B. Segall and D. Arnold, “Elvin has Left the Building: AuBlish/Sub-
scribe Notification Service with Quenching”, Rroceedings of AUUG 97
Brisbane, Australia, 1997.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

A. CarzanigaArchitectures for an Event Notification Service Scalable to
Wide-Area Networks PhD thesis, Milano, Italy: Politecnico di Milano,
1998.

R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, Bukherjee,
D. Sturman, and M. Ward, “Gryphon: An Information Flow Baskp-
proach to Message Brokering”, international Symposium on Software
Reliability Engineering1998.

J. Abate and W. Whitt, “Explicit M/G/1 Waiting Time Digbutions for
a Class of Long-Tail Service Time Distribution®perations Research
Vol. 25, No. 1, 1999.

M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chaa, “Matching
Events in a Content-Based Subscription System’Riaceedings of the
18" Annual ACM Symposium on Principles of Distributed Comytin
ACM, 1999.

A. Carzaniga, D. Rosenblum, and A. Wolf, “Achieving $xdallity and
Expressiveness in an Internet-scale Event Notificatiowi&&t, in Pro-
ceedings of the 19th Annual ACM Symposium on Principlessifibited
Computing (PODC)ACM, 2000.

M. Day, J. Rosenberg, and H. Sugano, “A Model for Preseard Instant
Messaging” Request for Commentgol. 2778, 2000.

R. Gummadi and B. Hohlt, “Efficient Implementation of aibf¥ish-
Subscribe-Notify Model Using Highly-Concurrent B-Trege3ech. Rep.,
2000.

A. Milewski and T. Smith, “Providing Presence Cues tolephone
Users”, inProceedings of the ACM Conference on Computer Supported
Cooperative WorkACM, 2000.

167

Bibliography and References

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

168

B. Segall, D. Arnold, J. Boot, M. Henderson, and T. PkelfContent
Based Routing with Elvin4”, ifProceedings of AUUG Q@000.

A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veitfficient Filtering

in Publish-Subscribe Systems using Binary Decision Diagain Pro-
ceedings of the@3™ International Conference on Software Engineering
Washington, DC, USA, IEEE Computer Society, 2001.

G. Cugola, E. Di Nitto, and A. Fuggetta, “The JEDI Evé3dsed Infras-
tructure and its Application to the Development of the OPSBWS”,
IEEE Transactions on Software Engineeri201.

F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. As® and D. Shasha,
“Filtering Algorithms and Implementation for Very Fast Righ/Sub-
scribe Systems’ACM SIGMOD 2001Vol. 30, 2001.

G. Muhl, “Generic Constraints for Content-Based PsiiiBubscribe”,
in 9" International Conference on Cooperative Information Syt
(CooplS) London, UK, 2001.

J. Pereira, F. Fabret, F. Llirbat, and H. A. JacobsereB®ilter: A High-
throughput XML-based Publish and Subscribe SystemPrioceedings
of the 27*" International Conference on Very Large Data Bas&sn
Francisco, CA, USA, Morgan Kaufmann Publishers Inc., 2001.

J. W. Roberts, “Traffic Theory and the InternefEEE Communications
Magazine Vol. 1, No. 3, 2001.

A. Carzaniga and A. L. Wolf, “A Benchmark Suite for Digtuted Pub-
lish/Subscribe Systems”, Tech. Rep. CU-CS-927-02, Soé\agineer-
ing Research Laboratory, Department of Computer Sciencizeksity of
Colorado, Boulder, Colorado, USA, 2002.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

G. Fox and S. Pallickara, “The Narada Event Brokeringt&m: Overview
and Extensions”, ifProceedings of the International Conference on Par-
allel and Distributed Processing Techniques and Applaadi (PDPTA)
2002.

H. K. Y. Leung, “Subject Space: A State-Persistent Moftg Pub-
lish/Subscribe Systems”, iRroceedings of the Conference of the Centre
for Advanced Studies on Collaborative Resea902.

G. Muhl, L. Fiege, and A. Buchmann, “Filter Similariién Content-based
Publish/Subscribe Systems”, @onference on Architecture of Computing
Systems (ARCS$pringer, 2002.

G. Muhl, Large-Scale Content-Based Publish/Subscribe SystefiD
thesis, Darmstadt University of Technology, 2002.

M. Pang and P. Maheshwari, “Benchmarking MessageffriMiddle-
ware - TIB/RV vs. SonicMQ”, inNorkshop on Foundations of Middleware
Technologies, International Symposium on Distributede®tsj and Appli-
cations (DOA) University of California, Irvine, CA, 2002.

C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf, “Seculissues and
Requirements for Internet-Scale Publish-Subscribe 8sten Proceed-
ings of the35'" Hawaii International Conference on System Sciences
2002.

T. Wolf, “Benchmark fir EJB-Transaction und Messaga&es”, Mas-
ter’s thesis, Universitat Oldenburg, 2002.

R. Baldoni, M. Contenti, and A. Virgillito, “The Evolign of Pub-
lish/Subscribe Communication Systems”, Future Directions in Dis-
tributed ComputingSpringer, 2003.

R. Baldoni, M. Contenti, S. T. Piergiovanni, and A. Miligo, “Mod-
elling Publish/Subscribe Communication Systems: Towaadsormal

169

Bibliography and References

(58]

[56]

[57]

(58]

[59]

(60]

(61]

(62]

170

Approach”, in8t" International Workshop on Object-Oriented Real-Time
Dependable Systems (WORD&)03.

P. Costa, M. Migliavacca, G. P. Picco, and G. Cugolatriducing Relia-
bility in Content-Based Publish-Subscribe through Epibeftigorithms”,

in International Workshop on Distributed Event-Based SytéDisBS)

2003.

Crimson Consulting Group, “High-Performance JMS Megag”, Tech.
Rep., Crimson Consulting Group, 2003. Availablenatp: / / ww. sun.

coni sof t war e/ product s/ nessage_queue/ wp_JMSper f or mance. pdf .

P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrébg“Many Faces
of Publish/Subscribe”ACM Computing Surveys (CSURJpI. 35, No. 2,
2003.

I. Gorton, J. Almquist, N. Cramer, J. Haack, and M. HdZay Efficient,
Scalable Content-Based Messaging SystemEDOC '03: Proceedings
of the 7*" International Conference on Enterprise Distributed Objec
Computing Washington, DC, USA, IEEE Computer Society, 2003.

T.-Y. Hsiao, M.-C. Cheng, H.-T. Chiao, and S.-M. YuafkJM: A High
Performance Java Message LibrarlBEE International Conference on
Cluster Computing2003.

H. Leung and H. Jacobsen, “Efficient Matching for StBrsistent
Publish/Subscribe Systems”, iAroceedings of the Conference of the
Centre for Advanced Studies on Collaborative ResgedBM Press, 2003.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “Aidlrint for
Introducing Disruptive Technology into the InterneBCM SIGCOMM
Computer Communication Revigvol. 33, No. 1, 2003.

D. Tam, R. Azimi, and H.-A. Jacobsen, “Building Contddsed Pub-
lish/Subscribe Systems with Distributed Hash TablesRioceedings of

the International Workshop On Databases, Information&ystand Peer-
to-Peer Computing2003.

[63] L.Zanolin, C. Ghezzi, and L. Baresi, “An Approach to Ménd Validate
Publish/Subscribe Architectures”, Proceedings of the SAVCB®%I. 3,
Helsinki, Finland, 2003.

[64] J. Cantarella and M. Piatek, “Tsnnls: A Solver for Laigparse Least
Squares Problems with Non-Negative Variablég’Xiv Computer Science
e-prints Vol. ¢s.MS/0408029, 2004.

[65] F. Cao and J. P. Singh, “Efficient Event Routing in CoBased Pub-
lish/Subscribe Service Network”, iRroceedings of the3™@ Conference
of the IEEE Communications Society (INFOCOM'02004.

[66] S. Chen and P. Greenfield, “QoS Evaluation of JMS: An Eioai
Approach”, in37*" Annual Hawaii International Conference on System
Sciences (HICSSYVashington, DC, USA, IEEE Computer Society, 2004.

[67] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola,itiemic Al-
gorithms for Reliable Content-Based Publish-SubscribeEAaluation”,
in IEEE International Conference on Distributed Computingst8ns
(ICDCS) 2004.

[68] U. Farooq, E. W. Parsons, and S. Majumdar, “Performaoicéub-
lish/Subscribe Middleware in Mobile Wireless Network#CM SIG-
SOFT Software Engineering Not&®l. 29, No. 1, 2004.

[69] L. Fiege, A. Zeidler, A. Buchmann, R. Kilian-Kehr, and ®lihl, “Se-
curity Aspects in Publish/Subscribe Systems”Pimceedings of thg™
Intl Workshop on Distributed Event-Based Systems (DEBE) The
Institution of Electrical Engineers, 2004.

[70] T.-H. Kaoa, C.-P. Hung, H.-T. Chiao, T.-Y. Hsiao, Y.hang, and S.-M.
Yuan, “A Fast Java Message System based-on IP Multicasth.Teep.,

171

Bibliography and References

(71]

[72]

(73]

[74]

(78]

[76]

[77]

(78]

172

Department of Computer and Information Science Nationabh€fung
University Hsinchu, Taiwan R.O.C., 2004.

Krissoft Solutions, “JMS Performance Comparison”ciieRep., Krissoft
Solutions, 2004. Available at

http://ww. fiorano.conf conp- anal ysi s/ jnms_perf_conp. htm

H. Liu and H.-A. Jacobsen, “Modeling Uncertainties inbdHsh/Subscribe
Systems”, ir20%" International Conference on Data Engineering (ICDE)
Washington, DC, USA, 2004.

M. Menth, “A Framework for Modelling and Solving Disdee Finite
Markov Chains”, Technical Report, No. 326, University of k¥furg,
Institute of Computer Science, 2004.

S. Oh, S. L. Pallickara, S. Ko, J.-H. Kim, and G. Fox, “Cddodel
and Adaptive Scheme for Publish/Subscribe Systems on Bl@&uiliron-
ments”, inSecond International Workshop on Active and Programmable
Grids Architectures and Componend04.

P. R. PietzuchHermes: A Scalable Event-Based MiddlewdD thesis,
Queens’ College, University of Cambridge, 2004.

J. F. Shortle, P. H. Brill, M. J. Fischer, D. Gross, and \.. B. Masi,
“An Algorithm to Compute the Waiting Time Distribution fohé M/G/1
Queue”,INFORMS Journal on Computindol. 16, No. 2, 2004.

P. Triantafillou and I. Aekaterinidis, “Content-bas@dblish-Subscribe
Over Structured P2P Networks”, Rroceedings of the Third International
Workshop on Distributed Event-Based Systems (DEEBH}.

Y. Zhao, D. Sturman, and S. Bhola, “Subscription Prcgigun in Highly-
Available Publish/Subscribe Middleware”, iRroceedings of thes'"
ACM/IFIP/USENIX International Conference on Middlewalkew York,
NY, USA, Springer-Verlag New York, Inc., 2004.

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

R. Baldoni, R. Beraldi, S. T. Piergiovanni, and A. Vilgo, “On the
Modelling of Publish/Subscribe Communication Systen@3ncurrency
and Computation: Practice and Experiena&l. 17, No. 12, 2005.

S. Bitthner and A. Hinze, “A Detailed Investigation of Mwry Re-
quirements for Publish/Subscribe Filtering Algorithmst,International
Conference on Cooperative Information Systems (Cop@i§p Napa,
Cyprus, 2005.

S. Kale, E. Hazan, F. Cao, and J. Singh, “Analysis andoAtgms
for Content-based Event Matching”, Proceedings of th@5t" IEEE
International Conference on Distributed Computing Syst&korkshops
2005.

V. Muthusamy, Infrastructureless Data Dissemination: A Distributed
Hash Table Based Publish/Subscribe Systd?hD thesis, University of
Toronto, 2005.

M. Antollini, M. Cilia, and A. Buchmann, “Implementing High Level
Pub/Sub Layer for Enterprise Information Systems” Piroceedings of
the 8*" International Conference on Enterprise Information Syste
Databases and Information Systems Integrati®aphos, Cyprus, 2006.

S. Behnel, L. Fiege, and G. Muhl, “On Quality-of-Semiand Publish-
Subscribe”, irProceedings of the6'” IEEE International Conference on
Distributed Computing Systems Workshops (ICDQ8)6.

A. Corsaro, L. Querzoni, S. Scipioni, S. Piergiovaramd A. Virgillito,
“Quality of Service in Publish/Subscribe Middleware”, @Global Data
Managemen(R. Baldoni and G. Cortese, eds.), |IOS Press, 2006.

V. Ramasubramanian, R. Peterson, and E. Sirer, “Cordridigh Perfor-
mance Publish-Subscribe system for the World Wide WebRroceed-
ings of Networked System Design and Implementation (NS006.

173

Bibliography and References

[87] S. TarkomaEfficient Content-based Routing, Mobility-aware Topodsgi
and Temporal Subspace Matchind®hD thesis, University of Helsinki,
Finland, 2006.

[88] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg, “Gtncting
scalable overlays for pub-sub with many topics”, Rroceedings of
the Twenty-Sixth Annual ACM Symposium on Principles ofribiged
Computing (PODC)New York, NY, USA, ACM, 2007.

[89] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg, ‘@GmiCast: a
Scalable Interest-Aware Overlay for Topic-Based Pub/Swam@uni-
cation”, in Proceedings of the Inaugural International Conference on
Distributed Event-Based Systems (DEB$3w York, NY, USA, ACM,
2007.

[90] K. Sachs, S. Kouney, J. Bacon, and A. Buchmann, “Woiklcaaracteri-
zation of the SPECjms2007 Benchmarkrmal Methods and Stochastic
Models for Performance Evaluatip@007.

[91] K. Sachs, S. Kounev, M. Carter, and A. Buchmann, “Deisigra Work-
load Scenario for Benchmarking Message-oriented Middietyan Pro-
ceedings of the 2007 SPEC Benchmark WorksB&EC, 2007.

[92] The OpenJMS Group, “OpenJMS”, 2007. Available at

http://openjns. sourcef orge. net/.

[93] M. Campanella, “Federated E-infrastructure Dediddate European Re-
searchers Innovating in Computing Network Architectur&siture Inter-
net Conference2008.

[94] N. Laranjeiro, M. Vieira, and H. Madeira, “ExperimehtRobustness
Evaluation of JMS Middleware”, iHEEE International Conference on
Services Computing (SCCJol. 1, 2008.

174

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

H. Subramoni, G. Marsh, S. Narravula, P. Lai, and D. Rarf®esign
and Evaluation of Benchmarks for Financial ApplicationmgsAdvanced
Message Queuing Protocol (AMQP) over InfiniBand”, Workshop on
High Performance Computational Finance (In conjunctiothwC '08)

Austin, TX, 2008.

P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. faigand P. Nikan-
der, “LIPSIN: Line Speed Publish/Subscribe Inter-Netviogk, ACM
SIGCOMM Computer Communication Revi&wl. 39, No. 4, 2009.

J. Kramer, “Advanced Message Queuing Protocol (AMQRPIfiux Jour-
nal, No. 187, 2009.

J. Martins and S. Duarte, “Routing Algorithms for Camttdased Pub-
lish/Subscribe SystemsIEEE Communications Tutorials and Surveys
2009.

OW?2 Consortium, “JORAM: Jav¥ Open Reliable Asynchronous Mes-
saging”, 2009. Available att t p: //j oram ow2. org/ .

Red Hat, Inc., “JBossMQ”, 2009. Available at
http://community.jboss. org/w ki / JBossMQ.

K. Sachs, S. Kounev, S. Appel, and A. Buchmann, “Berefking
of Message-oriented Middleware”, iRroceedings of the Third ACM
International Conference on Distributed Event-Based &yst ACM,
2009.

K. Sachs, S. Kouneyv, J. Bacon, and A. Buchmann, “Pevémce Eval-
uation of Message-oriented Middleware using the SPECj@i5Bench-
mark”, Performance Evaluatignvol. 66, No. 8, 2009.

S. Tarkoma, M. Ain, and K. Visala, “The Publish/Subker Internet
Routing Paradigm (PSIRP): Designing the Future Internehiecture”,

175

Bibliography and References

in Towards the Future Internet — A European Research Perspecti
(G. Tselentis, J. Domingue, A. Galis, A. Gavras, D. Haush8eKrco,
V. Lotz, and T. Zahariadis, eds.), IOS Press, 2009.

[104] AMQP Working Group, “Advanced Message Queuing Prothc2010.
Available atht t p: / / ww. angp. or g.

[105] D. Crockford, “JavaScript Object Notation (JSON)Q1D. Available at

http://ww.json.org/.

[106] H. Liu, Management of Uncertainties in Publish/Subscribe SystehD
thesis, Department of Computer Science, University of twp2010.

[107] Oracle Corporation, “Bea WebLogic Application Sefy2010. Available
athttp: //ww. or acl e. contf bea/ i ndex. ht mi .

[108] SpringSource, “RabbitMQ”, 2010. Available at
http://ww. rabbit . com

[109] Wikipedia Community, “Java Message Service”, 2010.vaifable at
http://en.w ki pedi a. or g/ w ki / Java_Message_Ser vi ce.

[110] A. Zahemszky, B. Gajic, C. Rothenberg, C. Reason, ms3en, D.
Lagutin, J. Tuononen, and K. Katsaros, “Experimentallyv®n Re-
search in Publish/Subscribe Information-Centric Intetwbrking”, in
Proceedings of thé*" International ICST Conference on Testbeds and
Research Infrastructures for the Development of Networko&munities
(TridentCom) 2010.

[111] Ake Bjérck, Numerical Methods for Least Squares ProblemSIAM
Society for Industrial and Applied Mathematics, Philadiédp 1996.

[112] Apache FoundatiorctiveMQ, Reference Documentatid®910. Avail-
able atht t p: / / act i veny. apache. org/ .

176

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Apache IncubatorctiveMQ, JMeter Performance Test Ta@D06. Avail-
able atht t p: / / waw. act i veny. or g/ j et er - per f or mance- tests. htm .

Bea System$3ea WebLogic Server 9.2006. Available at
http://dev2dev. bea. com

T. Erl, Service-Oriented Architecture: Concepts, Ttechnologyg, Besign
Prentice Hall PTR Upper Saddle River, NJ, USA, 2005.

Fiorano Software, InckioranoMQ Documentation Cente2005. Avail-
able atht t p: / / www. f i or ano. coml devzone/ doc_f my. ht m

Fiorano Software, IncKioranoMQ™: Meeting the Needs of Technology
and Busines2004. Available atbt t p: / / ww. f i or ano. cont whi t epaper s/
whi t epaper s\ _f nmg. pdf .

Fiorano Software, Inclllustrating the FioranoMGQM performance ad-
vantage over SonicMQ, Tibco EMS, Jboss Messaging, Sun J&/AE4
tiveMQ and IBM WebSphere MQ 2005. Available at

http://ww. fiorano. conl whit epapers/.

S. Godard,Sysstat Monitoring Utilities 5.1,42004. Available at

http://perso. wanadoo. fr/ sebasti en. godard/ .

M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. biadava Message
Service API Tutorial and Reference: Messaging for the J2HEEféTm.
Addison-Wesley, 2002.

G. Hohpe and B. WoolfEnterprise Integration Patterns: Designing,
Building, and Deploying Messaging SolutionsBoston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

IBM Corporation, IBM WebSphere MQ 6,02005. Available at
http://ww 01.i bm coni sof tware/integration/wy/.

177

Bibliography and References

[123] IBM Hursley, Performance Harness for Java Message ServR@05.
Available atht t p: / / ww. al phawor ks. i bm cont t ech/ per f har ness.

[124] iMatix, Corp.,ZeroMQ 2010. Available abtt p: / / wwv. zer ong. or g/ .

[125] JBoss,JBoss JMS New Performance Benchma2R06. Available at
http://community.jboss. org/ docs/ DOC- 10476.

[126] L. Kleinrock, Queueing System¥ol. 1: Theory. New York: John Wiley
& Sons,1°* ed., 1975.

[127] A. M. Law and W. D. Kelton,Simulation Modeling and Analysis
McGraw-Hill, 37 ed., 2000.

[128] C.L.Lawson and R. J. HansoBoplving Least Squares Problemiso. 15
in Classics in Applied Mathematics, Society for IndustréalApplied
Mathematics, 1995.

[129] Oracle Corporationjava Message Service AP| Rev.,2002. Available
athttp://java. sun. comf products/jns/.

[130] A. Papoulis,Probability, Random Variables, and Stochastic Processes
McGraw-Hill Book Company2™? ed., 1984.

[131] N. U. PrabhuQueues and InventoriedNew York, London, Sydney: John
Wiley & Sons, Inc., 1965.

[132] Progress SoftwarekEnterprise-Grade Messagin2004. Available at

http://ww. soni csof t war e. cont product s/ docs/ soni cnq. pdf .

[133] Progress Software,Sonic Test Harness 2005. Available at
http://communities. progress. conl pconl docs/ DOC- 29828.

[134] Progress Software Corporatidtigh Performance Messaging with JMS -
A Benchmark Comparison of Soniclfs. IBM MQSerie® 5.2, 2001.
Available atht t p: / / ww. soni csof t war e. com

178

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

L. P. Seelen, H. C. Tijms, and M. H. Van Horfables for Multi-Server
Queues North-Holland, 1985.

B. Snyder, D. Bosanac, and R. DavidstiveMQ in Action — Early Access
Edition. Manning Publications Co., 2010.

Software Engineering Research Laborat@yENA: Publish/Subscribe
Wide-Area Event NotificationUniversity of Colorado, 2005. Available

athttp://serl.cs.col orado. edu/ ~serl/sienal.

Sun Microsystems IncSun Java System Application Server 9.1 Devel-
oper’'s Guide 2008. Available at
http://docs. sun. conf app/ docs/ doc/ 819- 3672/ .

Sun Microsystems, Inc., 4150 Network Circle, Santar&| CA 95054,
Sun ONE Message Queue, Reference Document@@6. Available at

http://devel opers. sun. coni prodt ech/ nsgqueue/ .

H. Takagi,Queueing Analysis Volume 1: Vacation and Priority Systems
North-Holland, 1991.

S. Terry and T. Shawrgnterprise JMS programmingNew York, NY,
USA: John Wiley & Sons, Inc., 2002.

The MathWorks, IncMATLAB 7.0 2005. Available at

http://ww. mat hwor ks. coni product s/ mat | ab/ .

Tibco Software, Inc.TIBCO Enterprise Message Servi@d04. Available
athttp://ww. tibco.com

H. C. Tijms,A First Course in Stochastic Model8Vest Sussex, England:
John Wiley & Sons, 2003.

H. C. Tijms, Stochastic Modelling and Analysis: A Computational Ap-
proach John Wiley & Sons, 1986.

179

Bibliography and References

[146] H.C. Tijms,Stochastic Models: An Algorithmic Approackohn Wiley &
Sons, 1994.

[147] Tomlab OptimizationThe TOMLAB Optimization Environmerivailable
athttp://ton ab. bi z/.

[148] Ziena Optimization, INcCKNITRO 4.0 2005. Available at

http://ww. zi ena. conf kni tro. htm

180

ISSN 1432-8801

