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1 Introduction
Modern communication mechanisms are a key element to reducephysical

distances between people and enable efficient business processes. A large

variety of applications and devices evolved during the lastdecade to support

people’s communication. To design an efficient informationexchange in this

heterogeneous scenery, the communication interfaces haveto provide flexibility

and performance.

Messaging introduces the possibility of synchronous and asynchronous com-

munication while separating the communication partners bymessage-oriented

middleware. This set of features can be illustrated best by comparing two well-

known communication applications: a classic telephony system and an e-mail

infrastructure. Considering the telephony system, a participant can only commu-

nicate synchronously with a single other participant if both parties are available

for communication at the time the phone call is initiated. Also both sides have to

speak a common language and there is no way to filter out redundant information,

beside rejecting the caller. Within an e-mail infrastructure, information can be

sent using messages to a central entity. The information will reside on the central

entity until a receiver fetches it which enables asynchronous communication.

Additionally, the receiver can decide if and in which order to consume the

incoming information.

In the context of message-oriented middleware, communication is mostly

asynchronous. The communication process is realized as a set of messages,

rather than a continuous information flow, like observed in classic telephony.

According to Hohpe and Woolf [121], messaging systems enable a “high-speed,

asynchronous, application-to-application communication with reliable delivery”

based on the exchange of messages over a packet-switched network.
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1 Introduction

According to the aforementioned description of the basic system architecture,

we can identify six crucial components. First, themessage, containing and

transmitting the information itself. The message has to carry the plain information

generated by the clients and some meta-information for the second element, the

message-oriented middleware. The third important component is the definition of

standard communication interfaces, e.g., theJava message service(JMS) [129].

A fourth component is thedeploymentwhere a messaging system is used in,

like a data center or worldwide communication through the Internet. In addition,

the underlying communication pattern influences the deployment scenario, like

using a publish/subscribe-oriented communication. Exchanging information over

the Internet means to transmit data through an unsecure and unreliable medium.

This leads to the last two elements, the introduction ofreliability andsecurity

into the messaging environment.

Since messaging, if used in application-to-application communication, repre-

sents the backbone of the system, it has to have a high, well-known performance.

Therefore, it is necessary to develop mechanisms and methodologies to determine

the performance limits of such systems. It is important to identify possible

bottlenecks and parameters causing them. Also during deployment, a careful

dimensioning of the system should take place, which can be supported by

efficient prediction models adaptable to a varying set of application scenarios.

1.1 Scientific Contribution

The main contribution of this thesis is an approach to analyze and evaluate

the performance of a message-oriented middleware in the context of JMS. The

analysis and evaluation is based on system-level measurements in combination

with an easy-to-handle model for predicting the overall system performance. The

presented approach can be adapted to a wide range of application scenarios.

On the market, a huge number of messaging solutions and commercial prod-

ucts are available and their feature sets are diverse. Thus,the first contribution
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1.1 Scientific Contribution

of this work is to discuss the different design options and tocategorize them

according to their relevance. A focus is set on the publish/subscribe communica-

tion pattern, which is supported by the JMS. However, we can assume that the

messaging system in general may become a bottleneck in common application

scenarios. Therefore, the overall achievable message throughput is identified as

a measure for comparison of the design options and is additionally useful in

different optimization scenarios. In a publish/subscribe-oriented communication

infrastructure, the filtering and replicating informationthat are carried by a

message are crucial for achieving a high message throughputof the overall

system. Both aspects – filtering and replication – are a majorfocus in the

remainder of this monograph. For evaluation, we select a significant set of servers

in order to compare different implementation strategies.

To be able to determine the limits of the different servers, we introduce a black-

box oriented measurement approach, which allows to test a server according

to different parameters in a semi-automated environment. This approach differs

from basic benchmarking approaches by its adaptability to varying application

scenarios and a more fine-grained output of the results. Thisenables a detailed

analysis of possible performance bottlenecks. Furthermore, we introduce a

calibration methodology and automated measurement verification for our testbed

and our experiments. This ensures the reproducibility of the measurement runs

and consistent measurement results. In total, we measured different systems

regarding the impact of the number of connected clients, different information

filtering options, and network specific influences. We identify basic values of

typical parameters to operate our tests in a significant environment. As a result,

we observe that the replication grade and filtering has a highimpact on the overall

system performance.

Thus, we introduce a model for the JMS server’s message throughput per-

formance considering the impact of replication grade and filtering. To get

the system-specific values for the prediction models, we design a dedicated

experiment series and repeat them for all considered servers. The model itself

is based on linear regression adapted to the requirements ofour system level

3



1 Introduction

measurements. We further show the adaptability of our approach by enhancing

the models for complex filtering scenarios and evaluate an application scenario

using our models.

The server models are based on average values for the messagethroughput and

do not consider internal server behavior, like message waiting times. To show the

influence of the server behavior on the overall system we use an M/GI/1−∞
queuing system for approximating the waiting times. One application scenario is

the real-time prediction of the impact of a certain configuration on the overall

system performance. Since there is no algorithm available with the desired

efficiency for solving anM/GI/1−∞ queuing system numerically, we introduce

a fast approximation method to calculate the required numbers and denote it by

“Gamma-approximation”.

In the first part of the thesis we focus on a single server scenario, whereas

we discuss in the second part two different design options regarding message

throughput scalability. To evaluate the expected performance of the two different

approaches, we use our basic message throughput models and our findings

regarding the waiting time analysis.

1.2 Outline of the Thesis

Figure 1.1 depicts the overall organization of the remainder of this monograph.

The figure is organized such that each box represents a chapter of the thesis and

outlines the covered topics. In Figure 1.1, all contributions resulting from this

thesis are classified into the main topics of the thesis and plotted on the right side

of each chapter overview. Some of the publications are citedmultiple times since

they cover the evaluation of a single server.

Chapter 2 introduces the publish/subscribe communicationpattern. Sec-

tion 2.2 discusses the widely used JMS and its features regarding the support

of publish/subscribe communication. Furthermore, in Section 2.3 we present

an application scenario as a motivation for our performanceevaluation. The

chapter also contains in Section 2.4 a discussion on relatedliterature regarding

4



1.2 Outline of the Thesis

the basic architecture and design options for publish/subscribe systems, general

benchmarking of message-oriented middleware, and presents a global overview

of related messaging approaches.

Chapter 3 proposes an architecture for an experimental environment in order

to evaluate the performance of publish/subscribe-based systems. Moreover, it

describes our measurement methodology and discusses different parameters

considered for testing. In Section 3.2, we evolve a basic series of experiments

in order to determine the boundaries of our equipment and theserver software

used. In Section 3.3 and Section 3.4, we extend our experiments regarding the

impact of filtering and client handling. We conclude this chapter by analyzing

the impact of different parameters tested by the measurements.

Chapter 4 introduces a general methodology to build basic models for

approximating the message throughput capacity of Java message service servers.

As a tool for this methodology, we present some basics on multiple regression and

least-squares approximation in Section 4.1. This is followed by Section 4.2 and

Section 4.3 introducing a basic version of the model regarding the joint impact of

number of filters and replication grade for different servertypes. In Section 4.4

we extend the basic model considering complex filtering. We conclude this

chapter with an application scenario of the models and some remarks on the

results of our proposed models.

Chapter 5 focuses on the message waiting time of a messaging server and

an M/GI/1−∞ queuing system is applied. Since the focus is on real-time

numerical evaluation of the queuing behavior, we introducean approximation

method based on the Gamma-distribution in Section 5.1. The analytical perfor-

mance evaluation considering the Gamma-approximation method is presented in

Section 5.2. In addition, we discuss two different options to introduce scalability

regarding the overall message throughput in Section 5.3.

Chapter 6 summarizes the major contributions of this work. Additionally, an

outlook on future trends and challenges in the area of publish/subscribe systems

and messaging systems in general is given.
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2 Background and Motivation

In this chapter, basic principles ofmessage-oriented middleware(MOM) are

presented and discussed. The communication pattern “publish/subscribe” and its

industry standard framework calledJava message service(JMS) are introduced.

We discuss a set of parameters which influence the performance of a JMS

environment. Furthermore, an overview is given on related work in the areas of

publish/subscribe in general, JMS framework implementations, and performance

evaluations of message-oriented middleware.

2.1 The Publish/Subscribe Communication Pattern

In general, message-oriented middleware (MOM) acts as a mediation plat-

form for the communication of application components and allows them to

create, send, and receive messages. Acting as a mediation platform, MOM

provides distributed communication which is loosely coupled, reliable, and

asynchronous. The involved entities can be divided into a message producer,

a message consumer, and the mediation entity. The mediationentity manages

one or multiple queues, which are used to coordinate the message transmission

process. The entities can be distributed on multiple machines or run on a

single machine. The process of information dissemination is directed from the

producer to the consumer. Overall we can distinguish apoint-to-point(PtP) and

apublish/subscribe(pub/sub) oriented messaging approach.

7



2 Background and Motivation

Queue

Mediation server

Application A Application B
Produces Consumes

Producer ConsumerMediation platform

Figure 2.1:Point-to-Point messaging pattern.

2.1.1 The Basic Communication Patterns using MOM

The PtP messaging approach defines the communication of a message producer

with a single consumer as depicted in Figure 2.1. The producer and consumer are

connected using a server application which provides a dedicated queue for the

communicating entities. A message producer sends its messages to the desired

queue. In case multiple consumers are connected to the same queue, the PtP

pattern ensures that a message is delivered only once to a single consumer. It

is not necessary that the producer and the consumers are connected to the server

at the same time as described in [129]. A message will be retained in a queue until

it is fetched by a single consumer or will be dropped as soon asits expiration date

is reached. In order to support multiple applications an individual queue has to

be set up on the server for each pair of communicating applications.

In contrast to PtP, the pub/sub communication pattern provides a one-to-many

communication. As Figure 2.2 illustrates, multiple consumers subscribe to the

same topic. An application publishes a message to a central topic located on a

mediation platform, which is very similar to the PtP process. The messages will

be dispatched to each subscribed application on the consumer side. The mediation

platform itself might be centralized or distributed among different servers. In

general, the mediation platform divides the communicationentities in publishers

and subscribers, which is also called decoupling. Eugster et al. [57] differentiate

between a full decoupling in space, synchronization, and time in pub/sub-based

systems.

Consideringspace decouplingpublishers and subscribers do not communicate

directly with each other, but use an event router as mediation platform. Therefore,

8



2.1 The Publish/Subscribe Communication Pattern

Topic

Mediation server

Application A

Application 1

Publishes

Application n

Dispatches

...

Subscribes

Dispatches

Subscribes

Producer /

publisher

Consumer /

subscriber

Mediation platform

Figure 2.2:Publish/Subscribe communication pattern.

the publishers do not have to know the subscribers and their locations. On the

other hand the subscriber does not need to know who publishedthe message.

This guarantees a kind of anonymity between the communication partners.

The publish/subscribe system further establishessynchronization decoupling.

The one-way character of the message transmission providesan asynchronous

communication between publishers and subscriber. Hence, publishers are not

blocked while they produce messages and subscribers are notified asynchronously

of a message. In the meantime they can perform some concurrent task.

In case oftime decouplingthe mediation platform offers a message queue

which enables an asynchronous communication, where publishers and sub-

scribers have not to be available at the same time. The published messages e.g.,

are delivered at a later point in time in case of a network failure.

2.1.2 Variations of Pub/Sub Systems
One of the most crucial aspects in messaging systems is to avoid flooding of the

consumers with unwanted messages. Typically a consumer is only interested in

a subset of all published messages. The pub/sub communication pattern tries to

address this problem by offering options for respecting theconsumer interests.

A very coarse grained pub/sub scheme is based on so-calledtopics. A

topic divides the overall message load into logical subclasses. A publisher

9



2 Background and Motivation

sends its messages to the corresponding topic, and each subscriber interested

in that particular topic will receive the message. Topic-based systems are also

often referred to as subject-based systems. Topics can be easily distributed

over multiple servers, since they are independent. This kind of organization

enables a straightforward scalability with an increasing message load. A major

disadvantage of topic-based systems is that the topics haveto be defined

previously on an administrative level. So the scalability of a topic-based system

is limited by the capacity of a server hosting the topic with the highest load.

However,content-basedpub/sub provides mechanisms to introduce message

filters by the subscribers to specify their interests. One ofthe early goals of the

content-based pub/sub approach is to match the interests ofa subscriber against

the published information on a semantic level. Seen from a technical level the

mediation platform has to consider the whole content of a message. This is a

very time-consuming task which does not scale regarding theoverall message

throughput.

Therefore the message is divided into a so-calledapplication headerand a

body part containing the information payload. The application header stores

attributes and tags describing the properties or content ofa message. The

values of the attributes and tags are searchable on the mediation platform by a

varying set of filtering languages. This kind of routing decision is also called

header-basedpub/sub system. In environments where the mediation servers

are distributed, the filters have to be propagated throughout the system. Since

the filter propagation is a time-dependent process, the state of the different

servers might become inconsistent. This might lead to unexpected behavior while

disseminating messages. Problems regarding distributed event routing are not

part of this work, but are well-known in literature, e.g. [87].

Several additional approaches try to optimize the performance of a central

mediation platform. E.g., additionally to the propagationof the subscriber side

interests a publisher can previously advertise its attributes and a corresponding

value range, which enables additional possibilities to improve the internal

mediation server performance, as shown in [137].

10
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2.1.3 Performance Characterization in Pub/Sub

Overall two characteristics are important: (1) the expressiveness of filtering and

(2) the achievable maximum message throughput of the mediation platform.

The expressivenessdetermines the granularity at which the interests of the

subscribers can be captured. For example in header-based pub/sub systems the

number of attributes introduced to each message, respectively the length of a

filter are influenced by the expressiveness. Themaximum message throughputof

a mediation platform is a key performance parameter, since it might represent

the overall performance bottleneck, due to the central character of the pub/sub

system.

Furthermore, other requirements which have to be considered in an event

routing environment are the timely delivery of messages, reliability of the service,

as well as preserving the message transmission ordering. Also guarantees for

message delivery and roll-back mechanisms in case of a failure are key features

in industry standard implementations.

2.2 The Java Message Service

TheJava message service(JMS) is anapplication programming interface(API)

provided by Sun Microsystems (now Oracle) as described in [129] and [120].

It is organized as a programming framework for Java, but considers a generic

system behavior. In general, the JMS framework defines the system as a set of

non-implemented Java methods such as interfaces and abstract methods, where

the specific implementations are up to a vendor.

The API defines Java interfaces for the publishers how to generate and send

messages to the JMS server. For the subscriber side, the defined Java interfaces

consider the reception of these messages – or a subset thereof – from the JMS

server. The API provides abstract Java methods to control the message flow

by various message filtering options. The JMS server itself,which represents

the mediation server, is not specified by the API and its implementation is up

11
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Figure 2.3:The JMS server defines the participating entities as well as the
message structure.

to a vendor, as well as the underlying communication mechanisms between

publishers and subscribers. In this context the replication grade describes the

number of messages which have to be transmitted to the subscribers by the

JMS server for a single published message. The overall architecture of the

JMS framework is depicted in Figure 2.3. In this section, we describe the JMS

framework and the most important features provided by the JMS API.

2.2.1 JMS Message

One of the basic components of the JMS API is the definition of interfaces

to represent a message. In JMS context, a message is split into an application

header part and a message body, as depicted in Figure 2.4. Theapplication header

consists of a fixed and an application-specific part, while the body contains solely

payload data.

The JMS API defines up to 10 different fields in thefixed partof the header.

A detailed description can be found in [141]. We introduce briefly the most

common parameters as outlined in Table 2.1. When publishinga message, some
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Figure 2.4:Structure of a JMS message.

of the properties can be set by the publisher application, while others can only

be set by the vendor specific publisher implementation or theJMS server itself.

Upon reception the subscriber application can override allproperties with custom

values.

Table 2.1:Selected properties of the fixed header part in the JMS API.

Field name Value is set by Provided by Optional

JMSDestination Publisher Vendor No
JMSDeliveryMode Publisher JMS API No
JMSMessageID Vendor/Publisher Vendor No
JMSCorrelationID Publisher Client Yes
JMSRedelivered JMS server JMS API No

TheJMSDestinationparameter contains the destination of a message, e.g., the

name of a topic or a queue. The value must remain constant until reception of

the message by a subscriber. TheJMSDeliveryModecontrols, if a possible loss

of the transmitted message is tolerable. If it is set to persistent, a subscriber has

to receive successfully the message “once and only once”, asstated in the JMS

API. Delivering a message twice may cause undefined behavior, for example if

the message contains only a differential update to a state stored at the subscriber.

E.g., consider a financial balance which is updated twice by apositive value. In

contrast, non-persistent defines only a reception by at mostonce and message

loss is not a concern. TheJMSMessageIDand theJMSCorrelationIDare two

parameters for message identification. The message ID is setby the vendor
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specific publisher implementation, which cannot be influenced by the customer

application. However, the correlation ID can be set by the customer application

to mark a sequence of messages. Especially it is possible to search this parameter

by a subscriber’s filter. TheJMSRedeliveredfield is an indicator that is set by the

JMS server in case a message has to be transmitted twice, e.g., due to a message

loss on the network path. This option holds for persistent and non-persistent mode

and marks, if a message is delivered a second time, due to a possible loss of a JMS

message acknowledgement.

The JMS API also defines who provides the possible values for the properties.

Some of the properties have defined a fixed value range provided by the JMS API,

like theJMSDeliveryModeand theJMSRedeliveredparameter. Other properties,

like the JMSDestinationare specific implementations provided by the vendor

of the JMS server. Some of the parameters can be customized bythe client

application according to its demands, like theJMSCorrelationID.

In contrast to the fixed header part, severalapplication-specific properties

may be set in the application property section of a JMS message. Application

properties can be specified by the application where the nameof the property and

its value are free to be adapted to the needs of an applicationdesigner. They can

store common data types, likebooleans, bytes, integers, floatsandstrings. The

overall number of arguments is not limited for a message.

2.2.2 Message Selection (Filtering)

In contrast to the mechanisms on publisher side, a subscriber has the ability to

select messages according to different header properties.In the JMS framework,

pub/sub is limited to the header-based routing concept which considers only

properties in the header of the JMS message and does not allowto select

messages upon the content of their message body. This limitation is acceptable

for performance and scalability reasons. The JMS frameworkdefines a subset

of the SQL92 [22] conditional expression syntax as selection language which

enables an increased complexity in designing message selectors. In this work we

focus on the operands presented in Table 2.2.
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Table 2.2:JMS SQL92: Important message selection operands.

Operand Data type

= All
<, ≤, >, ≥, 6= Arithmetic
AND, OR, NOT Boolean
BETWEEN Arithmetic

IN String
LIKE String

The JMS framework does not specify which entity has to process the filter.

But most vendors evaluate the installed selectors on the JMSserver for obvious

reasons. The JMS server will only forward messages to subscribers if their

installed SQL92 statement evaluates toTRUE compared with the values set in

the properties of a message. The JMS framework specifies an operandLIKE

that allows a message selection based on wild-cards in context of string based

data types, which is not considered in our evaluations. The impact on filter

evaluation time by specifyingLIKE-based fuzzy searches does not apply to the

high performance requirements of a data center applicationscenario.

2.2.3 Message Transmission Modes and Reliability

In general, the JMS server does not define any mechanisms or methods to

provide a guaranteed reliability and availability of the JMS service itself. The

JMS framework requires only a specific behavior for reliablemessage delivery

by defining constraints. The implementation and the methodsused to keep these

constraints are up to the vendor of the JMS server environment.

2.2.3.1 Differentiation of Service and Data Availability

Since the development of the JMS framework has been mainly driven by Sun

Microsystems, it is worth to have a look on their implementation strategies

within the Sun Java System Application Server[138], now known as the
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Oracle System Application Server. The application-specific documentation of

this server introduces two levels of availability, theservice availabilityand

the data availability. With respect to the pub/sub communication pattern this

differentiation can be considered as generally admitted.

With service availability, it has to be ensured that the JMS service continues

its operation with a minimized down-time in case of a failureby adding sufficient

redundancy. Single messages might be lost as long as the JMS service resumes

operation with only a minimal delay. Most common architectures cope with this

problem by providing standby backup servers or a cluster of active servers.

Data availabilitymeans the persistent and consistent information and message

handling. This availability level enables the guarantees as defined by the JMS

API, the once and only once message delivery (persistency) and the message

ordering (consistency). Data availability requires increased overhead compared to

pure service availability. Service availability is out of scope in this work, whereas

data availability is partly focused by evaluating the connection times of a large

number of subscribers, e.g., after a system failure.

2.2.3.2 JMS Acknowledgement Modes

One important feature defined by the JMS API to ensure valid message trans-

mission is to acknowledge the reception and transmission ofmessages on their

way through the mediation environment. This enables to delegate responsibilities

to subsequent entities if they acknowledge correctness on application level. In

general, JMS does not consider a message sent successfully until the subscriber

acknowledges the reception of the message. The mediating entities store a

transmitting message until the appropriate acknowledgment arrives. The JMS

framework describes three different mutually exclusive acknowledgment modes.

If the DUPS_OK_ACKNOWLEDGE mode is active, the JMS implementation

acknowledges only “lazily” the reception of messages. However, the JMS

specification does not state precisely what “lazily” in thiscontext exactly means.

But by activating this option the JMS server can benefit from areduced overhead
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while maintaining its resources for persistent message delivery. In this context

the subscriber implementation must be tolerant to the reception of duplicate

messages.

By default the modeAUTO_ACKNOWLEDGE is active. In this mode, the vendor

specific JMS implementation is responsible for sending acknowledgments upon

reception of a message. The subscriber application does nothave to pay attention

to acknowledge incoming messages. Since this mode internally follows the once-

and-only once policy, it introduces overhead on the JMS server itself.

Activating the third modeCLIENT_ACKNOWLEDGE a subscriber application

itself becomes responsible acknowledging a message reception. The underlying

JMS environment should be aware to limit the number of unacknowledged

messages. This protects a subscriber from message overload.

2.2.3.3 JMS Message Delivery Modes

The JMS offers several modes to ensure persistent message delivery. Activating

the persistentmode, messages are delivered reliably and in order. This option

can be set by each individual publisher and affects all its published messages.

In addition, a publisher can decide to set this option on a permessage basis,

if its default is set tonon-persistent. In both cases, a JMS server must not

deliver a message twice, especially in case of an outage. If the persistent mode is

activated the JMS server has to store a copy of this message, until the message is

successfully delivered to all interested and currently connected subscribers. This

might lead to a delayed delivery and therefore introduces anincreased overhead

on the mediating entity.

In addition to the persistence options for messages, which are commonly

set by the publisher, a subscriber can define the mode to receive messages. In

the durable mode, messages will be also forwarded to previously registered

subscribers that are currently not connected while in thenon-durablemode,

messages are forwarded only to subscribers who are presently online. Thus, the

server requires a significant amount of buffer space to storemessages in the

durable mode and it might achieve a larger throughput in the non-durable mode.
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Figure 2.5:Communication layer in the JMS application environment.

Similar to databases the JMS framework also offers so-called transacted

sessions. Here, in one transaction a set of messages is treated as a group. The

transaction itself is an atomic unit of work. In case of a failure, the complete set

of messages within one transaction has to be destroyed. Thisis also calledroll-

back. So either all messages arrived successfully at all interested subscribers, or

none of them.

2.2.4 Network Level Communication and
Application-Layer Transport

JMS introduces application-specific communication layersfor connections in

addition to the ISO/OSI layer model. The use of the network and transport

layer is not explicitly defined by the JMS API. Typically, a TCP/IP connection

is considered to be used, as depicted in Figure 2.5. Most vendors introduce

additional application-layer transport protocols, like the advanced message

queuing protocol(AMQP) [97], as an abstraction layer between transport layer

and an application-specific JMS session. These transport protocols are typically

adapted to the environment and the requirements of the JMS application, e.g.,

reliability, performance, or compatibility.

To simplify the architecture and reduce the overhead per client, it is possible to

group several JMS sessions into one transport or TCP connection, respectively.
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This is also used in the test environment for emulating multiple clients on a single

machine, as long as the performance characteristics of different clients or TCP

connections can be neglected.

2.3 Application Scenario and Use-Case

This section introduces an application scenario for the publish/subscribe com-

munication pattern based on a JMS environment. This scenario is used as a

motivation for our message-oriented middleware (MOM) evaluations presented

in this work.

2.3.1 MOM Application Deployment Scenarios

In general, we can distinguish two major deployment scenarios for a pub/sub-

based system. The first scenario considers anInternet-scaledeployment of the

event routing engines, as often described in pub/sub related literature, e.g., in

[46] and [49]. The second scenario concentrates on enablingan event based

infrastructure for aservice oriented architecture(SOA) [115] in a local data

center, e.g., as applied in [89].

Considering the Internet-scale scenario, a large number ofcascaded event

routers are involved for transmitting messages and maintaining the pub/sub

infrastructure. Additionally, an efficient routing enginehas to be optimized for

low bandwidth consumption and delay tolerant networks. Also the available

resources on an event router node are typically limited. Often a self-organizing

approach for maintaining the topology and the subscriptions is used.

In contrast, a data center offering a service-oriented application maintains a

local infrastructure with careful dimensioned server environments and network

connections. As depicted in Figure 2.6, this kind of scenario can be divided

into three parts according to [121]: (1) thepresentation layerrepresenting the

customers, (2) thebusiness logic layerwhere all service application logic is

located, and (3) adata layerfor supporting high-performance data storage.
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The presentation layer is typically implemented by a web browser or a small

dedicated application, also called clients. The clients are normally connected via

the Internet to the business logic of the data center and might therefore experience

best effort network conditions. Additionally, the clientsmight be equipped with

less system resources to reduce price of the equipment or thepower consumption

in case of mobile devices.

In the business logic layer, we can differentiate two different sub-layers, i.e.,

the front-end and the back-end area. The front-end is responsible for abstracting

the application logic from content delivery. This approachenables the scalability

of the number of customers and enables additional services,e.g., optimized

graphical output of the content for the customer. The back-end handles the

application logic split into small services. The network connectivity within the

back-end is based on a high-speed local area network (LAN), which enables

a distribution of the services among different applicationservers, as depicted

in Figure 2.6. To enable communication between the servicesa MOM, like

a JMS environment, is introduced. This JMS environment has to handle all
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messages exchanged by the application logic which represents the publishers and

subscribers for the transmitted information. This leads tothe conclusion that the

performance of the JMS environment has to be well dimensioned in order to avoid

bottlenecks. We assume, that the redundancy required for resilience is part of the

JMS environment and the overall data center design itself and do not consider it

in this work.

2.3.2 Presence Information Exchange as a Use-Case

A typical scenario in nowadays communication infrastructure is the exchange

of presence informationas described in [37] and [35]. Presence denotes the

state of software component or an individual person, e.g., the person is currently

online and available for chatting. This kind of informationis typically exchanged

in social networks and instant messaging environments. Presence information

can be used as a trigger for a specific action if the person has set a certain

presence state. For example, if the user sets the state “not available for voice

communication”, the calling person might be adviced to leave a text message.

The change of presence information is typically represented as an event which

is published as a message from an application service actingas a publisher to

the JMS environment. All interested subscribers, which canbe other services

and persons, have to be notified. The subscribers provide their interests typically

by a set of complex filters, e.g., filtering for the desired person identifiers. The

filter design can vary from one complex filter to multiple simple filters per client.

Additionally, the reception of a state change might triggera cascade of additional

events in the system.

Presence is only one example for a use-case of the pub/sub communication

pattern. The data center-oriented application deploymentand the presence use-

case motivated the evaluations presented in this work. Other possible use-cases,

alternative application deployment scenarios, and approaches for proper system

design are described in the following section.
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2.4 Related Work

The field of content-based routing, especially the publish/subscribe communica-

tion pattern is a well-known research topic in literature. The ongoing research

covers a wide range of different issues regarding the communication pattern

itself, the routing and subscription optimization, the architectural design options,

as well as performance evaluation. Also the topics of security, reliability, and the

introduction of the communication pattern on different network layers are hot

topics in the field of research, but out of scope for this work.In the following

subsections, we present a generalized overview on work in the field of the

publish/subscribe communication pattern and different approaches to evaluate

the performance, also regarding the JMS framework.

In literature some of the terms introduced in the previous sections have

additional synonyms. The mediation server or JMS server is also known as event

router or event broker. In pub/sub systems the termsdispatching, notification, and

receivingare often used as synonyms. Alsoproducerandpublisher, as well as

consumerandsubscriberare replaceable terms for the same entities.

2.4.1 Publish/Subscribe Architecture and Design

The acceptance of the pub/sub communication pattern on a larger scale is

enabled by an increasing performance of message-oriented middleware systems

and the underlying hardware. A general introduction to the architecture of

pub/sub systems is given by [57] whose authors describe the basic principles

of the involved entities and features of decoupling communication partners.

Typical scenarios and industry-wide accepted use-cases for designing messaging

solutions are described by Hohpe and Woolf [121] and Terry and Shawn [141].

Design and Architecture

Already in the early nineties, Bernstein [25] compared different middleware

components for distributed system services. Its major goalis to cope with the
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heterogeneity of distributed computing problems using communication on lower

network layers. In nowadays service-oriented architectures, the same problems

like scalability and throughput might be observed, but theymoved to application-

layer.

Antollini et al. [83] describe the requirements for implementing a high level

publish/subscribe architecture in an enterprise grade information system. In

general, a definition of all entities of a pub/sub system are given as program-

ming interfaces and an approach to integrate JMS is presented. The described

mechanisms and interfaces are useful to identify realisticscenarios in the field

of pub/sub systems, and we therefore considered them withinour experiment

design.

The design of large-scaled content-based routing is described in the theses

of Mühl [49] and of Tarkoma [87]. The work of Tarkoma focuses on the event

routing process itself and also considers aspects of mobility. The thesis of Mühl

presents an evaluation of the scalability of the event routing infrastructure by

implementing a prototype. Both works inspired the design and the selection of

certain scenarios for the experiments done in this work.

Baldoni et al. [53] give an overview on the evolution of pub/sub communi-

cation systems. The authors review general issues in pub/sub systems, such as

anonymity of the participants and decoupling in time and flow. The advantages

and the difference between topic-based and content-based systems are discussed.

Also several research topics, still up-to-date, are mentioned regarding the efficient

subscription routing and fault tolerance of the servers.

Filtering Strategies

Optimizing the filter evaluation performance is one of the key issues to achieve

a high message throughput. Several publications deal with the optimization

of filters. Aguilera et al. [33] proposed some basic mechanisms to match the

content of messages by appropriate filters. They also validated their methods by

simulative studies. In [39], a filter transformation to binary decision diagram is

23



2 Background and Motivation

proposed. The authors of [48] take advantage of similarities in filters installed by

different subscribers. From our observations, not all servers use these options to

increase the throughput by adding such optimizations to their system.

A general discussion of filter matching algorithms can be found in [81].

According to the authors, tree-based algorithms are the most efficient way to

solve the filter matching problem. A generalized proof for finding all matching

filters in sub-linear time is also presented in [33]. It is expected that the time to

match a random event is not greater thanO(N1−λ), whereN is the number of

subscriptions.

In [41] an approach is suggested to implement high-efficientfiltering algo-

rithms. The authors claim to support6 million subscriptions and about600 events

per second. They consider also a high rate for subscribing and un-subscribing

clients. The proposed memory and CPU optimized algorithms are evaluated

by measuring a prototype. The results gained from the experiments are quite

promising, but the assumed scenario differs from our observations in industrial

environments. “Very fast”, as indicated in the title of [41], publish/subscribe

systems have to support message throughput rates orders of magnitude higher

than600 messages per second, especially in case the system has to support up to

6 million of parallel subscriptions. Typically in data center-oriented applications,

subscriptions are aggregated on a per machine or per serviceblock level, which

reduces the number of parallel subscriptions in the publish/subscribe system.

Gorton et al. [58] introduce multiple mechanisms to optimize filtering in large

data streams. The focus of the work considers JMS and also some tests with

the JBoss JMS server are conducted. We tried to evaluate the JBoss JMS server

as well, but the versions we used could not handle the load offered by our test

scenarios, so we were not able to apply our evaluation method. However, the

basic design goals of the tests are in line with this work.

The authors of [36] introduce an approach using B-trees, based on adistributed

data structure(DDS) in a grid based storage network. Different easily scalable

services write concurrent pulled events to the DDS infrastructure and are

responsible for pushing the events to the subscribers. Since the DDS storage
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is assumed to be highly scalable and can achieve high throughput rates, all

necessary modes for a pub/sub-based system are given. This approach might be

useful in a distributed server environment. Also resilience is supported, which is

not considered in this work. The evaluation of the approach can easily be done

by applying our proposed methodology.

A general overview on requirements in filtering and its corresponding data

models is given in [42] by Mühl. A generic “content-based data model”, as

well as constraints for values and notification types are introduced. Also it

defines a differentiation of perfect and imperfect merging of subscriptions, by

considering similarities within their interests. These merging mechanisms are

proposed with regards to optimized filter matching strategies. A detailed analysis

of the imperfect and perfect matching is presented in [72] and in the PhD

thesis “management of uncertainties in publish/subscribesystem” [106] by Liu.

The work of Liu focuses on fuzzy matching of event information against the

interests a client subscribed for, which is a prerequisite for enabling semantic

publish/subscribe systems.

Designing efficient filtering processes is one of the key issues in designing

content-based routing. However, our focus is not on designing such filters, but

rather on evaluating the filtering performance in varying scenarios, and to develop

a flexible modeling approach for system dimensioning of a pub/sub system.

Distributed Event Brokers

Besides filtering performance at each event broker, it is necessary to keep the

system scalable to distribute the overall load upon multiple brokers. In case

multiple brokers are involved, subscriptions have to be distributed throughout

the network, in order to optimize message routing and load. In [78], an efficient

way to aggregate subscriptions and to select the routing path on application-layer

is introduced. Subscription aggregation is also useful in asingle server scenario,

since the evaluation of a filter takes a noticeable amount of time. As our results

showed, different broker applications can benefit from suchoptimizations. An
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efficient event routing for content-based publish/subscribe systems is proposed

in [65]. This work introduces an architecture called Kyra which tries to balance

the filter matching and routing load upon multiple brokers. Therefore the authors

propose different routing approaches and evaluate these algorithms by comparing

different parameters, e.g., network performance, storagecost, and processing

load. The evaluations are done by simulative studies. A survey on common

“routing algorithms for content-based publish/subscribesystems” is presented

in [98]. A general overview on the entities as well as a set of routing options

for event dissemination is given. Also architectural options for organizing

subscription propagation and partitioning the filter matching mechanisms are

discussed. The authors conclude that many of the presented algorithms are only

evaluated by their authors using only “synthetic data sets”in simulative studies.

This is a motivation for our experimental driven approach toevaluate the system

performance presented.

Another approach to increase system throughput performance can be achieved

by reducing the traffic at the server, which is calledquenching. This approach

is implemented byElvin4 as described in [29] and [38], a general-purpose

notification service. In order to reduce network traffic, therouting entity informs

all publishers periodically about all registered subscriptions. In this work, a

theoretical estimation is presented, regarding performance differences between

filtering on subscriber side and publisher side. The authorsof Siena[34] propose

a distributed environment, where the replication of the messages is done as

close as possible to the desired subscriber. Consistently filters introduced by the

subscribers are aggregated as far as possible. Our evaluations showed that in a

data center scenario the network capacity is not a bottleneck for messaging with

typical payload sizes, which might be different in an Internet scale scenario.

Hsiao proposes a different approach besides application-layer routing in [59]

by considering IP multicast. The approach is based on the JMSframework and

provides the interfaces as required by the JMS API. The organization of message-

flows is mainly done by topic-based IP multicast groups. Complex filtering is

done on subscriber side. Also a rate control is implemented,in case a subscriber
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gets overloaded. An implemented prototype showed promising results regarding

the throughput with larger message body sizes. Following the approach in [70],

the server has only to evaluate the header parts of a JMS message, what is

described as “lazy deserialization” in the work of Koao and Hung. During normal

deserialization process the overall JMS message Java object has to be restored in

memory, which is a time and memory consuming task. Since the message body

is not of any use for the JMS API this step can be omitted. We also evaluated

the throughput capacity depending on the message body size,and found, that

the observed impact of the message body size is well predictable, and does

not depend on the server’s implementation, but on its network packet forward

capacity.

Approaches for Generalized Models

In [63] an approach to model and validate distributed architectures based on

the publish/subscribe pattern is presented. In modern and complex distributed

systems, the automated model checking becomes an importantpart of developing

and programming, since cascading effects might influence the system perfor-

mance. In this work, we test JMS framework features in an isolated manner on

a single server environment. The use of a single server environment reduces the

difficulties in verifying the environment.

A state-persistent model for handling subscriptions is introduced in [47]. It

describes events and subscriptions as points in a multidimensional space where

the distance between points determines a match between an event and a sub-

scription. This approach supports semantic-aware pub/subsystems. In addition

to the architectural considerations and definitions, a pseudo implementation of

the matching algorithm as well as an analytical evaluation of the expected

performance is presented in [60]. A major focus of this work is on updating

subscribers interests which means a modification of the subscription. The JMS

framework does not support a subscription modification, so our work does not

consider modification. We assume in our scenarios a consecutive deletion and a

modified re-subscription process for processing a modification.
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A cost model for publish/subscribe with focus on mobile gridenvironments

is presented in [74]. The authors compare a client-server based and a polling

based communication pattern with the publish/subscribe communication pattern

by a cost-based analysis. The evaluation is done regarding the total cost for a

given scenario and the cost for each single access to the system, in case of the

pub/sub system is transmitting a message. While developinga pub/sub system

representing its central nature in the software communication the calculation

of costs is an important issue. Since its costs add to the onesintroduced by

the other software components it might take an important role in the overall

service delivery. We focus not on evaluating costs, their models differ from our

throughput analysis, but cost evaluation may complete the system analysis.

Peer-to-Peer Based Event Brokers

A major advantage for efficiently implementing the decoupling features in

pub/sub environments is the central nature of the mediationplatform, that

all clients have to connect to. The well-knownpeer-to-peer(P2P) principle

can add additional features to enable an efficient distribution of the pub/sub

system. A lot of research has been done in this area. A generaldiscussion

of infrastructure-less pub/sub systems based on P2P principle is done in [82].

In [62] a publish/subscribe system based on adistributed hash table(DHT) is

proposed. In the case of a DHT, all clients are involved in storing the subscriptions

and evaluating them. Fault tolerance is introduced as a feature of the DHT

approach. If a single subscription is frequently used, the associated node might

get overloaded which limits the scalability of the overall system. Triantafillou et

al. [77] also propose a DHT based system but specialize the setup to Chord,

which forms the DHT in a ring-like overlay structure. The ring like overlay

structure supports a better load balancing between the nodes, as their estimation

of the workload shows. From a message throughput performance point of view,

the overall achievable throughput in P2P based publish/subscribe architectures

depends on the number of involved nodes and their CPU capacity. Typically,
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the available system resources in terms of CPU and memory arerather low in

a fully distributed environment, therefore a large number of nodes is necessary.

This leads to the former described problems in efficient subscription handling and

message routing. All in all, the central approach, as focused in this work, is the

better choice to cope with the requirements of a data center application. Some of

the investigated algorithms might be useful in case of load balancing the servers.

Quality of Service Considerations

An important aspect in the field of publish/subscribe is thequality of service

(QoS). Especially if a timely delivery of messages is necessary the pub-

lish/subscribe system has to be QoS aware. In [84] and [85] different approaches

for enabling QoS guarantees are presented and evaluated in terms of their

performance. Our focus is not on the QoS features of a publish/subscribe system,

but we present an approach to model the internal behavior of aJMS server, which

might be used to evaluate the desired QoS behavior.

Reliability Aspects

Introducing reliability in distributed and dynamic publish/subscribe networks

causes additional overhead. In [55] and [67], different approaches to design a

reliable publish/subscribe system are introduced and evaluated by simulations

regarding different failure rates, e.g., network link failures. This applies for

dynamic broker networks distributed over an Internet-based publish/subscribe

network. In our data center-oriented approach, this kind ofproblem can be

handled by adding redundant server resources with the appropriate resilience

mechanisms. The resilience mechanisms in a data center might consider the

presented approaches in the dynamic environment, but typically they introduce

too much overhead compared to simple one-by-one server backup strategy.
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Security Issues

Security and confidentiality are important issues for performance of a pub-

lish/subscribe system. In [51], the authors point out some security issues arising

from the structure of pub/sub systems. A number of problems come along with

this type of communication, e.g., authentication of publishers and subscribers

among each other, information confidentiality, and subscription confidentiality.

It must be taken into account whether the publish/subscribeinfrastructure is

trusted or not, resulting in different mechanisms that can be used to solve the

mentioned problems, as described by the authors of [69]. Also, some of the

security requirements conflict with the pub/sub model. For example, content-

based routing includes the evaluation of the information. This is not possible if

the message is encrypted (information confidentiality), except a trust relationship

exists for the overall environment, including the mediation platform. Some of the

approaches use apublic key infrastructure(PKI) or similar approaches which are

not part of the publish/subscribe domain, others rely on a trusted infrastructure.

Since we are focusing on a data center scenario, our tests do not consider any

security options, but can be easily extended to take them into account.

Applying Pub/Sub to Lower ISO/OSI Layers

In Future Internet scenarios currently under discussion, the publish/subscribe

communication pattern is also of interest in replacing the current communication

based on IP addressing. A project calledPublish-Subscribe Internetworking

Routing Paradigm(PSIRP) [103] focuses on this topic. Several scientific pub-

lications introduce different aspects of the routing paradigm on lower layers.

In [103], a general overview on the PSIRP architecture is given, whereas [110]

focuses on an experimental driven approach to evaluate a PSIRP prototype in

current Future Internet test facilities, like PlanetLab [61] and FEDERICA [93].

Another approach with the same goal is [96] the LIPSIN environment, where

a linespeed supporting publish/subscribe system is introduced. LIPSIN can be

considered as another underlying forwarding fabric to IP, similar to Ethernet. The
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evaluations of the implemented prototypes showed similar delay performance just

like a standard Linux-based IP-router. Since our application scenario considers

the communication of software components the shift of the publish/subscribe

communication to lower layers is an optional step which might be useful in future

network environments.

Summary

The previous section discussed related work introducing new approaches to

implement an efficient publish/subscribe enabled service.But in typical environ-

ments, a system is dimensioned and installed, based on evaluations of existing

pieces of software and hardware. To get an idea how the systemperforms under

varying load conditions and in different use-cases, a performance evaluation of a

system is necessary which is the focus of the next section in related work.

2.4.2 Benchmarking Approaches for Message-Oriented
Middleware

JMS is a wide-spread and frequently used middleware technology. Therefore, its

throughput performance is of general interest. Several papers address this aspect

already, but from a different viewpoint and in different depth.

JMS Benchmarks

The throughput performance of four different JMS servers iscompared and

evaluated in [71]: FioranoMQ [117], SonicMQ [132], TibcoEMS [143], and

WebSphereMQ [122]. The study focuses on several message modes, e.g., the

durable, persistent message transmission mode. But it doesnot consider filtering,

which is the main objective in this work. The authors of [56] conduct a

benchmark comparison for the Sun OneMQ [139] and IBM WebSphereMQ

[122]. Additionally, there exist several other performance studies, with the

focus on providing comparisons of the server capacities, like a comparison of
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FioranoMQ and the SonicMQ [118], or the SonicMQ vs. the IBM WebSphereMQ

series [134]. Also some of the vendors provide their own suites for testing

the JMS server performance, like done by IBM Hursley [123], Sonic test

harness [133], or JBoss [125]. The results of the different test suites consider

the throughput performance in various message modes and, inparticular, with

different acknowledgment options for the persistent message mode. They also

examined simple filters but they did not conduct parametric studies, and no

performance model was developed. The objective of our work is the development

of such performance models to forecast the maximum message throughput for

given application scenarios.

The Apache working group provides the generic test tool JMeter for through-

put tests of the ActiveMQ [113]. However, it has only limitedfunctionality such

that we rely on an implementation developed by us to automateour experiments.

Another benchmarking testbed is implemented by Pang [50]. It is designed

to compare two message-oriented middleware servers, namely TIB/RV and Son-

icMQ. The tests evaluated the system’s capacity considering message throughput,

memory consumption, and CPU utilization. Also some stability tests are per-

formed, to test the system under high loads and resource utilization. The tests con-

sider the publish/subscribe pattern, as well as the point-to-point communication.

In comparison to our tests, the introduced load is an order ofmagnitude lower

which prevents the authors from detecting some effects likeserver crashes with

unlimited message publishing. Also our tests focus on the filtering performance

of the publish/subscribe engines since that is the crucial part of the system.

In [102], the authors introduce an approach to benchmark JMSin general. For

their evaluations, they designed a message load considering the traffic mix of a

standard supply chain as observed in a supermarket scenario, which is described

in [91] and [90]. An extension of the JMSspec2007 benchmark by additional load

scenarios and evaluating a current version of the ActiveMQ server is presented

in [101]. The process of the benchmark considers similar aspects as provided

in our experimental evaluations, like message size and number of consumers.

The considered server software is in line with the systems weevaluated and
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leads to comparable results. In contrast to their work, we donot provide a

standardized scenario with a fixed set of parameters. Fixed parameters are

required by the JMSspec2007 benchmark for reasons of comparability with not

yet evaluated servers. Our approach supports a flexible detection of bottlenecks

in adapted scenarios. Additionally, we provide models to forecast the throughput

performance of the system for a given scenario and investigate the impact of the

internal queuing behavior of the server software.

Generalized Pub/Sub Benchmark Approaches

Another proposal for designing a “Benchmark Suite for Distributed Publish/Sub-

scribe Systems” is presented in [45] but without measurement results. The setup

of our experiments is in line with these recommendations. General benchmark

guidelines were suggested in [52] which apply both to JMS systems and

databases. However, scalability issues are not considered, which is the intention

of our work. Baldoni et al. present a generalized mathematical model for a general

pub/sub scenario in the durable mode with focus on message diffusion without

filters in [54]. The authors enhanced their analytical models and validated it by

simulations in [79]. In the work of Baldoni also the filter update intervals are

considered, since their focus is on modeling a distributed event-based system. In

our work, a mathematical model is presented for the throughput performance for

a single server in the non-durable mode including differentfilter configurations.

We evaluated our modeling approach by measurements and found it as valid and

in line with the work of Baldoni.

In [80], the memory requirements of different filtering algorithms for pub/sub

systems were studied theoretically and experimentally. Memory consumption

during message processing is a key performance issue. In ourexperiments,

we therefore carefully observed the memory usage, so it doesnot present a

performance bottleneck in the system.

In the context of mobile networks, a publish/subscribe system benefits from

the asynchronous communication. A performance evaluationof JMS servers
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regarding the throughput is presented in [68], where the authors emulate different

network conditions typical to wireless networks. Since ournetwork conditions

remain constant, we do not see any effects like slow consumers, moving sub-

scribers, or changing network conditions. However, the experiments conducted

in this work can be extended to consider varying network conditions.

As already stated in the design oriented section of related work, QoS guaran-

tees in a pub/sub network are a good approach to ensure performance. In [66], an

empirical approach is considered to evaluate, if a JMS server is able to hold the

chosen configuration and requirements set by the clients. Inour work, we do not

explicitly evaluate QoS parameters, but mention during themeasurements, where

the observed behavior differs from the one configured.

An experimental driven evaluation of two different JMS solutions, namely

JBoss MQ and is done by Laranjeiro et al. in [94]. Their focus is on robustness,

which is part of benchmarking evaluations, and security, where they evaluate the

servers by different well-known problems in this field to show vulnerability and

the protection against it. Since our experiments do not focus on security aspects,

we switched off any features regarding security. We assume,that in a closed

data center network the security aspect can be handled by other entities in the

system. The robustness aspect is a crucial aspect and covered by the stress-testing

approach we followed. By using our models we can predict the performance

limits of the software, in order to prevent failures during design of an application.

2.4.3 Other Messaging Approaches and JMS Servers

For the evaluation part we selected a set of JMS servers as described in the

following experimental chapter Chapter 3 of this work. Overall, we consider not

only the selected servers. Several other servers and approaches were tested and

discarded, since they crashed in our test scenarios, or did not provide the desired

feature set. But still, they might be interesting approaches in the publish/subscribe

application middleware field.
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Messaging Product Vendors

That there are major differences in performance and focus between the different

vendors becomes apparent if we look at the history of severalsoftware products.

For example Oracle completed their portfolio be acquiring the companies Bea

and Sun including their messaging servers. The former products of Bea and Sun

are still available as standalone software in the product portfolio of Oracle. In the

area of open source the development of the ActiveMQ server, which is part of

our evaluations, moved from a small company to the Apache Foundation, where

it matured to a industry accepted application. The former IBM research project

Gryphon [31], which included a large set of mechanisms developed in science,

became part of the IBM WebSphereMQ server. The WebSphereMQ version

including all optimizations introduced by Gryphon is part of our performance

evaluation.

Other major vendors, like Amazon, do not focus on the JMS framework, while

implementing own versions of a large scale publish/subscribe system. TheSimple

Notification Service(SNS) with focus on real time event communication and the

Simple Queue Service(SQS) focusing on the decoupling of communication by

introducing a queue, are good examples for highly scalable publish/subscribe

systems. Since these services are only available as a cloud service and not as a

standalone product, we did not consider them in our research.

Application-Layer Communication

An important part while using pub/sub systems is the underlying communication

protocol. From a vendor point of view a large variety of communication protocol

standards have to be supported to reflect the different needsof the customers and

guarantee their interoperability. But the selection of theapplication-layer com-

munication protocol has a high impact on the overall performance of the system,

e.g., if a message is transmitted in plain text, or serialized to a binary data stream.

In our scenarios we used the application-layer transport protocols, as configured

by default. We payed attention to consider only protocols, which transmit the

messages in a binary stream and do not include text based protocols, like JSON
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[105], SOAP, HTTP, or even e-mail. One of the most common protocols used for

binary data transmission is the so-calledAdvanced Message Queuing Protocol

(AMQP) [104]. AMQP describes an open protocol specificationand defines

efficient application message formats, which are called “wire-level” formats in

the AMQP documentation. The AMQP documentation describes some semantics

of broker services which is in competition with the JMS framework. Many

vendors, like the ActiveMQ software, use the AMQP protocol specifications for

application-layer transport and offer the interfaces defined by the JMS framework

to the customer applications. The RabbitMQ [108] software as a recent product

fully supports the AMQP framework while being based on the JMS framework.

Since RabbitMQ does not directly offer JMS adapters, we prefer the ActiveMQ

software as an open source representative in our evaluations. However, our tests

can easily be extended to test the RabbitMQ software as well.To increase the

performance by using alternative physical connection technologies an approach

is introduced in [95] where the AMQP protocol is applied on InfiniBand, a very

powerful transmission technology using copper cables.

Other JMS Servers

There is a huge amount of industry standard JMS brokers available on market.

A list of current implementations can be found at [109]. For our evaluations,

we consider the server implementions of FioranoMQ [116], IBM WebSphereMQ

[122], Bea WebLogic Application Server (now Oracle) [107],Sun Java System

Message Queue (now Oracle) [139], and ActiveMQ [112]. We also look at

different JMS middleware software, like JORAM [99], JBossMQ [100], and

open source implementation OpenJMS [92]. JBossMQ (version4.0.3SP1), in

the version we have tested, crashed while handling the default load of our test

clients, as described in the next chapter Chapter 3. Therefore we implemented a

special rate control in our test clients, to perform our experiments, but since they

do not fully apply to our test requirements we do not considerthem in this work.

OpenJMS completes our test scenarios successfully, but itsoverall performance

is too low to be considered in our results.
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General Pub/Sub Prototypes with Focus on Research

In contrast to the previously introduced industry focused software components,

there are multiple research projects providing prototypesand grown up environ-

ments to test and support new approaches in science.

One of the first implementations of a content-based pub/sub system is the

Scalable Internet Event Notification Architecture(SIENA) [30] and [137]. The

focus of the SIENA system is on an Internet-scale deployment, with efficient

overlay connections for routing events and subscriptions.SIENA is a very flexible

and extensible approach, but not of use in a productive environment. The detailed

description of the event handling introduced by SIENA supports us by designing

efficient filtering tests. Since SIENA does not support JMS wedo not consider it

in our evaluations.

Another flexible approach for a distributed event-based middleware is intro-

duced by Pietzuch in [75] and called HERMES. A characteristic of the presented

work is the integration of an evaluation of the introduced algorithms by a

distributed simulator. We do not simulate our scenarios, but present analytical

models derived from our experiments.

The Java Event-Based Distributed Infrastructure(JEDI) [40] organizes the

distributed brokers, calledevent dispatchers, in a tree like structure. Each

subscription is propagated upwards in this tree structure to the root element. This

kind of architecture supports a dynamic organization of event dissemination, but

lacks robustness. We did not consider this approach since itimplements only a

very simple not-optimized filtering engine. Another reasonnot to consider the

three approaches, SIENA, HERMES, or JEDI is that they do not support the JMS

framework.

SpiderCast, introduced in [89] by Chockler et al., is a topic-based distributed

pub/sub system focusing the optimization of well-correlated subscription patterns

using a simple distributed heuristic. In [89] the results are mostly evaluated on

an empirical level while the authors provide a theoretical approximation of their

approach in [88]. Overall, this approach introduces a very efficient distributed

pub/sub system, but is limited to the topic-based pub/sub communication pattern.
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One of the few scientific prototypes including adapters for the JMS framework

is the Narada Brokering service, introduced in [46]. Since the focus of this

approach is on a distributed broker service for grid computing and Narada

implements an XML-based text-oriented message processing, we do not consider

it for our server evaluations. Pereira et al. introduce another XML-based approach

in [43]. The authors claim that this approach is high performant in terms of

message throughput. However, the performance evaluationsdone in the work of

Fox and Pereira show that the achievable message throughputperformance is in

the medium range of the systems we evaluate.

Corona, which is presented in [86], is another distributed pub/sub system with

focus on polling based message reception by the subscribers. An interesting part

of the work is the evaluation of the system in the PlanetLab testbed, which is

distributed all over the Internet. However, we consider a local testbed to ensure

repeatability of our experiments regarding the message throughput performance.

This cannot be guaranteed by using the PlanetLab environment while it supports

a large-scale test of software functionality.

Summary
All approaches and methods in this section help us to understand the key

performance issues in a publish/subscribe system. Based onthe literature, we

start out to design a testbed for evaluating critical parameters of a centralized

publish/subscribe system based on the JMS framework. The selection of the

evaluated servers is based on the products available on the market, supporting

our data center-oriented scenario, and representing a widerange of different

implementation options, which leads to different performance characteristics

during evaluation. In the following we consider the server implementions of

FioranoMQ [116], IBM WebSphereMQ [122], Bea WebLogic Application Server

(now Oracle) [107], Sun Java System Message Queue (now Oracle) [139], and

ActiveMQ [112]. The next chapter introduces the experimental environment,

which enables the message throughput measurements, and is the basis for our

modeling and analytical approaches.
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Evaluation

In this section, we use the maximum throughput based on measurements of

different JMS servers as a performance measure. The objective is to assess

and characterize the impact of specific application scenarios on the server

performance. In particular, we consider different filter scenarios, as they are

essential for the use of a JMS server as a general message routing platform. We

explain the experimental facility setup and conduct several parameter studies to

explore their impact on the JMS server throughput.

3.1 Experimental Environment and Experiment

Design

The objective of this section is the assessment of the message throughput of dif-

ferent JMS servers, supporting the publish/subscribe communication pattern, by

measuring the performance under various conditions. Sincethe implementation

of the JMS framework is up to the vendor, we build a testbed anddesign a set

of experiments to evaluate the server performance characteristics. This approach

identifies system critical parameters which might present bottlenecks.

For comparability and reproducibility reasons, we first describe the hardware

components involved, the network setup, and the configuration of the operating

system. Then, an overview of the considered JMS server implementations and

their configuration is given. Finally, we describe the critical parameters, the

overall experiment design space, and the measurement methodology.
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3.1.1 Experimental Environment Setup

For our experiments, we use dedicated hardware and a proprietary test client

software. The experimental environment is defined by a workflow, which is partly

automated.

Hardware Setup

Our dedicated test environment consists of a number of 12 computers as

illustrated in Figure 3.1. Up to 10 of them are client machines and two are used for

control purposes, e.g., controlling jobs like setting up test scenarios and starting

measurement runs. The 10 client machines have a 1 Gbit/s network interface

which is connected to a single Gigabit switch. They are equipped with 3.2 GHz

single core CPUs and 2 GB system memory. The operating systemis openSuSe

Linux 9.1 in standard configuration. To run the JMS environment, we install the

Java SDK 1.5.0 in default configuration. The control machines are connected over

a 100 Mbit/s interface to the Gigabit switch. The hardware and installed operating

system is tested by performing a system level benchmark which is repeated in

case any hardware component or system software changes. Theresults of the

benchmark are stored as default values and the state of the system is called

calibrated.

Design of the Test Client

In our experiments, oneserver machineis used as a dedicated JMS server.

Up to four publisher machinesare exclusively used to run publishers and one

or up to 8subscriber machinesrun the subscriber applications depending on

the experiment. If two or more publisher or subscriber machines are used, the

emulated publishers or subscribers are distributed equally between them. We

implemented test client software in such a way that each publisher or subscriber

is realized as a single Java thread, which has an connection to the JMS server

component. A management thread collects the measured values from each thread

and appends these data to a file in periodic intervals.
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Production network
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Client machines

Test network speed: 1Gbit/s

Measurement result

database

Figure 3.1:Hardware and network setup in the testbed.

Workflow of an Experiment

In general, anexperimentis a set of singlemeasurements, where only one

parameter is changed, while all others are left unchanged. Each measurement

is repeated several times asmeasurement runsto increase confidence in the

resulting mean value. The different measurement runs are used to calculate the

standard deviation and the corresponding confidence level.Figure 3.2 depicts

a chronological overview of three different phases from theexperimental setup

over conducting the measurement runs up to the analysis of the resulting

data. Phase 1 considers the design of a single or complex experiment, and

defines the parameters to evaluate. In case a experiment requires redesign, a

manual interaction is necessary. This can occur if a certainconfiguration and

the corresponding measurement runs always lead to a failureof the overall

experiment, which might be the case if the JMS server faces a software error.
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Figure 3.2:Measuring and experimenting workflow.

Automation of the Experiment Workflow

The next step is to create and deploy configuration files for the automated test

environment. Phase 2 consists of two subordinated tasks. Each measurement

produces results, which are automatically validated by thetest environment

considering the constraints defined for the experiment. If aviolation of a given

constraint is detected, the results of this particular measurement run are rejected,

and a re-run with an updated configuration is scheduled. On a regular basis

or if the constraints are violated multiple times, the testbed re-calibrates itself,

by rebooting all machines and conducting a system level benchmark of each

machine. The result of the benchmark is again validated against a previously

measured default value. In case the benchmark result validates negatively, a dump

of all system relevant data is performed, e.g., log-files andI/O counters. The

measurement is set on halt for manual interaction. Additionally, a new default

benchmark value is generated after each system upgrade, e.g., after introducing

new security patches. During the last phase, a post-processing of all data is

performed, in order to make them available via a database interface or as result

figures, e.g., as shown in this work.
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3.1.2 Evaluated JMS Server Environment

For our performance evaluations, we focus on existing software implemented

by different vendors. All these vendors have slightly different implementations

regarding the pub/sub communication pattern. Therefore, the different software

products are shortly introduced in this section. The installation and configuration

specialities of the five considered server types are briefly described, where the

basic idea is to keep the default configuration when possible.

Table 3.1:JMS vendor: Overview on evaluated JMS servers.
Vendor Product name Version Open source

Fiorano Inc. FioranoMQ 7.5 No
Sun Microsystems Sun Java System MQ 3.6 No
IBM WebSphereMQ 6.0 No
Bea Inc. WebLogic App. Server 9.0 No
Apache Foundation ActiveMQ 4.0 Yes

Fiorano MQ

TheFioranoMQ [117] version 7.5 server components is installed as JMS server

software. The vendor’s default configuration is used as delivered with the trial

version. The server has to be executed with superuser permissions; otherwise

user restrictions can limit the number of simultaneously connected clients to the

FioranoMQ kernel.

Sun Java System Message Queue (SunMQ)

We install theSun Java System Message Queue3 2005Q1 platform edition

(version 3.6) [139], which is shipped with a trial license including all features of

the enterprise edition. We use its default configuration except for the following

modifications. To enable the publish/subscribe mode, we setup a customized

default topic. Normally, a large buffer is reserved for incoming messages.

43



3 Experimental-Based System Evaluation

However, as it is too large for our experiments, we limit it toa maximum of

10,000 messages and switch on the flow control to avoid message loss at the

incoming buffer. Otherwise, if the incoming message buffersize is set to the

default value, the server starts dispatching messages to the subscribers after

receiving all messages from the publisher since we send themin a saturated

manner. Additionally, we increase the maximum threshold for simultaneously

connected subscribers from 100 to 400.

IBM WebSphere MQ (WebSphereMQ)

We install the IBM WebSphere MQ 6.0trial version [122] on the server

machine with the default configuration except for the following modifications.

For performance reasons, we disable the security module, since our experiments

do not focus on security issues. We raise the internal restriction regarding the

number of parallel connections to the queue manager from thedefault value 100

to 500. The WebSphereMQ software offers to use a third party pub/sub engine. To

conduct our experiments, we use the WebSphereMQ’s integrated pub/sub feature.

BEA WebLogic Application Server

For evaluation of theBEA WebLogic Application Server(version 9.0) [107] we

use the evaluation version provided by BEA as a binary. We adjust the heap-size

of the Java Virtual Machine, such that 1 GB of memory is available for the server.

Furthermore, we define the upper and lower bounds for the sizeof the internal

message queue, which triggers the internal flow control. This becomes necessary,

because the server does not slow down the publishers in default configuration,

even with an exhausted queue space. This leads to unpredictable behavior and

the server software fails.

Apache ActiveMQ

Finally, the open source productActiveMQ is considered for evaluation. The

ActiveMQ software is maintained by the Apache software foundation. Besides

the official documentation [112], an insightful description for ActiveMQ is
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available as work-in-progress in [136]. In our tests, we evaluate and compare

several versions of the ActiveMQ software, also in varying configurations. This

helps us to separate software bugs from software performance behavior. For the

results presented in this work, we focus on the versions 4.0 and 4.1. ActiveMQ

relies on system files to maintain connections and software availability states. To

run ActiveMQ with larger numbers of publishers and subscribers, it needs more

system file handles at the same time than the Linux kernel allows by default. We

increase the number of allowed parallel file handles in the operating system to

an arbitrary chosen value of16,384 compared to the default value of4,096. This

value proved to be sufficient for all experiments.

3.1.3 Measurement Methodology

Our objective is the measurement of the JMS server message throughput capacity.

Therefore, we load the JMS server in all our experiments close to 100% CPU load

and verify that no other bottlenecks like system memory or network capacity

exist on the server machine. The publisher and subscriber machines must not be

bottlenecks, i.e., they should not run at an average CPU loadexceeding 75%. This

ensures that there is enough switching capacity left for theemulated publishers

or subscribers. To monitor these side conditions, we use theLinux tool “sar”,

which is part of the “sysstat” package [119]. We monitor the CPU utilization,

I/O, memory, and network utilization for each measurement run. We use a per

second interval for recording our measurement values. Without a running JMS

server software, the CPU utilization of the JMS server machine does not exceed

2%, and a fully loaded server must have a CPU utilization of atleast 96%, by

holding a 95% confidence level. This means that the measured average of the JMS

server’s CPU utilization during a measurement run should have a mean value

which does not violate the 95% confidence level. To illustrate a setting of a typical

experiment, Figure 3.3 shows the CPU utilization of the publisher, subscriber, and

server machines. We observe that the CPU utilization for theJMS server machine

remains above 95% at any time during the measurement run which is the desired

behavior.
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Figure 3.3:CPU utilization of a typical measurement run.

Experiments are conducted as follows. The publishers run insaturated mode,

i.e., they send messages as fast as possible to the JMS server. However, they are

slowed down if the server is overloaded since publisher sidemessage queuing

is used. To save system processing resources during the measurement phase, all

JMS messages are created in advance. For the same reason, allnecessary network

connections are established before the measurements are taken. As depicted in

Figure 3.4, the control machine initiates the system monitoring at first. After

that, the server components are initialized, followed by the subscriber, as passive

receiving elements. If they are successfully up and running, the publishers are

initialized to standby. After a short period and verification of system readiness,

an execute command is sent almost simultaneously to the publishers and they

start sending their predefined messages.

Each experiment typically takes 600 s. Several experimentsshowed that

a shorter experiment duration might include only warmup effects. Since we

observed warm-up and cool-down effects, we cut off the first and last 50 to 100 s,
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Figure 3.4:Schedule of a measurement run.

depending on the results of the system calibration. We countthe overall number

of sent messages at the publishers and the overall number of received messages

by the subscribers within the remaining 400 to 500 s intervalto calculate the

server’s rate of received and dispatched messages. For verification purposes, we

repeat the measurements several times. In most cases, if we received overall

valid measurement data within our constraints, their results hardly differ such

that confidence intervals are very narrow even for a few runs.

Messages arriving at the JMS server sent by the publishers are calledreceived

messagesand the ones sent out to the subscribers are calleddispatched messages,

respectively. The sum of received and dispatched messages is denoted byoverall

message throughput. If a message sent by one publisher is dispatched tor

different subscribers, it is replicated and sentr times by the JMS server and we

call r thereplication gradeof the message.

3.1.4 Experiment Parameter Design Space
In Figure 3.5 we depict a categorization of the different parameters, which impact

the JMS server performance. This applies also for designingand dimensioning

a JMS server deployment in practice. Each of the four main topics server uti-

lization, information granularity, network/subscriber utilization, andthroughput

represent a domain of parameters, which are either adjustable by the designer

or given by the desired application scenario. Our goal is, byusing a common

experiment design, to test each parameter in an isolated environment and vary it

within in reasonable limits.
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Figure 3.5:Parameters and tradeoffs for JMS performance.

A list of experiments is shown in Table 3.2. We start with somebasic

measurements in order to retrieve valuable input for our measurement setup,

like the impact of the number of publishers and subscribers.Since our goal is to

measure the soft capacity of the JMS servers, we had to determine the minimum

number of clients necessary to fully load the server machine.

The chosen performance measure is the overall message throughput of the

JMS server in terms of number of messages. Also the impact of avarying

message body size influences the data throughput performance. Of basic interest

is the performance impact, by enabling the filtering engine.This is done by

an experiment considering simple filters. In realistic environments, the basic

experiments help to identify the overall limits of the system. The performance

of such a system depends mostly on the amount of information asubscriber likes

to receive. This influences the complexity of the filter introduced to the system.
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Table 3.2:Overview on conducted experiments.
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Basic Experiments

Impact of publishers x x x x x
Impact of subscribers x x x x x

Impact of message size x x x x x
Impact of topics x x x

Impact of simple filters x x x x x

Complex Filtering

Impact of AND-filters x x x x x
Impact of OR-filters x x x x x
Impact of IN-filters x x

Subscription / Connection Handling

Impact of TCP connections x x
Impact of flash-crowds x x

Within the complex filtering experiments, we evaluate the joint impact of the

number of involved subscribers and the replication grade controlled by a varying

filter complexity.

In most systems, the subscribers are the dynamic elements, and the installation

and removal of filters might influence the overall system performance. A high

rate of system configuration changes, in terms of number of filters and connected

subscribers, is also known as busy-hour or flash-crowd scenario. A flash-crowd

scenario occurs typically after a system failure.

Another parameter is the observation that long running systems have an aging

behavior. We performed several long running experiments, but the impact of

the system aging is too specific for the used environment to draw some general
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conclusions. Thus, we present only results for a reasonablelong experiment run

time as described in the experiment setup. Reasonable meansthat we have to

capture all short term effects, but slow long term performance impacts are not

captured.

Since our major goal is not to compare the different vendors in a benchmarking

manner, but provide a methodology to identify bottlenecks,we did not repeat

each experiment for all considered servers.

3.2 Testing Basic System Performance

Using the experimental setup and parameters described in the previous section,

we present in this section the results of the different experiments. The objective

is to assess and characterize the impact of basic application scenarios in order

to calibrate our experiments and to obtain knowledge about the limits of the

examined JMS servers.

3.2.1 Impact of the Number of Publishers

In our first experiment, we study the impact of the number of publishers on

the message throughput. Two machines carry a varying numberof publishers

and one machine hosts a single subscriber. Figure 3.6(a) shows the received

message throughput at the JMS server in the persistent mode,i.e., lost messages

are retransmitted by the JMS server and messages are preliminarily written

on a disk for recovery purposes. FioranoMQ achieves the highest received

message throughput with32,000 msgs/s, followed by SunMQ and Bea WebLogic

with 9,500 msgs/s. ActiveMQ achieves about5,500 msgs/s received message

throughput and WebSphereMQ only1,000 msgs/s. Thus, the message throughput

spans several orders of magnitude. From the results we conclude that FioranoMQ

requires 40 publishers to achieve its maximum throughput, whereas SunMQ

and WebSphereMQ need only 5 publishers to achieve a typical throughput. For

ActiveMQ and Bea WebLogic 10 publisher threads are sufficient to generate a
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typical message throughput. We assume a measured throughput as typical if its

value is close to the maximum measured throughput and it covers a sufficiently

large interval of the examined parameter. As a consequence,we consider in the

following experiments at least 10 or more publishers.

To assess the impact of the non-persistent mode, we repeat the experiment runs

with non-persistent messages where the server does not haveto maintain a central

storage. The results are collected in Figure 3.6(b). The received throughput is

about100,000 msgs/s for FioranoMQ,13,500 msgs/s for SunMQ, and9,500

msgs/s for WebSphereMQ. ActiveMQ with21,000 msgs/s and Bea WebLogic

with 6,000 msgs/s also show an increased throughput. ActiveMQ can increase its

throughput about3.8 times, whereas Bea WebLogic can only achieve a factor of

about1.3. Thus, the message throughput is significantly increased, in particular

for WebSphereMQ. However, especially for WebSphereMQ, we observe a high

packet loss rate of about 8% under full load. All other servers discard less than

5% of the offered message load.

We repeat both experiment series at least five times and calculate the 98%

confidence intervals on this basis. They are shown for all servers in Figure 3.6.

For the persistent mode, they are very narrow for all serverswhich results from

hardly varying system conditions. For the non-persistent mode, the confidence

intervals are narrow except the ones for the FioranoMQ server, which might

be a result of the outstanding increase of throughput between the persistent and

the non-persistent mode. For our scenarios we cannot acceptmessage loss, thus

we consider only the persistent mode. We omit the presentation of confidence

levels in the following figures for the sake of clarity. Nevertheless, our internal

validation algorithm checked them after each experiment which guarantees that

our constraints are not violated.
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Figure 3.6:Impact of the number of publishers on the received message
throughput.
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3.2.2 Impact of the Number of Subscribers

Similar to the previous experiment, we investigate the impact of the number of

subscribers. To that end, we have 10 publisher threads running on one machine

and vary the number of subscribers on two other machines. Figure 3.7 shows the

received and the overall message throughput for different servers.

The received message rate, as depicted in Figure 3.7(a), decreases significantly

with increasing number of subscribersm. Considering for example the Bea

WebLogic this starts with a measured received throughput of9,500 msgs/s for

one subscriber and ends with about50 msgs/s for 320 subscribers which is

omitted in Figure 3.6(a) for the sake of clarity. All other servers observe a similar

decrease for the received message throughput. This can be explained as follows.

No filters are applied and all messages are delivered to all subscribers. Thus, each

message is replicatedm times and we gain a replication grade ofr=m for this

experiment. This requires more computational effort for dispatching messages

and increases the overall processing time of a single message. As a consequence,

the received message rate is reduced because the overall throughput capacity of

the server remains constant. Hence, the replication grade must be considered

when we compare the performance measures from different experiments.

Furthermore, it can be observed that the overall message throughput, as

depicted in Figure 3.7(b), increases for all servers to an individual maximum of

each server besides Bea WebLogic. If we consider the Bea WebLogic server, the

overall message throughput starts with a value of19,500 msgs/s and increases

it to a maximum throughput of about53,000 msgs/s for 80 to 160 subscribers.

If the number of connected subscribers is larger than 160, the overall throughput

decreases to a value of about23,000 msgs/s for 320 subscribers. According to

our monitoring tools, the server CPU is still the only bottleneck in the system.

This phenomenon can also be observed for all other server types but only to

a minor degree. The reason might be that the persistent storeof the messages

introduces additional delays beside the pure I/O accesses,which is also discussed

for ActiveMQ in the corresponding development community.
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Figure 3.7:Impact of the number of subscribers on the message throughput.
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3.2.3 Impact of the Message Size

The throughput of a JMS server can in addition to the measure in messages per

second (message throughput) be measured in transmitted data volume per second

(data throughput). The message body size has certainly an impact on both values.

A larger message payload increases the data throughput, butlarger messages

may also take more time for processing and reduce the messagethroughput.

To quantify this tradeoff, we test the maximum throughput depending on the

message size. For each server type, we use such a set up that the server achieves

a sufficiently high throughput, i.e., 10 publisher threads on two machines. We

use 10 subscriber on two machines for all servers. Figure 3.8shows the overall

throughput depending on the payload and the corresponding message body size.

The calculation of the corresponding total message size takes into account various

message headers, i.e., 40 Bytes JMS header, 32 Bytes TCP header, 20 Bytes IP

header, and 38 Bytes Ethernet header, as well as TCP fragmentation. This value

slightly varies for the different servers, since differentapplication-layer transport

protocols are used.

Figure 3.8(a) shows that an increasing message body size decreases the

message throughput and increases the data throughput significantly, as depicted

in Figure 3.8(b). For small message sizes with a body size of 0bytes, the message

throughput is limited by61,000 msgs/s for FioranoMQ and6,000 msgs/s for

WebSphereMQ. For large message bodies of16,384 bytes, the throughput is

limited by 4,400 msgs/s and2,400 msgs/s. Thus, the capacity ratio between the

server types changes. The performance degradation of the servers has different

shapes and depends also on the application scenario of the server, i.e., the number

of publishers and subscribers, the message replication grade, and the filters.

The overall consumed bandwidth is between 336 Mbit/s and 614Mbit/s for the

different servers. This is very large, but it does not yet reach the TCP transmission

limit of our network for which we measured 820 Mbit/s in both directions. In our

experiments, the default value for the message body size is set to 0 bytes. This

reduces the influence of the systems I/O performance.
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Figure 3.8:Impact of the message body size on the overall throughput.
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We observe for basic network measurements without any application interference

that smaller payloads decrease the maximum achievable network throughput. But

even with small packet sizes the network does not present a bottleneck in our

experiments. Hence, the effects of the filtering experiments are more significant.

3.2.4 Impact of the Number of Topics

Messages published to a specific topic are only dispatched toconsumers who

have subscribed to this particular topic. Thus, topics allow a very coarse form

of message selection. In this section, we evaluate the impact of the number of

topics on the message throughput for two different replication grades. In our

experiment, 10 publisher threads are installed on one publisher machine and

two machines host up to 20 subscribers. We vary the number of topics on the

JMS server. Each publisher is connected to every topic and sends messages to

them in a round robin manner. A replication grader is obtained by registeringr

subscribers for each topic. A subscriber can be registered to multiple topics at the

same time.

Figure 3.9 shows the message throughput for FioranoMQ, SunMQ, and

WebSphereMQ. Since the benefit of the message throughput results is limited

for the topic scenario, we do not repeat the measurements forActiveMQ and

Bea WebLogic. In our experiments FioranoMQ achieves the highest throughput

followed by SunMQ and WebSphereMQ. The throughput converges asymptot-

ically to a value that is specific to the message replication grade. This value

increases mostly with the replication grade. This holds true for all three server

types. The throughput limit for many topics and a replication grader = 20

amounts to28,000 msgs/s for FioranoMQ,16,000 msgs/s for SunMQ, and

4,000 msgs/s for WebSphereMQ. Installing more topics on the servers leads to a

decrease of the overall message throughput performance, which can be observed

for all three servers. Hence, topics can be used for coarse message selection

with a moderate performance loss for many topics. In particular, the impact

on message throughput is weaker for an increasing number of topics than the

message replication grade.
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Figure 3.9:Impact of the number of topics on the message throughput for
different replication grades.

3.2.5 Impact of Filter Activation

In the next experiment, we evaluate the impact of filter activation on the message

throughput. Figure 3.10 shows the overall message throughput depending on the

number of subscribers with and without filters. We used 10 publishers in all

experiments.

FioranoMQ achieves its maximum throughput for 10 subscribers, about

100,000 msgs/s for all subscribers without filters, but only36,000 msgs/s with

application property filters, which are part of the dynamic JMS message header.

We omitted the maximum throughput of FioranoMQ without filters in Figure 3.10

for the sake of clarity. ActiveMQ, SunMQ, and WebSphereMQ require both 20

to 40 subscribers to reach their maximum throughput of59,000 msgs/s,23,000

msgs/s, and11,000 msgs/s, respectively. Bea WebLogic reaches its maximum

throughput of51,000 msgs/s between 50 and 200 subscribers. In contrast to

FioranoMQ, all four competitors show only a slightly decreased capacity with
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Figure 3.10:Impact of filter activation and the number of subscribers on the
message throughput.

activated filtering. Thus, they are hardly slowed down by thefiltering engine in

this experiment. However, this finding is only valid if the message replication

grade increases with the number of subscribers, which is a rather artificial case.

In Chapter 4, we study the joint impact of filters and the replication grade for

each server type in detail. After all, we learn from these results that at least 10

subscribers are required for future experiments to get a representative value for

the maximum overall message throughput. As already argued for the number of

publisher the choice of a typical message throughput also determines the number

of subscribers for our further experiments.
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3.3 Impact of Complex Filtering

A single client may be interested in a differentiated subsetof messages which can

be distinguished by a set of application header properties.Therefore, an enhanced

filter, we call it complex filter, can be installed on the server. A complex filter

consists of multiple simple filter components connected by logical operators, like

”OR” or ”AND”. The following section evaluates the impact ofdifferent complex

filter types on JMS server throughput performance.

3.3.1 Impact of OR-Filters

If a single client is interested in messages with different application property

values a logical ”OR”-operator is required. There are two different options to get

these messages. The client sets up subscribers

(1) with a simple filter for each desired message type.

(2) with a single but complex OR-filter searching for all desired message

types.

We assess the JMS server performance for both options. We keep the replication

grade atr=1. The publishers send IDs from #1 to #n in a round robin fashion.

(1) To assess simple filters, we set up for each different ID exactly one

subscriber with a filter for that ID.

(2) To assess complex filters, we set up 5 different subscribers numbered from

0 to 4. Subscriberj searches for the IDs #(5 · i+j) with i ∈ [0; n
5
− 1]

using an OR-filter.

In this experiment we use one publisher machine with 10 publisher threads and

one subscriber machine with a varying number of subscribersor 5 subscribers,

respectively.

Figure 3.11 shows the message throughput depending onn
5

, which is the

number of components in the complex OR-filter or the number ofdifferent
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Figure 3.11:Impact of simple filters and complex OR-filters on the message
throughput for a replication grade ofr=1.

simple subscribers per client. Firstly, we observe that themessage throughput

decreases significantly for an increasing number of installed simple filters. This

is unlike in Figure 3.10 and the difference is caused by the smaller replication

grade which isr = 1 instead ofr = n. Thus, the number of filters decreases

the message throughput considerably if the messages are notforwarded to all

subscribers, which is usually intended to avoid with filters. Secondly, we observe

that complex filters lead to a larger throughput than simple filters but the extent

of the performance gain depends strongly on the server type.For FioranoMQ,

complex filters lead to a slightly larger throughput than multiple simple filters

per client.

For SunMQ, complex filters yield a performance gain of roughly 1,000 msgs/s.

For WebSphereMQ, complex filters even avoid the performanceloss that is

observed for simple filters. Thus, the handling of simple andcomplex filters by

WebSphereMQ takes the same computation effort. However, this finding holds
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doubtless only to a certain extent. ActiveMQ outperforms all other servers. The

throughput for the simple filter experiment is mostly lower than the throughput

for the complex OR filters experiment. Also for the Bea WebLogic the throughput

achieved with complex OR filters is higher than the one with simple filters, except

for 40 to 80 installed simple filters. This behavior can be explained by the results

of the basic experiments, where the maximum throughput performance is reached

at about 80 subscribers.

3.3.2 Impact of AND-Filters

In the application header part of a message, multiple properties, e.g.,P1, ..., Pk,

can be defined. Complex AND-filters may be used to search for specific message

types. In the following, we assess the JMS server throughputfor complex AND-

filters. Note that complex AND-filters are only applicable for application property

filters but not for correlation ID filters. We use one machine with 10 publisher

threads and one machine withm = 10 subscriber threads. The subscriber

machines are numbered byj∈ [1;m].

We design two experiments with different potential for optimization of filter

matching. The subscribers set up the following complex AND-filters of different

lengthn, wherePx denotes an application property:

(1) for subscriberj: P1=#j, P2=#0, ..., Pn=#0

(2) for subscriberj: P1=#0, P2=#0, ..., Pn=#j

The corresponding messages are sent by the publishers in a round robin fashion

to achieve a replication grade ofr = 1. Then in experiment (1), the filters can

already reject non-matching messages by looking at the firstfilter component.

In experiment (2) the JMS server can only reject non-matching messages by

looking at alln filter components. The experiments are designed such that both

the replication grade and the number of subscribers remainsconstant, and that

only the filter complexityn varies. To avoid any impact of different message

sizes in this experiment series, we definek = 25 properties in all messages to

obtain the same number of filter components.
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Figure 3.12:Impact of an early non-match decision for AND-filters on the
message throughput depending on the filter complexity.

Figure 3.12 shows the message throughput depending on the filter complexity

n. The filter complexity reduces the server capacity significantly for all servers

beside the WebSphereMQ. Experiment (1) yields a considerably larger message

throughput than experiment (2). Thus, an early reject decision of the filters

shortens the processing time of a message and increases thereby the server

capacity. As a consequence, programmers should care for theorder of individual

components within AND-filters: components with the least match probability

should be checked first. For WebSphereMQ, the message throughput is neither

affected by the filter complexity nor by the position of the component, which is

decisive for the rejection of a message. As a consequence, weconclude that the

filter logic of WebSphereMQ has a relatively high general filter overhead without

optimization for complex AND-filters. This holds, since simple filter expressions

take the same filtering effort as complex filter expressions,regardless of the early

reject mechanism. Again, the ActiveMQ server outperforms all other servers.
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3.3.3 Impact of IN-Filters (Presence Use-Case)

In the following experiment, we consider a more realistic scenario, the presence

use-case as described in Section 2.3.2. It considers a practical scenario where a

basic version of a presence information system is implemented. Typically, each

user participating in such an environment can be identified by a unique ID. If the

presence status of a user changes, a message will be sent containing the senders

ID as application property. All entities interested in the presence information

subscribe with a complex filter for the desired identifiers. For our experiment,

we compare two design options:

(1) considering IN-filters, where IN-filters describe a set of IDs, and

(2) a complex OR-filter searching for all IDs as complex filtercomponents.

For this experiment, we set a constant replication grade ofr = 1. We scale

the number of active users fromm = 50 up to m = 1,000. Each user is

interested in the status ofk = 5; 10; 20 other users including himself. The

number of different IDs sent by the publishers is defined bynID = m · k.

Overall, 20 publishers send messages with application properties ID=“val”,

where val∈ {“0000”, . . . , nID − 1}. If necessary, we prefix leading zeros to

the value in order to get a string of constant length. We assume that each of them

users is interested ink specific IDs. In order to balance the experiment design, we

ensure that user i is interested in the ID range[i; (i+ k − 1) mod (nID − 1)].

The experiment is conducted in two different ways by covering the interested ID

range

(1) an OR-filter, or

(2) an IN-filter

on one subscriber in order to emulate one user. The servers have to maintain at

maximum1,000 TCP connections at the same time.
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(a) Impact of OR-filters.
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(b) Impact of IN-filters.

Figure 3.13:Impact of the presence scenario on overall message throughput.
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The measurement results for Bea WebLogic and ActiveMQ in Figure 3.13

show that the overall message throughput performance of IN-filters is always

better than the one observed for the corresponding OR-filters. A major decrease

in the overall message throughput can be observed for the OR-filters when the

number of filtered usersk on the subscriber side increases. Whereas a larger set of

IDs in the IN-filter scenario leads to a small throughput decrease for ActiveMQ,

and a slight decrease of the throughput for Bea WebLogic. Ourmeasurement

results show that ActiveMQ outperforms the Bea WebLogic server by a factor

of about two. In general, we can recommend to use IN-filters insuch a presence

use-case.

In Chapter 4 we introduce various models to predict the server throughput

performance using complex OR and AND-filters. By adapting these models, a

varying replication grader can also be extrapolated for the IN-filters, respectively

the presence scenario.

3.4 Impact of Subscription Aggregation and

Registration

Besides the message throughput performance, we identified two other scenarios

of interest, the time to register a set of registrations and the impact of subscription

aggregation. Both scenarios are of interest for our experimental environment and

in real appliances. The time to register connections coverstypical flash crowd

scenarios, like observed after a failure or during businesshour. The aggregation

of subscriptions might reduce programming overhead if a single machine has to

maintain multiple virtual subscriptions at the same time.
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3.4.1 Impact of Aggregation Options for Multiple
Subscriptions

A test of the impact of different aggregation levels is performed in this section.

The JMS API offers several connection types:

(1) Network connection

(2) JMS sessions

(3) Subscriptions

Each subscriber establishes a network connection, e.g., a TCP/IP connection

to the JMS server. Several JMS sessions can be aggregated within such a network

connection. A JMS session possibly contains multiple subscriptions installed by

the client application, whereby a single subscription can hold at most one filter.

When multiple subscriptions are set up between a subscribermachine and a

server, a different number of network connections and JMS sessions can be used

to support the same number of subscriptions. In the following experiment, the

impact of different aggregation options are evaluated for4,096 subscriptions.

20 publisher threads are set up to send messages with string values from

“0000” to “4095”. On the subscriber side,4,096 different subscriptions are set

up, each of them having an application property filter for exactly one of the

above numbers to assure a message replication grade ofr=1.nsubscriptiondifferent

subscriptions are bundled into one JMS session andnsessiondifferent JMS sessions

into one network connection of whichnnetwork exist. Thus, a valid configuration

must fulfill the equationnsubscription· nsession· nnetwork=4,096. The overall server

throughput is measured for different configurations.

Figure 3.14 shows the results depending on the number of JMS sessions for

Bea WebLogic and ActiveMQ. We observe an overall message throughput for

Bea WebLogic of about800 msgs/s for all considered configurations. Hence, the

aggregation options for multiple subscriptions have a rather small impact on the

performance of Bea WebLogic. For ActiveMQ we observe a slightly different
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Figure 3.14:Impact of the aggregation of 4096 subscriptions into a different
number of TCP connections and JMS sessions on the server
capacity.

result. ActiveMQ benefits from grouping several JMS sessions. Using one JMS

session per TCP connection, the achieved message throughput is noticeable lower

than for 8 or more JMS sessions per TCP connection. This observation holds for

all numbers of TCP connections. Furthermore, the highest throughput, with a

throughput rate about 17% higher than the other configurations, is achieved with

512 TCP connections each carrying 8 JMS sessions. In general, weassume that

the impact of the aggregation options, as also observed for Bea WebLogic, can

be neglected in our experiments.

As a result for further experiments, we propose to establishfor each JMS

session a separate network connection and for each subscription a separate JMS

session. If the number of subscriptions in the experiment islarger than the number

of network connections supported by the server, several subscriptions are grouped

into one JMS session.
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3.4.2 Evaluation of the Registration Time for
Subscriptions

In this section, we investigate the time duration which is needed to register

different numbers of subscriptions. This is a crucial aspect since the registration

of new subscriptions costs processing power. Furthermore,in case of flash

crowds, i.e., of multiple simultaneous subscriptions, theresponse time of the

server depends on the time needed to register the subscriptions. This is an

important issue if we consider the so-called failover scenario described in [114].

In this scenario the message server, to which all clients areconnected, fails and

all clients have to reconnect to a backup server.

Scenario with Inactive Publishers

To observe the impact of the subscription process itself, westudy first a scenario

where subscribers register to the JMS server, but the publishers do not send

messages. In general, the registration of a subscription istriggered at the

subscriber by calling the synchronoussubscribe()method. The subscription is

successfully performed from the point of view of the subscriber by the time the

method finishes. However, the JMS API states that it is not guaranteed that the

subscription is already active on the server at that time. Inthe experiments, the

registration of all subscriber threads is started simultaneously and we measure

the timetreg until the last thread returns from thesubscribe()method call. Three

different types of filters are considered in the experiments

(1) two simple filters,

(2) OR-filters with two components, and

(3) IN-filters with two components.

The experiment is performed for ActiveMQ and Bea WebLogic with

m ∈ {128; 512, 1,024; 2,048; 4,096; 8,192; 16,384; 32,768; 65,536} subscrib-

ers. The subscribers are run on up to 4 different machines to avoid a CPU
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bottleneck on any of the subscriber machines. For each filtertype, the experiment

was repeated five times. The results of the different runs arevery similar such that

the resulting confidence intervals are very small. However,they are omitted in the

following figures for better readability.

Figure 3.15(a) shows the overall time to register all subscribers. The reg-

istration time scales almost linearly with the number of subscribers for Bea

WebLogic. The overall subscription registration time for ActiveMQ server

increases slightly more than linear. On the one hand, the graph shows that

the registration of a large set of subscribers takes up to several seconds for

Bea WebLogic and up to several minutes for ActiveMQ. On the other hand, a

significant difference cannot be observed for the subscription times of different

filter types.

Figure 3.15(b) illustrates the average time for the registration of a single

subscription, i.e.,treg

m
. For Bea WebLogic this duration decreases with an

increasing number of subscriptions and finally converges toa value of 0.6

ms. This result is counter-intuitive at first sight. However, for a small number

of subscribers, a measurement overhead is observable. For alarge number of

subscribers the results are more reliable. Another reason might be, that it takes

more time to install the first subscriptions. Until the internal data structures are

large, the internal overhead increases to maintain the internal data structures. We

can also observe the same behavior for ActiveMQ up to4,096 subscribers. With

more simultaneous subscribers, the time to register a single subscription clearly

increases again for the ActiveMQ server.
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Figure 3.15:Time to register simultaneously starting subscriptions with inactive
publishers.
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Thus, only for Bea WebLogic we can notice that the registration time for a

filter does not increase with the number of already existing subscriptions. Again,

no significant difference is observed among different filtertypes, except the

impact of simple filters on the registration time for ActiveMQ.

Scenario with Active Publishers

We perform a similar experiment with active publishers, i.e., publishers sending

messages that are not matched by already registered subscriptions. Hence we set

a replication grade ofr=0. This works well with the ActiveMQ server, but the

experiment cannot be conducted with the BEA WebLogic JMS server: the server

server stops accepting new subscriptions and blocks publishers from sending and

never returns to its normal operation without displaying any failure notifications.

Thus, we focus on the results for the ActiveMQ server.

Figure 3.16 shows a different representation of the measured data. The figure

considers on the x-axis the experiment run time and depicts on the y-axis the

observed received message throughput. During a single measurement run, one of

m∈{128; 512; 1,024; 2,048; 4,096; 8,192; 16,384} subscriptions with a simple

filter are connected to the ActiveMQ server. The figure shows clearly the warm-

up phase and the stable throughput conditions before the experiment starts. After

this point in time the received throughput clearly decreases, but the shape remains

remarkably constant for all numbers ofm. If the desired number of subscriptions

is reached, we can observe a slight impact of internal rearrangements of the

JMS server, while it eventually converges to a certain levelof received message

throughput. Several repetitions of the same experiment runlead to the same

result, so we again can omit the confidence intervals. We haveto keep in mind

that the y-axis is scaled logarithmic, so the stable phase ofm = 16,384 is still

reached at about 200 msgs/s.

With about 230 s for installingm=8,192 subscribers, the scenario with active

publishers is an order of magnitude slower than the one with inactive publishers,

where it took about 10 s to connect.
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Figure 3.16:Impact of number of parallel subscriptions on received throughput.

The time to register a single subscription is in the order of milliseconds. As

a consequence, the registration of large set of subscriptions may take several

minutes. This is a critical issue for failover cases.

Evaluation of the First Message Delay

In a realistic scenario, the currently connected subscribers also receive messages,

while new subscription registrations arrive at the JMS server. The experiment

conducted in this section considers a constant rate of new subscription registra-

tion arrivals while dispatching messages to the already connected subscribers.

We monitor the delayttts between the start of the registration request and

the finished subscription. A subscriber is registered, whenthe subscribe()API

method execution is completed. Additionally, we monitor the delaytfma between

completion of thesubscribeAPI method and the time until the first message

arrives at the newly registered subscriber. There are different ways a JMS server

can handle new subscriptions. It can accept a new subscription and return as
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fast as possible to block the subscriber for a minimum amountof time. This

might lead to an internal queue of registration requests, where we assume that

tfma differs from ttts. Otherwise, the subscriber can block until all internal data

structures are fully updated, which becomes difficult in distributed JMS server

environments. Hence, the execution of thesubscribe()API method does only

guarantee that the connection between the subscriber and the JMS server is

established. But a subscribers registration process at theJMS server cannot be

assumed as successfully completed until the first successful message delivery.

The delay between a successful return of the API method and the first message

is a crucial aspect, since the subscriber assumes it is connected, but in reality it

experiences message loss.

In order to quantify the delay betweenttts andtfma we designed an experiment

considering realistic conditions. We connect 20 publishers to the ActiveMQ

server. Each publisher sends messages in saturated mode with a unique appli-

cation property set and a property to identify the sending publisher. Thus, we

assume that at any point in time, a message is available on theJMS server

for dispatching, by using internal monitoring capabilities of the JMS server.

Furthermore, we can measure which messages are available for dispatching on

the JMS server for a new arriving registration. This allows us to calculate the

number of lost messages. We connect up to 320 subscribers, each using a simple

filter for a unique application property. In order to balancethe experiment and to

avoid discarding messages, each unique application property is filtered by up to

16 subscribers. Also the subscribers register for the unique properties in a round

robin fashion. The inter-arrival time of the registrationsis set to a constant delay

of 2 seconds, which is larger than the maximum observed single registration time.

In Figure 3.17 thecomplementary cumulative distribution function(CCDF) of

the observed single registration delay timestsub
reg is plotted. The single registration

timettts increases for the subscribers exponentially. The delay to the first message

arrival tfma increases similar to the single registration time. Overall, more than

10% of the registrations take longer than 500 ms. The delay between the

successful registration and the first message has an averageof 56 ms for our
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Figure 3.17:ActiveMQ: Delay between a single registration and detecting the
first message.

scenario. During this period of time we measured an average loss of about

100 messages in our saturated scenario. We can conclude thatan application

considering a high rate of registrations has to consider lost messages or to

establish a synchronization mechanism between the communicating partners,

especially for a failover scenario and in distributed JMS server environments.

3.5 Concluding Remarks

In the preceding chapter, we measured and evaluated the message throughput of

the FioranoMQ, SunMQ, WebSphereMQ, Bea WebLogic, and ActiveMQ JMS

servers under various conditions. The introduced testbed and the measurement

methodology enables a reliable and controllable measurement based evaluation

of all kinds of servers. We also present a set of basic measurements, i.e., the client

scalability, data and message throughput, and message selection to identify the
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impact on the measured middleware environment and their performance limits.

The enhanced measurements show that the throughput clearlydepends on the

replication grade and the number of filters and their complexity. The measured

throughput performance for the five investigated server types spans over several

orders of magnitude.

The next chapter introduces a rather complex experiment series based on the

results of the experiments presented in this chapter. The goal is to evaluate the

joint impact of filters and the message replication grade by measurement and to

propose mathematical approximation models of the message processing time for

each server type. Using these models, we can predict the message throughput for

specific application scenarios and can omit dedicated measurements.
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Middleware

In natural sciences it is common to observe and measure physical systems and

to describe the results with an abstract model. Depending onthe system this

model can be very complex. If we consider software packages,the number of

implemented methods, features, and their interdependencies may have a major

influence on the overall performance of the software package.

Our approach to retrieve a rough model for system performance throughput

estimation is divided into the following major steps:

1. Design and run a set of experiments, which supports the understanding of

the system.

2. Based on the results of this experiment, apply a model which follows the

set of chosen parameters.

3. Calculate the system specific parameter set by multiple regression and

least squares approximation.

4. Validate the model by applying the calculated system values using

additional measurement runs.

Using this approach we are able to find a rough estimating model for all JMS

servers. We can even extend the models in order to cover additional aspects by

varying the design parameters of the experiments.
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We know from the filter activation experiment in Section 3.2.5 and the

complex filter experiments in Sections 3.3.1 and 3.3.2 that different numbers

of installed filters and the replication grade have a major impact on the server

capacity. Therefore, we start with an experiment series setup such that we can

study the joint impact of filters and replication grade on themessage throughput.

As a result, we propose a simple analytical model to describethe dependencies

and fit the model parameters to the measurement data.

Furthermore, the impact of different filtered properties such as correlation

ID filters and application property filters are evaluated. For the SunMQ and the

WebSphereMQ servers an adapted model is proposed, since their behavior cannot

be modeled using our basic assumption. In addition, for the ActiveMQ server, we

present an extended model, which considers not only different filter types and but

also lengths to the simple filters evaluated for the other servers.

This chapter starts with a general introduction to multipleregression and least-

squares approximation in Section 4.1. In Section 4.2, a basic model is introduced

and evaluated for several JMS servers. Since this model is not valid for all servers,

we show some adapted models for the WebSphereMQ and the SunMQserver in

Section 4.3. Due to the fact that the first experiments do not consider a complex

filter scenario, we enhance our basic model and validate it for the ActiveMQ

server in Section 4.4. The concluding section presents an application of the

evaluated models and some remarks on the results.

4.1 Background: Multiple Regression and

Least-Squares Approximation

Linear regression is a method of modeling a dependent variable Y as a function

of a single variablex and is used in our approach to calculate the system specific

parameters, which characterize the performance of a certain JMS server. In

systems with increased complexity we have to use multiple variablesx1, . . . , xn.

If these variables are independent and the response on each variable can be

78



4.1 Background: Multiple Regression and Least-Squares Approximation

modeled by a linear influence, the dependent variableY can be written more

generally as a set ofi functions consideringn independent variables

Yi = β0 + β1xi,1 + β2xi,2 + . . .++βnxi,n + ǫi, (4.1)

where the errorǫi is a variable with mean zero and varianceσ2. The mean

E [Yi] = β0 + β1xi,1 + β2xi,2 + . . .+ βnxi,n (4.2)

of the multiple linear regression model is defined such that it is also a linear

function of regression parametersβ0, β1, . . . , βn.

To fit the model, we associate a least-squares function derived from Equa-

tion (4.1), which has to be minimized with respect toβ0, β1, . . . , βn:

L =

i
∑

k=1

ǫ2k =

i
∑

k=1

(

yk − β0 −
n
∑

j=1

βjxkj

)2

(4.3)

Using multiple regression models, it is convenient to use the related variables and

operations in matrix notation. Hence, Equation (4.1) can betransformed to

Y = Xβ + ǫ. (4.4)

In general,Y is an (i × 1) vector of the observations,X is an (i× n) matrix of

the levels of the independent variables,β is a (n × 1) vector of the regression

coefficients, andǫ is an (i× 1) vector of random errors:
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The vector of least-squares estimators is searched, which minimizes

L =

i
∑

k=1

ǫ2k = ǫ′ǫ = (y −Xβ)′(y −Xβ). (4.5)

The problem stated in Equation (4.5) can be reformulated using the Euclidean

vector norm. The Euclidean vector norm for vector x is definedas

‖x‖2 =

√

√

√

√

n
∑

i=1

|xi|2. (4.6)

With the Euclidean vector norm, the minimization problem tobe solved using

Equation (4.5), is

min
β

‖Xβ − y‖2 . (4.7)

One problem with the solutions provided by the above described approach

is that negative values might be valid solutions and represent a “best fit”. In

statistics, the problem can be divided in several classes oflinear least-squares

problems that have to meet additional inequality constraints. A very common
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class consists of those with non-negativity constraints. In this work, we calculate

overhead times, which means that the regression coefficients, by definition, can

only have non-negative values. This problem is known as thenon-negative least-

squares(NNLS) problem and can be formulated as

min
β

‖Xβ − y‖2 (β ≥ 0). (4.8)

The Nonnegative Least Squares problem is a standard problemin numerical

linear algebra [111], [128]. A number of commercial [147], [148], [142],

and open source libraries [64] provide approximation algorithms to solve the

problem.

In our work, we use theLSQNONNEGfunction of the MATLAB software suite

[142]. The algorithm starts with a set of possible basis vectors and computes the

associated dual vectorλ. It then selects the basis vector corresponding to the

maximum value inλ in order to swap out of the basis in exchange for another

possible candidate. This continues untilλ ≤ 0. LSQNONNEGuses the algorithm

described in MATLAB documentation [128].

The least-squares approximation is only one possible statistical method for

fitting. The method of maximum likelihood can be used as well.However,

it can be shown that the least squares estimates of the regression parameters

β0, β1, . . . , βi are maximum likelihood estimates. Thus, we decided to calculate

only the least-squares approximation.

4.2 Modeling the Server Capacity

In the following sections, we present and evaluate performance models for

the servers measured in Chapter 3. In general, the section isstructured as

follows: We describe the experiment series for the desired server, suggest a

suitable mathematical approximation model for the server throughput, and fit the

corresponding model parameters. The evaluation is concluded by a validation of

the proposed model.
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Figure 4.1:Motivation for the modeling process.

4.2.1 Performance Model for the Message Processing
Time

As identified in Chapter 3, the maximum message throughput ofa JMS server

can be used as a measure. Thus, it is interesting to model thismeasure to design

or dimension a real-world system. Our goal is to present a setof key performance

indicators for a JMS server in combination with an analytical model. This

approach reduces the effort for dimensioning the performance of new hardware

and application scenarios, by reducing the necessary measurement points for

calibration. The focus on certain critical parameters, which can be adapted to the

application scenario, differs our approach from pure benchmarking. Therefore,

the following assumptions have to be made.

We assume first, based on the results of our measurements, that the processing

time of the JMS server for a message consists of three components. As depicted

in Figure 4.1, the overall system consists of three parties,the publisher, the

subscriber, and the JMS server itself as relaying element. The internal processing

of the server can be divided into three partitions. On message arrival, the server

has to move this message to an internal queue. Another process proceeds with the

message filtering task. After the filter evaluation, the server has to dispatch each

message to the desired subscriber, which might also be seen as a separate task.

The experiences from the measurements show that the messageprocessing can
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Figure 4.2:Basic model for the system utilization at the JMS server.

be assumed as an independent process for each message. Thus,we can aggregate

the waiting space. This leads to an overhead time model as depicted in Figure 4.2.

For each processed message, there is

• a fixed timetrcv which is almost independent of the number of installed

filters for a constant message size.

• a fixed timetfltr, which the JMS server needs to evaluate if a filter matches

a message. If there arenfltr filters installed on the server, the time needed to

match all filters isnfltr ·tfltr. This value depends on the application scenario.

• a fixed time ttx to forward a message. It depends on the message

replication grader. The time to forward a message to all recipients is

r · ttx, which corresponds to the time the server needs to forwardr copies

of the message.

Combining the described parameters leads to the following message processing

timeB:

B = trcv + nfltr · tfltr + r · ttx. (4.9)

Within time B, one message is received andr messages are sent on average.
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Therefore, the received and overall throughput can be calculated by 1
B

and r+1
B

,

respectively.

We call the model in Equation (4.9) our “base model”. Not all servers follow

the linear scale in the same way as our base model proposes. Inthe next section,

we first evaluate a separate validation of the model for the FioranoMQ, the Bea

WebLogic, and the ActiveMQ JMS server, where the base model applies.

4.2.2 FioranoMQ

The observations from the FioranoMQ server inspired major parts of the

presented model. Thus, we start our evaluation and validation of the previously

introduced model using this server. Different measurementseries for calculating

the parameters and verifying the model are conducted. The following section

starts with a description of the measurement series setup and results gained from

the measurement runs. The results are validated in a separate section.

4.2.2.1 Experiment Setup and Measurement Results

The overall testbed setup includes three measurement machines, one as a

publisher, one as a subscriber emulating machine, and a dedicated FioranoMQ

server machine. The following experiments include experiments for correlation

ID and application property filtering. Both parameters are part of the JMS

message header, where the correlation ID is part of the fixed header and the

application property is part of the user-defined header area. We expect that

the correlation ID filtering is close to the maximum achievable performance

by a specific server, whereas the application properties will represent the

more realistic scenario. A detailed introduction to the JMSheader is given in

Section 2.2.

Five publishers are connected to the JMS server and send messages with

correlation ID #0 or application property value #0 in a saturated way. Further-

more,madd
subs+r subscribers are connected to the JMS server,r of them filter for

application property value #0, while the othermadd
subs subscribers filter for value
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#1. Hence,madd
subs+r filters are installed altogether. This setting yields a message

replication grade ofr. We choose replication grades ofr ∈ {1; 2; 5; 10; 20; 40}
andmadd

subs ∈ {5; 10; 20; 40; 80; 160} additional subscribers. The scenario with

n = 0 is covered by the filter activation experiment.

Table 4.1:FioranoMQ: Empirical values for the model parameters of themessage
processing time in Equation (4.9)

parameter trcv (s) tfltr (s) ttx (s)

corr. ID filtering 8.52 · 10−7 7.02 · 10−6 1.70 · 10−5

app. prop. filtering 4.10 · 10−6 1.46 · 10−5 1.62 · 10−5

Figures 4.3(a) and 4.3(b) show the received and overall message throughput

for application property filters depending on the number of installed filters

nfltr = madd
subs+ r and on the replication grader. The solid lines depict the

measured throughput. An increasing number of installed filters obviously reduces

the message throughput of the server. An increasing replication grade decreases

the received message throughput, but it increases the overall message throughput

of the server to a certain extent. We obtain similar measurement curves with about

100% more throughput for correlation ID filters. Since the shape of the curves is

identical we skipped the corresponding figures. In addition, we conduct the same

experiment series with themadd
subsnon-matching filters set to #1, . . . , #madd

subs. They

lead to the exactly same results as in Figures 4.3(a) and 4.3(b). Thus, we cannot

find any throughput improvement if the same filters are used instead of different

filters. This implies that the model can also be used to predict the performance in

scenarios where different filters are used, which might be more realistic.

4.2.2.2 Validation of the Model by Measurement Data

The results in Figures 4.3(a) and 4.3(b) visualize the received and overall

throughput. Within timeB, one message is received andr messages are

dispatched by the server. Thus, the overall throughput is given by r+1
B

and

corresponds to the measurement results in Figure 4.3(b).
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(b) Overall message throughput – measurements and analytical data.

Figure 4.3:FioranoMQ: Impact of the number of filtersnfltr and the message
replication grader.
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The parametersnfltr regarding the number of installed filters andr regarding

the replication grade used for the message processing time in Equation (4.9) are

known from the respective experiments. We fit the parameterstrcv, tfltr, andttx by

the least squares approximation described in Section 4.1 toadapt the linear model

in Equation (4.9) to the measurement results. The resultingparameter values are

compiled in Table 4.1 for correlation ID and application property filters. The

time tfltr to filter a message is of an order of magnitude faster for correlation ID

filtering than processing application property filters. Since correlation IDs are

part of the fixed header, the internal filtering can process these kind of messages

more efficiently. This behavior might also lead to an improved message receiving

time trcv, whereas the time to dispatch a messagettx remains constant. The

improvement of thetrcv by an order of magnitude is also caused by the multiple

regression method, which tends to prefer the first regression parameter. But this

does not affect the quality of our performance evaluation.

We calculate the message throughput based on these values and Equation (4.9)

for all measured data points, and plot the results with dashed lines in Fig-

ures 4.3(a) and 4.3(b). The throughput from our analytical model fits very well

with our measurements for all numbers of filtersnfltr and all replication gradesr,

considering the result as a rough estimation of the overall system performance.

Additionally measured data points in the defined range, which are not considered

in the regression process, enabled a double check of the quality of the model.

4.2.3 BEA WebLogic Server

The server configuration for the following validation of theBea WebLogic is the

same as described in Section 3.1.2.

4.2.3.1 Experiment Setup and Measurement Results

We set up 20 publishers on a single machine, which send only messages with

ID #0 to the server. According to our observations in the experimental chapter,

this increased number of publishers is necessary to saturate the JMS server. To
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achieve a message replication grade ofr, we set upr subscribers with a filter

for ID #0. Furthermore, we installmadd
subs ∈ {5; 10; 20; 40; 80; 160} additional

subscribers with a filter for ID #1. Thus, the overall number of subscribers or

filters on the server isnfltr = madd
subs+ r. We vary this number of subscribers

equally distributed over two subscriber machines. Since one physical machine

might present a bottleneck, we increased the number of subscriber machines.

Figures 4.4(a) and 4.4(b) show the results for complex application property

filters for different settings ofnfltr and r. Both the received and the overall

throughput slightly decrease with an increasing number of filters. However, the

message replication grader has a larger influence on the throughput. Again, an

increasing replication grade decreases the received throughput while it increases

the overall throughput.

We also conduct another experiment where themadd
subs additional filters are

different, but we obtain exactly the same results as in Figures 4.4(a) and 4.4(b).

Hence, the BEA WebLogic JMS server does not take advantage ofsame filters in

the system. Furthermore, we perform the same experiment series for correlation

ID filters and the results showed a slightly larger throughput, but the throughput

curves are qualitatively similar. Therefore, we omitted the figures.

4.2.3.2 Validation of the Model

Again, we derive the values fortrcv, tfltr, and ttx by the least-squares approxi-

mation based on the model in Equation (4.9) and the experimental results for the

received throughput for all parameter combinations ofnfltr andr. Table 4.2 shows

the obtained model parameters for both application property and correlation ID

filters.

Table 4.2:Bea WebLogic: Empirical values for the model in Equation (4.9).

parameter trcv (s) tfltr (s) ttx (s)

corr. ID filtering 7.6239 · 10−5 3.1410 · 10−7 1.6944 · 10−5

app. prop. filtering 8.0182 · 10−5 5.3332 · 10−7 1.7319 · 10−5
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Figure 4.4:Bea WebLogic: Joint impact of the number of installed filtersand the
replication grade on the message throughput for application property
filters.
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We use these parameters to analytically calculate the throughput for the same

parameters sets as in the experiments in Section 4.2.3.1 anddraw the results as

dashed lines in Figure 4.4(a) and Figure 4.4(b). The analytical throughput is

similar to the measured data for the evaluated parameter range. Looking at the

received throughput, the model tends to underestimate the number of received

messages for lower values ofr, but is still a good estimator of the overall system

performance.

4.2.4 Apache ActiveMQ
The configuration of the ActiveMQ server is also used withoutany modifications,

as described previously in the experimental chapter.

4.2.4.1 Experiment Setup and Measurement Results

The publishers send only messages with ID #0 as a property in the application

property part. To achieve a replication grade ofr, we set upr different

subscribers, which filter for ID #0. We used the same values for r, nfltr , and

madd
subsas in the previous experiments. The measurement runs are conducted with

20 publisher threads on one publisher machine and with a variable number of

r+madd
subssubscribers equally distributed over two subscriber machines.

The solid lines in Figure 4.5(a) and Figure 4.5(b) show, thatthe measured

received and overall throughput slightly decreases for an increasing number of

installed filtersnfltr for the above described experiments. The message throughput

is also clearly influenced by the message replication grader. To illustrate this

effect, we provide in Figure 4.6(a) and Figure 4.6(b) an alternative presentation

of the same data with the replication grade on the x-axis and separate curves for

the number of additional non-matching filters. Figure 4.6(a) and Figure 4.6(b)

show that the received throughput decreases and the overallthroughput increases

with an increasing replication grade. Comparing Figure 4.5(a) and Figure 4.5(b)

with Figure 4.6(a) and Figure 4.6(b) leads to the conclusionthat the impact of the

message replication grade on the message throughput is larger than the impact of

the number of installed filters.
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Figure 4.5:ActiveMQ: Joint impact of the number of installed filters andthe
replication grade on the message throughput for application property
filters.
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The before observed effect becomes obvious when the replication grade

increases tor = {20, 40}. At this point the observed overall throughput

decreases again, which might be caused by another system bottleneck. We cannot

specify the bottleneck with the considered parameters. Since the CPU utilization

in all scenarios is close to 100% there might be another I/O bottleneck, e.g., the

hard disk performance.

Table 4.3:ActiveMQ: Empirical values for the model parameters of the message
processing time in Equation (4.9).

parameter trcv (s) tfltr (s) ttx (s)

corr. ID filtering 4.58 · 10−5 1.46 · 10−7 1.64 · 10−5

app. prop. filtering 4.88 · 10−5 1.62 · 10−7 1.54 · 10−5

The throughput is the same, regardless if we use the same or different filters

that do not match. For this server implementation each filteris evaluated, without

considering that the same filter has to be evaluated multipletimes. The same

experiment for correlation ID filters leads to very similar results and therefore we

omitted showing the results in detail.

4.2.4.2 Validation of the Model by Measurement Data

The curves for replication grader = 20 and r = 40 do not follow the trend

of the curves for replication gradesr ∈ {1; 2; 5; 10}. Therefore, we consider

only the experiments with replication gradesr∈{1; 2; 5; 10} in the least squares

approximation and obtain the model parameters printed in Table 4.3. We use

these parameters to calculate the analytical throughput which is illustrated in

Figures 4.5 and 4.6 by dashed lines. For small replication gradesr = {1; . . . ; 10}
the analytical throughput is in good accordance with the measured throughput.

We also evaluated the performance of the correlation ID filters. However, we

measured only slightly different values for the message throughput and we can

therefore omit a rather complex model.
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Figure 4.6:ActiveMQ: Impact of the replication grader and the non-matching
additional filters on the throughput.
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As mentioned above, the capacity curves for message replication grades

r = 20 andr = 40 in Figure 4.5(b) are lower than expected from an intuitive

extrapolation of the other curves. The reason for this observation might be a

maximum internal transmission capacity of the server such that the server CPU is

no longer the limiting criterion. For the FioranoMQ and the Bea WebLogic server

we do not encounter such a phenomenon since the overhead of these servers

for message filtering was significantly larger than the one for ActiveMQ. As a

consequence, the transmission capacity of the FioranoMQ and the Bea WebLogic

was sufficient even for a large message replication grade ofr=40. However, we

expect to observe similar saturation effects for all servers, if we further increase

the message replication grade in this experiment series.

Besides the observation that another parameter might limitthe modeling

capabilities, as seen for the ActiveMQ, there are other server implementations,

which have a completely different internal message processing strategy. The

next chapter introduces adapted models for the SunMQ and theWebSphereMQ

server.

4.3 Adapted Performance Models

For the SunMQ and the WebSphereMQ server, the basic model does not apply.

Several measurements showed a clearly different behavior.Therefore, we decided

to evaluate separate models for the two server types. In general, this approach

shows the ability to enhance our procedure to unknown or maybe updated

server behaviors. This is also a clear difference to basic benchmarking, since

our approach supports to understand and identify possible system bottlenecks,

whereas pure benchmarking leads only to a comparative measure.

4.3.1 SunMQ: Increased Impact of Different Filters
From our previous measurements we observed some kind of filter optimization

behavior. In order to verify and evaluate this behavior we adapted the experiment

design and the model for SunMQ, which leads to an increased complexity in the

model. The configuration for the SunMQ server is described inSection 3.1.2.
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4.3.1.1 Experiment Setup and Measurement Results

First, we performed the same experiment series as in the previous sections for

SunMQ and found out that it matters whether non-matching filters are the same

or different. Thus, we redesign the experiment series in such a way that we can

study the impact of the replication grader, the number of different filtersndiff
fltr ,

and the number of overall installed filtersnall
fltr on the message throughput. The

publishers send only messages with value #0. To achieve a replication grade of

r, we set upr subscribers with a filter for value #0. Furthermore, we install nadd
diff

other different filters for values from #1 to #nadd
diff . We set up these additional

filters fr times and callfr the filter replication factor in this experiment. For

our experiments we use the following values forr ∈ {1; 2; 5; 10; 20; 40},

nadd
diff ∈ {1; 2; 5; 10; 20; 40; 80; 160}, andfr ∈ {1; 2; 4; 8}. Overall we installed

5 publisher threads and varied the number ofr+(nadd
diff · fr) subscriber threads

accordingly.

Figures 4.7 and 4.8 show the received and overall message throughput for this

experiment series. The server capacity clearly decreases for an increasing number

of different filtersnadd
diff . An increasing message replication grader reduces the

received message rate, but it increases the overall messagerate. The four related

figures differ with a varying filter replication gradefr, but they look very similar

at the first spot. The impact of the number of all filtersnall
fltr = r+(nadd

diff · fr) is

clearly visible when we compare the right margins of the figures since the number

of all filters only differs significantly if the number of additional different filters

nadd
diff is large. Thereby, we observe that using the same filters alsoreduces the

throughput even though they do not match.

4.3.1.2 Modeling the Message Processing Time

The message processing time is the inverse of the received message throughput.

Figure 4.7 shows that it depends on the number of additional filtersnadd
fltr , the filter

replication factorfr, and the replication grader. We propose a simple model for

the message processing timeB that relies on all filtersnall
fltr = r+(nadd

diff · fr) and
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the number of different filtersndiff
fltr =nadd

diff +1:

B = trcv + nall
fltr · tall

fltr + ndiff
fltr · tdiff

fltr + r · ttx. (4.10)

The parametertrcv is still the fixed time overhead for each received message.

The filtering effort increases linearly with the number of all filters nall
fltr and the

time to check a single filter istall
fltr. Different filters impose an extra overhead of

ndiff
fltr · tdiff

fltr . Finally, ttx describes the time to dispatch and to send a single message

for a matching filter.

4.3.1.3 Validation of the Model by Measurement Data

The results in Figure 4.7 show the overall throughput regarding received and sent

messages. The parametersndiff
fltr , nall

fltr, andr for the message processing timeB

are known from the respective experiments. Again, we can fit the parameters

trcv, tall
fltr, t

diff
fltr , andttx by the least squares approximation to adapt the model in

Equation (4.10) to the measurement results. The results arelisted in Table 4.4 for

application property filters.

Table 4.4:SunMQ: Empirical values for the model parameters of the message
processing time in Equation (4.10).

parameter trcv (s) tall
fltr (s) tdiff

fltr (s) ttx (s)

app. prop. filtering 1.12 · 10−4 2.20 · 10−6 1.76 · 10−6 4.01 · 10−5

We calculate the message throughput based on these values and Equa-

tion (4.10) for all measured data points, and plot the results with dashed lines

in Figures 4.7 and 4.8. With the proposed adaption in the model the throughput

from our analytical model fits well with our measurement results.

Thus, only the extra effort for different filters differs from the basic model.

So we assume that the main difference between the servers following the basic

model and the SunMQ is the internal filter evaluation strategy.
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(b) Filter replication gradefr =2.
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(c) Filter replication gradefr =4.
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Figure 4.7:SunMQ: Impact of the number of different filtersndiff
fltr and the

message replication grader on the received message throughput for
different numbers of additional identical filters.
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(c) Filter replication gradefr =4.
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Figure 4.8:SunMQ: Impact of the number of different filtersndiff
fltr and the

message replication grader on the overall message throughput for
different numbers of additional identical filters.
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4.3.2 WebSphereMQ: Impact of Filtering Dominates
Dispatching

The WebSphereMQ requires a substantially different model for the message

processing time compared to the basic model, e.g., applied to FioranoMQ, and

the one presented for SunMQ.

4.3.2.1 Experiment Setup and Measurement Results

We set up the same series of experiments as for the FioranoMQ in Section 4.2.2.1.

Figure 4.9(a) shows the received message throughput depending on the number of

installed filtersnfltr = madd
subs+r and on the replication grader. The solid lines show

the measured throughput. An increasing number of filters reduces the received

message throughput of the system which is independent of thereplication grade

for the considered scenarios. This is different to the results found for the servers

following the basic model in Section 4.2.1, like for FioranoMQ. It is even

different from the one applied for SunMQ in Section 4.3.1.1.We assume, that

this observation results from a dominating filter processing time in comparison to

the time to transmit a message. Figure 4.9(b) shows the resulting overall message

throughput. It decreases also with an increasing number of filters, but it rises with

the replication grade. We have performed the same experiments for correlation

ID filters, too, and obtained the same measurement results. Thus, correlation ID

and application property filters lead to the same throughputboth for SunMQ and

WebSphereMQ.

4.3.2.2 A Simple Model for the Message Processing Time

Figure 4.9(a) shows that the message processing time depends only on the

number of filtersnfltr. In contrast to the servers following the basic model and

SunMQ, it does not depend on the replication grader. Thus, the time to send

messages is obviously so small that it is not noticeable for areplication grade of

up tor=40.
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(a) Impact of the number of filters on the received throughput.
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Figure 4.9:WebSphereMQ: Impact of the number of filtersnfltr and the
message replication grader on the received message throughput –
measurements and analytical data.
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Table 4.5:WebSphereMQ: Empirical values for the model parameters of the
message processing time in Equation (4.11).

parameter trcv (s) tfltr (s) ttx (s)

app. prop. filtering 7.03 · 10−4 1.02 · 10−5 0.0

A linear model like for the other servers does not work for theapproximation

of the measured results. Therefore, we propose the following model for the

message processing timeB:

B = trcv + nfltr ·
√

(nfltr) · tfltr + r · ttx . (4.11)

The parametertrcv is a fixed time overhead for each received message. The

filtering effort affects the processing time with a supplement ofnfltr ·
√

(nfltr)·tfltr.

Hence, it increases more than linearly with the number of installed filtersnfltr .

4.3.2.3 Validation of the Model by Measurement Data

As mentioned in Section 4.2.1, the received and the overall throughput can be

analytically calculated by1
B

and r+1
B

. Again, we adapt the model parameters

trcv, tfltr, andttx in Equation (4.11) by a least squares approximation and obtain

them for the values in Table 4.5. As a characteristic for the WebSphereMQ, the

result for the time to dispatch a message is a very small value. Therefore, we

neglect it in our further evaluations and assume it as zero.

We calculated the received and overall throughput for all measured data points

based on these values and Equation (4.11), and plot them withdashed lines in

Figures 4.9(a) and 4.9(b). The throughput from our analytical model corresponds

very well with our measurement data for all numbers of filtersnfltr and all

replication gradesr. The model predicts the overall message throughput of the

server quite accurately for a wide range of realistic valuesfor the parametersnfltr

andr.
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As observed for the basic model, for higher replication grades than the

one considered in the experiments, other parameter values might limit the

server throughput performance. Thus, we can observe this behavior for the

WebSphereMQ for replication grades larger thanr = 80. To capture additional

bottlenecks we propose an extension of our models in the nextsection.

4.4 Performance Model Considering Complex

Filtering

Our main objective in this section is to characterize the impact of different filter

types on the message throughput. We focus on three differentkind of filter types:

simple filters, complex OR-filters, and complex AND-filters.For all experiments

we use one dedicated ActiveMQ JMS server machine. The ActiveMQ server is

chosen due to its open source character. In case of faulty behavior, we are able to

track the errors down, whether it is a measurement artefact or a software error.

Filters evaluate user defined message headers where we set searchable String-

Properties as application properties. We use for the StringProperties a String

representation of four digit numbers with potentially leading zeros. The following

experiments are based on a common principle. The publisherssend messages

with a certain header value andnpos
fltr subscribers filter for this value such that

each message is replicatedr = npos
fltr times. The additionalnneg

fltr filters do

not match, but they cause additional workload on the server.Thus, altogether

m = npos
fltr + nneg

fltr subscribers are connected to the server and they are distributed

over two subscriber machines.
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4.4.1 Complex Filter Design Options

In the following, we describe the arrangement and experiment configuration for

the investigation of simple filters, complex OR-, and complex AND-filters.

Simple Filters

We already examined the impact of simple filters in Section 3.2.5 with the

following experimental setup. The publishers send only messages with ID #0. As

depicted in Figure 4.10, we installnpos
fltr matching filters searching for ID value #0.

Additionally, we installnneg
fltr different non-matching filters that search for values

between #1 and #(nneg
fltr ).

Message ID = 0

Filter1 0

0Filterr

...

...

ID

Filterr+1 1

m-rFilterm

...

...

r = n
pos

fltr

identical matching

filters

m-r = n
neg

fltr

distinct non-matching

filters

One property key

}
}

}

Figure 4.10:Simple filters arrangement.

Complex OR-Filters

We consider OR-filters withnfltr
cmp components. As illustrated in Figure 4.11,

we install npos
fltr identical complex OR-filters, searching for ID #0 set in the

last component. As the matching filter component is in the last position, no

early match can save processing power when the server evaluates the filter

components from left to right, as defined by the JMS standard.The publishers

send messages with ID #0 to produce a message replication grade of r = npos
fltr .

103



4 Evaluating Message-Oriented Middleware

Message ID = 0

Filter1 1

Filterr

...

...

ID

Filterr+1

Filterm

...

r = n
pos

fltr

identical matching

filters

m-r = n
neg

fltr

fltr
neg

distinct non-matching

filters

n  identical property keys

}
}

}

2 n-1 0

ID ID ID

1 2 n-1 0

...

...

...

...

1 ...

2 n-1 n

1 2 n-1 n+n    -1
...

...
...

...

n = n
fltr

cmp

Figure 4.11:Complex OR-filters arrangement.

The last components of thenneg
fltr non-matching filters take values from #(nfltr

cmp) to

#(n+ nneg
fltr − 1) with n = nfltr

cmp.

Complex AND-Filters

We consider AND-filters withnlen
fltr components. The publishers send messages

with value #0 for each component IDi, wherei= {1; . . . ;n} with n=nfltr
cmp. As

illustrated Figure 4.12,npos
fltr subscribers install matching filters. The values set in

the last component of thenneg
fltr non-matching filters take values between #1 and

#nneg
fltr .

Message   0    0         0

Filter1 0

Filterr

...

...

Filterr+1

Filterm

...

r = n
pos

fltr

identical matching

filters

m-r = n
neg

fltr

distinct non-matching

filters

n different property keys

}
}

}

0 0 0...

...

...

1

fltr
neg

n

...

n = n
fltr

cmp

0 0 0 0...

0 ...

0 0...

...

0 0 0...

...
ID1 ID2 IDn

...
ID1 ID2 IDn-1 IDn

Figure 4.12:Complex AND-filters arrangement.
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4.4.2 Results of the Measurement Experiments

We present the results for the experiments described in Section 4.4.1 for the

parametersnpos
fltr ∈ {1; 2; 5; 10; 20; 40}, nneg

fltr = {1; 5; 10; 20; 40; 80; 160}, and

nfltr
cmp = {1; 2; 4; 8}.

The solid lines plotted in Figure 4.5 and in Figures 4.13–4.16 show the

measured message throughput of the ActiveMQ JMS server. Thereceived and

the overall throughput is plotted in separate figure series.We observe in all

experimental studies a similar behavior. With an increasing number of filters,

the received and the overall throughput is only slightly reduced. An increasing

message replication grade decreases the received message throughput, but it

increases the overall message throughput. The figures for the overall throughput

show a limitation of the overall throughput at approximately 50,000 msgs/s. We

take this observation into account for fitting the model parameters in the next

section.

4.4.3 Extended Performance Model for the Message
Processing Time

We use the measurement results from Section 4.4.1 as input for the analytical

model of the message throughput. This model improves the understanding of the

server performance of the ActiveMQ as well as the impact of different parameters

like the number of filters, the filter type, and the replication grade.

Our model assumes three different parts of the processing time for a message.

Each message requires a constant overheadtrcv. The processing timetfltr per

installed filter depends on the overall number of installed filtersm = npos
fltr + nneg

fltr

and on their lengthnlen
fltr . Finally, the potential replication and transmission of a

message takesttx time per outgoing message. Thus, the message processing time

B can by calculated by

B = trcv + nfltr
cmp ·m · tfltr + r · ttx. (4.12)
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The empirical service time can be derived from the received message through-

put of the measurement results in Section 4.4.2. The parameters trcv, tfltr, and

ttx are fitted to the proposed model by a least-squares approximation. We

consider only those curves that are not limited by the50,000 msgs/s margin.

The parameters are derived separately for the simple, complex OR-, and complex

AND-filters. Table 4.6 summarizes their values. We observe that these empirical

values of the model parameters are similar for all three experiment series.

Table 4.6:ActiveMQ: Empirical values for the parameters of the model given in
Equation (4.12)

trcv tfltr ttx

Simple filters 4.88 · 10−5 s 1.62 · 10−7 s 1.54 · 10−5 s
Complex OR-filters 4.79 · 10−5 s 1.96 · 10−7 s 1.69 · 10−5 s
Complex AND-filters 5.19 · 10−5 s 1.86 · 10−7 s 1.71 · 10−5 s

Based on the model and the parameters, we calculcate the analytical values for

the received (1
B

) and the overall throughput (r+1
B

). They are plotted as dashed

lines in Figure 4.5 and in Figures 4.13–4.16. For small values of the replication

grader = {1; 2; 5; 10} the analytical data estimates the measured data very well.

If the replication grade inreases, i.e.,r = {20; 40}, the limit of 50,000 msgs/s

for the overall throughput of the server is reached and the analytical model tends

to overestimate the measured throughput.
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(b) Filter lengthnfltr
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(c) Filter lengthnfltr
cmp = 4.
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Figure 4.13:ActiveMQ: Measured and analytical received message
throughput for complex OR-filters depending on the message
replication grader.
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(b) Filter lengthnfltr
cmp = 2.
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(c) Filter lengthnfltr
cmp = 4.
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Figure 4.14:ActiveMQ: Measured and analytical overall message throughput for
complex OR-filters depending on the message replication grader.
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(c) Filter lengthnfltr
cmp = 4.

0 50 100 150 200
0

5

10

15

Overall number of installed filters

R
ec

ei
ve

d 
th

ro
ug

hp
ut

 (
10

00
 m

sg
s/

s)

 

 

Measured throughput
Analytical throughput

r = {1, 2, 5, 10, 20, 40}

(d) Filter lengthnfltr
cmp = 8.

Figure 4.15:ActiveMQ: Measured and analytical received message
throughput for complex AND-filters depending on the message
replication grader.
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(b) Filter lengthnfltr
cmp = 2.
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(c) Filter lengthnfltr
cmp = 4.

0 50 100 150 200
0

10

20

30

40

50

60

70

Overall number of installed filters

O
ve

ra
ll 

th
ro

ug
hp

ut
 (

10
00

 m
sg

s/
s)

 

 

Measured throughput
Analytical throughput

r = {1, 2, 5, 10, 20, 40}

(d) Filter lengthnfltr
cmp = 8.

Figure 4.16:ActiveMQ: Measured and analytical overall message throughput for
complex AND-filters depending on the message replication grader.
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4.5 Application of the Models as Best-Practice

Example

To conclude this chapter, the feasibility of the presented models is shown by an

application of the evaluated models. This illustrates the benefits obtained from

the analytical models for a system engineer. Overall, a summarizing evaluation

and comparison of the performance for the different server types is given.

We assume a distributed notification service, i.e., producers generate so-called

events and consumers are notified about them. A JMS server canbe used to

implement such a service. We assume many producers and100 consumers. There

are many event types, but each consumer is interested in onlyone. The consumers

may use filters withnall
fltr = 100 to get only the relevant events; otherwise, they

are notified about all events and have to process a higher load. The consumers

are interested inndiff
fltr ∈ {1; 10; 100} different events. We predict the JMS server

throughput based on the results of our study, in particular for different message

replication gradesr. Large replication grades occur if several clients filter for the

same events. If no filters are used, the throughput is determined by the results of

the filter activation experiment as depicted in Figure 3.10.If filters are applied,

we use Equation (4.9), Equation (4.10), and Equation (4.11)with the respective

parameters for application property filtering to calculatethe server capacity. We

have compiled the throughput of received messages at the servers in Table 4.7.

The use of filters increases the received throughput performance in these ap-

plication scenarios for FioranoMQ, ActiveMQ, Bea WebLogic, and for SunMQ,

but not for WebSphereMQ. However, the use of filters is not only recommended

to increase the server throughput but also to protect the consumers from

undesired load if they are only interested in 1% or 10% of the messages.

Considering the messages per second as a measure, we immediately realize

that ActiveMQ and Bea WebLogic are superior to FioranoMQ andSunMQ

in all considered application scenarios. WebSphereMQ is outperformed by all

other server implementations. Since FioranoMQ, Bea WebLogic, and ActiveMQ

are based on the same prediction model, we discuss only the performance of

111



4 Evaluating Message-Oriented Middleware

Table 4.7:Received throughput capacity of the FioranoMQ, SunMQ,
WebSphereMQ, Bea WebLogic, and ActiveMQ JMS server for
different application scenarios with 100 subscribers and an overall
number ofnall

fltr =100 filters if filters are used.

repl. Fior.MQ SunMQ WebSph. Bea Web. ActiveMQ
ndiff

fltr grade capacity capacity capacity capacity capacity
r (msgs/s) (msgs/s) (msgs/s) (msgs/s) (msgs/s)

- 100 456 228 90 532 487
100 1 676 1817 85 6629 12416
10 1 676 2566 85 6629 12416
1 1 676 2676 85 6629 12416
10 10 615 1333 85 3260 4549

ActiveMQ and SunMQ. Without filters, ActiveMQ has about twice the capacity

of SunMQ and each consumers receives all messages. With all consumers having

a filter installed, the throughput increases to12,416 msgs/s for ActiveMQ, and

for SunMQ to1,817, 2,566, or 2,677 msgs/s if the number of different filters

ndiff
fltr are100, 10, or 1. This holds for a message replication grade ofr=1. In this

case, the clients get only 1% of all messages. For a replication grade ofr=10,

the clients get 10% of all messages. Then, ActiveMQ achievesa throughput of

4,549 msgs/s and SunMQ1,333 msgs/s ifndiff
fltr = 10. Thus, ActiveMQ has four

times the capacity of SunMQ if filters are applied.

Comparing the same performance measure for SunMQ and FioranoMQ,

the performance of FioranoMQ is reduced by half, even if FioranoMQ is on

the same performance level as ActiveMQ without any filters installed. These

conclusions can also be drawn from the overhead values in Table 4.8, which are

retrieved from the analytical models. FioranoMQ has the lowest overhead while

receiving messages. ActiveMQ is very efficient in processing filters, followed

by Bea WebLogic. Dispatching overhead is for all servers in the same order

of magnitude, besides the WebSphereMQ, where the filter processing overhead

dominates the overall performance.

After all, only ActiveMQ and Bea WebLogic can be considered as high
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Table 4.8:Comparison of the overhead times from the regression analysis.

Time to receive Time to process Time to dispatch
a message a filter a message

trcv tfltr ttx

WebSphereMQ 7.0 · 10−4s 1.1 · 10−5s -
SunMQ 1.1 · 10−4s 2.1 · 10−6s 4.0 · 10−5s
FioranoMQ 8.5 · 10−7s 7.0 · 10−6s 1.7 · 10−5s
ActiveMQ 4.9 · 10−5s 1.6 · 10−7s 1.5 · 10−5s
Bea WebLogic 8.0 · 10−5s 5.3 · 10−7s 1.7 · 10−5s

throughput performance JMS platforms. From a throughput performance point

of view, WebSphereMQ is clearly inferior to all others. However, WebSphereMQ

comes with a variety of other functionalities. Thus, the mere consideration of the

throughput performance of its JMS module is certainly not a sufficient criterion

against this solution. In particular, if high throughput performance is not required,

this kind of server might still be a good choice.

4.6 Concluding Remarks on Performance Models

In the previous sections, we presented some basic models fordifferent JMS

servers. An adaption of the basic model is given for servers differing from the

standard behavior. We additionally extended the model to enhanced scenarios,

like filter length or type.

Overall, we investigated the joint impact of the number of filters and the repli-

cation grade on the server capacity of FioranoMQ, ActiveMQ,Bea WebLogic,

SunMQ, and WebSphereMQ. ActiveMQ, FioranoMQ, and Bea WebLogic lead to

enhanced throughput for correlation ID filters compared to application property

filters while the filter type does not lead to different results for SunMQ and

WebshpereMQ. Only SunMQ implements an optimized filter matching algorithm

such that identical filters can be handled more efficiently than different filters.
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The message replication grade has an impact on the message processing time

for all compared solutions, but not for WebSphereMQ as long as a replication

grade of r = 40 is not exceeded. The filtering effort for ActiveMQ, Bea

WebLogic, SunMQ, and FioranoMQ increases at most linearly with the number

of installed filters, whereas WebshpereMQ shows a limited filter scalability in

the experiments. As a consequence, our models for the message processing time

have to be differentiated according to the server type. SunMQ and WebSphereMQ

have a substantially different capacity model than the others.

In general, the models are useful to predict the server capacity for specific

application scenarios. Thus, they can be used to dimension the number of

servers in an application server network. The throughput comparison of the

different server platforms helps to decide which of these solutions satisfies the

requirements of a special distributed application from a performance point of

view. The generic methodology used to evaluate the presented servers is not

limited to them and can be easily applied for any other JMS or publish/subscribe

server implementation. A major difference from classical benchmarking is the

flexibility in choosing the set of evaluated parameters. This enables a focused

analysis of important parameters, as in our scenarios the joint impact of the

number of applied filters and the replication grade.

The evaluation of this aspect shows that there are several bottlenecks where

the filtering, the heart of content based routing, is the crucial part of the system.

We identified filtering in combination with the replication grade as one of the

most important limiting factors for scalability.

Using the presented modeling methodology, a good estimate for the system

throughput performance is achievable. However, another aspect for characteriz-

ing a JMS server is its interal system performance in terms ofmessage queuing,

delay, and configuration issues. These aspects are the focusof the following

chapter.
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Server Performance

In the previous chapters, we have measured the maximum message throughput of

a JMS server depending on the number of clients, the number ofinstalled filters,

the filter type, and the replication grade of a message. We have learned from

the prior experiments that both the number of filters and the replication grade

impact the JMS server capacity in terms of message throughput. Based on our

basic model for the meanE[B] of the message processing timeB and the mean

E[R] of the message replication gradeR in a certain application scenario, we can

predict a JMS server’s capacity.

Our goal is to characterize the average waiting times of messages passing a

JMS server. Therefore, we pick the FioranoMQ JMS server as anexample and

model it based on anM/GI/1−∞ queuing system. Since both, additional

filters and redundantly sent messages reduce the JMS server capacity, it is of

interest to apply such a model in a realistic environment to monitor and predict

performance bottlenecks in realtime. For calculating the waiting timedistribution

function (DF), the numerical inversion of its Laplace-Stieltjes transform is

necessary which cannot be approximated with sufficient precision in reasonable

time. Considering an on the fly evaluation scenario in order to predict and

react on abnormal behavior, a fast response of such an algorithm is required.

Even available approximation methods are numerically rather intractable, or they

are specific to the used service time distribution. Therefore, we propose in a

simple approximation of the waiting time DF for arbitrary service time DFs
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in Section 5.1. It is based on the Gamma-distribution, therefore, we denote it

Gamma-approximation. It takes into account the first, second, and third moment

of the service time DF.

In addition to the characterization of the JMS server throughput performance it

is possible to improve system performance by avoiding load using an appropriate

system architecture. So we compare two design alternativesfor distributed JMS

systems regarding their capacity, the so-calledpublisher-side server replication

(PSR) andsubscriber-side server replication(SSR).

We start this chapter with an abstract introduction and validation of the

Gamma-approximation in Section 5.1. Then we review some basics about the

M/GI/1−∞ queuing system, and apply it to the FioranoMQ JMS server

in Section 5.2. Using the queuing system, we analyze the message waiting

time caused by the FioranoMQ server. Finally, we conclude this chapter with a

comparison of the JMS system design alternatives PSR and SSRin Section 5.3.

5.1 Gamma-Approximation of the M/GI/1−∞

Waiting Time

Many problems in telecommunication networks can be modeledby queuing

systems. If the customers are flows, their inter-arrival time follows usually a

Poisson process [44]. Thus, the analysis of the waiting timeof theM/GI/1−∞
queuing system is often required. The Takacs recursion formula allows a simple

calculation of the k-th moments (cf. Equation (5.112) in [126]). The Pollaczek-

Khintchine formula yields even the Laplace transform of theentire waiting time

DF [140]. This formula can hardly be numerically evaluated although there are

some methods [24,28,76]. Explicit expressions in the time domain exist only for

a few special cases like theM/M/1−∞, theM/D/1−∞ queuing system [131],

or some long-tail service time distributions [32]. Approximations of the waiting

time DF exist for general service time DFs inM/GI/1−∞ [145] and even

for general inter-arrival time DFs, i.e., forGI/GI/1−∞ [27]. However, they
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are quite complex and must be adapted for specific service time distributions, or

provide feasible results only for specific parameter ranges.

Discrete time analysis(DTA) can be used to calculate the waiting time of any

discrete timeGI/GI/1−∞ system with a finite inter-arrival and service time

distribution [18]. We first show that DTA can be also used for the approximation

of a continuous timeGI/GI/1−∞ queuing system. Then, we apply DTA

to validate the accuracy of the waiting time DF obtained by the Gamma-

approximation.

We apply the new approximation method for a wide range of coefficients of

the variationcvar[B] of the service timeB and the system utilizationρ.

The remainder of this section is organized as follows. First, a review of existing

approaches is given to calculate or approximate the waitingtime distribution

function of anM/GI/1−∞ queuing system. Then, we propose the Gamma-

approximation for this task.

5.1.1 Review of the M/GI/1−∞ Queuing System

TheM/GI/1−∞ queuing system consists of a Poisson arrival process with

rateλ, i.e., the inter-arrival timeA of the customers is exponentially distributed

(Markov, M) with meanE[A]= 1
λ

and their service timeB follows anidentically

and independently distributed (iid.) general distribution (GI) with meanE[B].

Thek-th momentsE[W k] of the waiting timeW can be calculated by Takacs’

recursion formula. However, the DF of the waiting time cannot be directly

computed in the time domain. The Pollaczek-Khintchine solution provides a

formula solely for its generating function [140]. The inverse transform into time

domain is difficult and can be done analytically only for somespecial cases.
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The Takacs Recursion Formula

Thek-th moments of the waiting time of all customers can be calculated by the

Takacs recursion formula in [126]:

E[W k] =
λ

1− ρ
·

k
∑

i=1

(

k

i

)

· E[Bi+1]

i+ 1
·E[Bk−i], (5.1)

with ρ= E[B]
E[A]

being the utilization of the system andE[W 0]=1. Thus, the first

and second moments of the waiting time are

E[W ] =
λ ·E[B2]

2 · (1− ρ) · E[B]
, (5.2)

E[W 2] = 2 · E[W ]2 +
λ · E[B3]

3 · (1− ρ)
. (5.3)

In particular, we need the first and second moment of the waiting time regarding

only waiting customers(wc). As the waiting time probability ispw = ρ, they are

given by

E[Wwc] =
E[W ]

pw
, (5.4)

E[W 2
wc] =

E[W 2]

pw
. (5.5)

The Pollaczek-Khintchine Solution

TheLaplace-Stieltjes transform(LST)X∗(s) of a DFX(t) for a random variable

X is defined by

X∗(s) =

∫ ∞

0

e−s·tdX(t). (5.6)
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The LST of the waiting time DF is given by the well-known formula by Pollaczek

and Khintchine

W ∗(s) =
s · (1− ρ)

s− λ+ λ ·B∗(s)
(5.7)

with B∗(s) being the LST of the service time DF. There are means to get

numerical results from this expression [24, 76, 144], but the available tools are

neither precise nor fast enough to calculate these numerical results, especially for

the inverse of the LST.

Explicit DFs for Special Cases

For some special cases, it is possible to obtain the inverse transform of the

formula in Equation (5.7) such that an explicit DF is available. We present two of

these special cases in the following.

The waiting time DF for theM/M/1−∞ system can be calculated by

W (t) = 1− ρ · e−(1−ρ)·t/E[B]. (5.8)

The solution forM/D/1−∞ is somewhat more complex and numerically

challenging (cf. Equation (2.122) in [131]):

W (t) = 1− (1− ρ) ·
∞
∑

n=m+1

e−λ·(n·E[B]−t) · λ
n

n!
· (n ·E[B]− t)n (5.9)

withm=⌊ t
E[B]

⌋. Other explicit solutions are given for a class of long-tailservice

time DFs in [32].

Approximative Solutions for the DF

There are also approximative solutions of the form

W (t) = 1− (α · e−β·t + γ · e−δ·t) (5.10)
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if some preconditions regardingB are met (cf. Section 4.4.1 in [145]). The

parametersα, β, γ, andδ are quite complex to calculate and there is not always

a solution for them.

Another, simpler approximation for the waiting time DF of the general

GI/GI/1−∞ system is given in [27] of the form

W (t) = 1− α · e−η·t. (5.11)

The rate parameterη is approximated based on the properties of the service time

DF and there are various specialized formulae to adaptη to the exact type of the

service time. We can calculate the waiting time DF forM/Gamma/1−∞ with

the following parameters:

η =
2 · (1− ρ)

1 + cvar[B]2
·
(

1− (1− ρ) · 1− cvar[B]2

3 · (1 + cvar[B]2)

)

(5.12)

α = η ·E[W ]. (5.13)

The latter equation assures the correct mean waiting time ofthe approximated DF.

This approximation works well ifρ is sufficiently large. A similar approximation

has been applied in [135] to calculate the quantiles of waiting times (cf. Section

1.3 in [135]).

In the following we present the Gamma-approximation. We validate the

approximation by DTA. But DTA is limited to smaller values ofρ. Therefore,

we use the approximation presented in this section for the validation of large

values ofρ.

5.1.2 The Gamma-Approximation

We introduce first the Gamma-distribution and some of its properties. Then we

use the first and second moment of the waiting time of the waiting customers

in anM/GI/1−∞ system to determine theα- andβ-parameter of a Gamma-

distribution to get an estimate for its DF in a tractable way.
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The Gamma-Distribution

The base for the Gamma-distribution Γ(α, β) is the Gamma-function Γ(z),

which is defined by

Γ(z) =







0 if x < 0
∫∞
0

tz−1 · e−tdt if 0 ≤ t.
(5.14)

The most important properties of the Gamma-functionΓ(z) are

Γ(z + 1) = z · Γ(z) if z > 0 (5.15)

Γ(k + 1) = k! if k ∈ N0 (5.16)

Γ

(

1

2

)

=
√
π. (5.17)

These are interesting properties of the Gamma-function, but they are not required

in the following. The Gamma-distributionΓ(α, β) is given by itsprobability

density function(PDF)

fΓ(α,β)(t) =







0 if t < 0

β−α·tα−1·e−t/β

Γ(α)
if t ≥ 0.

(5.18)

The calculation of its DFFΓ(α,β) and even of its inversionF−1
Γ(α,β) is imple-

mented by many tools for statistical analysis, e.g., in Matlab [142]. However,

explicit solutions forFΓ(α,β) exist only for integral values ofα. Then, we have

FΓ(α,β)(t) =







0 if t < 0

1− e−t/β ·∑0≤i<α
(t/β)i

i!
if t ≥ 0.

(5.19)

Thus, the Gamma-distributionΓ
(

k, 1
k·λ
)

equals the Erlang-distribution

Erlang(k, λ). Therefore, the Gamma-distribution can be viewed as an extension
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of the Erlang-distribution towardsk ∈ R
+. The mean, the variance, and the

coefficient of variation of the Gamma-distribution are

E[X] = α · β (5.20)

VAR[X] = α · β2 (5.21)

cvar[X] =
1√
α
. (5.22)

Hence, the Gamma-distribution may be used to approximate distributions with a

given mean and variance.

Estimation of the M/GI/1−∞ Waiting Time Distribution by the
Gamma-Distribution

The first and the second moment of the waiting time of the waiting customers of

anM/GI/1−∞ queuing system can be calculated by Equations (5.4) and (5.5).

We use them to set the parametersα and β of the Gamma-distribution after

manipulating Equations (5.20) and (5.21) by

α =
E[W ]2

VAR[W ]
=

E[W ]2

E[W 2]− E[W ]2
, (5.23)

β =
E[W ]

α
. (5.24)

The resulting DFFΓ(α,β) describes then the distribution of the waiting time

of customers that are not immediately served upon arrival. The waiting time

distribution of all customers is thus given by

F (t) = 1− ρ+ ρ · FΓ(α,β)(t). (5.25)

If the service time inM/GI/1−∞ is exponential, we get the simpleM/M/1−∞
system. As the waiting time DF of its waiting customers is exponential, we have

cvar[W ]=1, and therefore,α=1 (cf. Equation (5.22)). In this case, the Gamma-
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approximation meets the exponential distribution exactlywith the same mean

E[W ]. The question arises: how exact is the Gamma-approximationfor other

distributions of the service time? This is the issue we discuss in the validation

part. To that end, we compare its results with the ones of the DTA and the

approximation given in Equation (5.13).

5.1.3 Discrete Time Analysis and its Accuracy

In this section, we explain thediscrete time analysis(DTA) for the discrete time

GI/GI/1−Dmax queuing system with bounded delayDmax [18,26,27]. We use

it to approximate the continuous timeGI/GI/1−∞ queue and identify potential

sources of inaccuracies. Finally, we compare its results for the waiting time DF

of anM/D/1−∞ and anM/M/1−∞ queuing system with analytical results

and show that its accuracy depends on the parameters of the DTA-approximation.

DTA of the GI/GI/1−Dmax Queuing System with Bounded
Delay Dmax

The discrete timeGI/GI/1−Dmax queuing system with bounded delayDmax

is based on discrete time units, i.e., the inter-arrival time of its customers is

distributed according to an iid. general distribution. Also their holding time

follows an iid. general distribution. The respective random variables are denoted

by A andB. The value range of both distributions contains only multiples of a

common basic time unitu.

State Transitions of theGI/GI/1−Dmax Queue: We analyze the discrete time

GI/GI/1−Dmax queue by considering adiscrete time Markov chain(DTMC)

whose state represents the unfinished work in the buffer which is described by the

random variableU . Upon arrival of a new customer, the unfinished work in the

buffer is incremented by the new customer’s service timeB. If this exceeds the

delay boundDmax of the buffer, the unfinished work is set to this delay bound.

Afterwards, the unfinished work is decreased by the passing time units until the
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next customer arrives. Renewal points of the process exist shortly before (-) and

after (+) the arrival instants. We number themt−n andt+n and the statesU−
n and

U+
n , accordingly. The Markov chain evolves based on the following recursive

stochastic equations.

U−
n+1 = max(Un −A, 0) (5.26)

U+
n+1 = min(Un+1 +B,Dmax). (5.27)

Discrete Time Analysis: An early use ofdiscrete time analysis(DTA) can be

found in [18, 19, 21, 23, 26] with application to packet networks. The concept of

DTA works as follows. An iteration algorithm starts with a distributionx0 of the

system state at the first renewal point. The distributionxn+1 of the system state at

renewal pointn+1 is calculated based on the distributionxn of the system state

at renewal pointn and the distributiony of the factors. The calculation itself is

described by a state transition function from one renewal point to the next one,

i.e., it is denoted by the recursive stochastic equation

Xn+1 = f(Xn, Y ). (5.28)

If the Markov chain is aperiodic, the series of thexn converges to the stationary

state distribution which characterizes the distribution of the system states at the

renewal points after a long time. We recognize convergence in practice if the

entries of two successive state distributionsxn andxn+1 differ not more than

εc, where typicallyεc < 10−6. If the Markov chain is periodic, there are

modifications to the iteration algorithm such that the series xn converges also

to the stationary distribution [73]. The whole concept is extended to different

types of renewal points, e.g., shortly before and after a customer arrival, and

stationary distributions can be calculated for both types.Thus, we can calculate

the distribution of the unfinished work in the buffer shortlybefore and after a

customer arrival by DTA using Equations (5.26) and (5.27) asstate transition

functions. Note that the stationary state distribution shortly before a customer

arrival yields the waiting time distribution for new customers.
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Approximation of the Continuous Time GI/GI/1−∞ by Discrete
Time GI/GI/1−Dmax through DTA

The continuous timeGI/GI/1−∞ queue and the discrete timeGI/GI/1−
Dmax queue with bounded delayDmax differ significantly regarding the nature

of their inter-arrival time and service time distribution and regarding their buffer

size. In addition, DTA is a numerical algorithm that terminates at a previously

given threshold. This might lead to inaccurate results. As these issues may lead

to wrong approximation results, actions must be taken to keep the error small.

Table 5.1 shows an overview on the adjustable parameters forthe DTA. Smaller

values for all typesε increase the accuracy but also increase the computational

costs as a consequence.

Continuous and Discrete Time Distributions: The DTA-approximation requires

the transform of the continuous DFFc of the inter-arrival time and the service

time into discrete DFsFd which are step functions. We achieve this by increasing

the step functionFd to Fc at the multiples of the basic time unitu. Thus, the

approximation quality can be increased by decreasing the basic time unitu.

Infinite and Finite Distributions: The range of the inter-arrival time and the

service time may be infinite for the continuous timeGI/GI/1−∞ queue, but

it must be limited for the discrete timeGI/GI/1−Dmax queue since this is a

requirement of the DTA algorithm. Thus we choose a value fortmax, such that

1−Fc(tmax) < εf holds and setFd to

Fd(t) =















0 for t = 0

Fc(n · u) for t < tmax∧ t∈((n− 1) · u, n · u]
1 for t ≥ tmax.

(5.29)

Obviously, the approximation quality can be increased by decreasingεf .

Infinite Buffer and Limited Delay: The continuous timeGI/GI/1−∞ queue

has an infinite buffer by definition, but the discrete timeGI/GI/1−Dmax queue
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requires a limited delay which lies in the nature of DTA. Thisis obviously a

source for approximation errors. To avoid them, the delay bound Dmax must

be set large enough, i.e., that the probabilityεd for a customer to exceed this

delay boundDmax is very small. This can be controlled by having a look at

the stationary state distribution of the unfinished work shortly after the packet

arrival. If the probability for the unfinished work to beDmax is smaller thanεd,

then the delay bound is sufficiently large. Thus, the approximation quality can be

increased by decreasingεd.

Table 5.1:Parameters of the DTA and their impact.

Parameter Description

εc Stop criterion for the DTA.
εd Maximum probability for loss rate.
εf Quantile up to which a distribution is descretized.

Convergence Accuracy: The iteration algorithm of the DTA terminates if the

difference of two consecutive distributions regarding thesame renewal point

differ less thanεc in each component. Thus, the approximation quality can be

increased by decreasingεc.

Validation of the DTA-Approximation of GI/GI/1−∞

We first explain the generation of the factor distributions for the DTA and then

compare the resulting DFs. Then, we show that the DTA-approximation of the

discrete timeGI/GI/1−Dmax system can be used to calculate the waiting time

DF of the continuous timeGI/GI/1−∞ system. To that end, we validate its

results by analytical values in the special cases of theM/D/1−∞ and the

M/M/1−∞ system.

Generation of the Factor Distributions for DTA: We determine the time

granularity by definingE[A] = nu · u and choosenu = 100 by default. As
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the DTA requires distributions instead of DFs to describe the factorsA andB,

we calculate them by

P (A′ = k) =







0 for k = 0

FA
c (k)− FA

c (k − 1) for k > 0.
(5.30)

Note that the valuek corresponds to a duration ofk · u. We limit the DFs for

A andB according to Equation (5.29) withεf =10−4 by default and mark the

discretized random variables by a single quote, e.g.,A′ is the discretized value of

A. We test the system under a given utilizationρ. Thus, the mean of the service

time isE[B]=ρ · E[A].

Due to the discretization, the meanE[X] and the coefficient of variation

cvar[X] of the discretizedA′ andB′ differ slightly from the ones ofA andB.

The discretization error ofA′ andB′ leads also to a slightly different system

utilization ρ′ = E[B′]
E[A′]

. In general, there are different discretization methods

possible to keep the error small. The precision of the methods depends on the

discretization unit and the shape of the DF, as discussed in [20].

We use the exponential DFFc(t)=1−e−t/E[A] as the base for the inter-arrival

time DF forA′. Figure 5.1 illustrates the inaccuracy of the discretized exponential

distribution A′ in relation to the continuous DF ofA. Figure 5.1(a) shows

the discretization errorRE [A
′] = E[A′]−E[A]

E[A]
regarding the meanE[A]. The

discretized distribution has a slightly larger mean, but the difference decreases

with increasingnu. Decreasing the discretization parameterεf can improve the

result only up toεf = 0.0001. Figure 5.1(b) shows the discretization error

Rcvar[A
′] = cvar[A

′]−cvar[A]
cvar[A]

regarding the coefficient of variationcvar[A]. The

discretized distribution has a slightly larger coefficientof variation, but the

difference decreases with increasingnu. In contrast to the mean, the accuracy

of the coefficient of variation is further decreased by a decreasingεf .
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Figure 5.1:Discretization error for an exponential DF depending on the
discretization parametersnu andεf .

128



5.1 Gamma-Approximation of theM/GI/1−∞ Waiting Time

Comparison of Analytical and Approximated Distribution Functions: We com-

pare the waiting time DFs for anM/D/1−∞ and anM/M/1−∞ system

calculated from the DTA-approximation of theGI/GI/1−Dmax system and

from the analytical formulae given in Equations (5.8) and (5.9). They are

presented for a system utilization ofρ = 0.90 and ρ = 0.95 in Figure 5.2.

We have plotted thecomplementary cumulative DF(CCDF) since this makes

the difference between the analytical and approximated values more visible

on a logarithmic y-scale. The waiting time is given in multiples of the mean

service timeE[B] since this is the invariant component in most systems. The

approximations are shown fornu = 100, εf = 10−4, εd = 10−10, andεc =

10−{6,7,8} for both considered queuing systems. The approximation with εc =

10−6 yields significant deviations for large waiting times. However, εc = 10−7

yields already a sufficiently good correspondence between the analytical and

approximative CCDF and the curve forεc =10−8 coincides with the analytical

values. We observe within each of the figures that the inaccuracy increases for

the sameεc with increasing system utilization. When we compare the results for

M/D/1−∞ andM/M/1−∞, we also realize that the inaccuracy increases

for increasing coefficients of variationcvar[B] of the service time, too. Thus, the

DTA leads to good and trustworthy results only for small or medium coefficients

of variationcvar[B] and moderate system utilization.

From these observations, we use the discretization and termination parameters

set tonu=100, εf =10−4, εd=10−10, andεc=10−8 for the DTA analysis in

the following.
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Figure 5.2:Analytical and approximated CCDFs of the waiting time.
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5.1.4 Validation of the Gamma-Approximation

In this section, we illustrate the accuracy of the Gamma-approximation by

comparing its complementary cumulative DF (CCDF) with the results obtained

from the corresponding DTA-analysis in Section 5.1.3 and approximative results

from the simple exponentialGI/GI/1−∞ approximation in Equation (5.13).

We consider first systems with a different coefficient of variation cvar[B] of the

service time and different utilization levelsρ. Then, we study the impact of their

third moment on the approximation accuracy for which we use asymmetric and

a strongly asymmetric service time distribution.

Impact of the First and Second Moment of the Service Time

The first moment of the service time determines the system utilizationρ= E[B]
E[A]

and the second moment determines the coefficient of variation of the service time

by cvar[B]=

√
E[B2]−E[B]2

E[B]
. Sinceρ andcvar[B] are more intuitive, we use them

to control our parameter studies instead ofE[B] andE[B2]. We use the Gamma-

distribution as service time since it can be easily adapted to meet a givenρ and

cvar[B] (cf. Equations (5.23) and (5.24)). We discretize the continuous Gamma-

DF according to Equation (5.29) to obtain approximated and finite DFA′ and

B′ as input for the DTA-analysis. For the sake of a fair comparison, we use

E[B′], E[(B′)2], andE[(B′)3] to calculate the first and the second moment of

the waiting time of waiting customers in Equations (5.4) and(5.5) since they are

required to fit the parametersα andβ of the Gamma-distribution in Equations

(5.23) and (5.24). Then, we use this distribution together with ρ′ = E[B′]
E[A′]

to

derive the Gamma-approximation in Equation (5.25).

The four different parts of Figure 5.3 compare the CCDFs of the waiting

time for the Gamma-approximation, the DTA-approximation,and the exponential

approximation of Equation (5.13). We have chosen the coefficients of variation

of the service timecvar = {0.05; 1.5; 2.0; 4.0} in these figures to perform a

parameter study. Note that the Gamma-approximation cannotbe parameterized

to approximate the waiting time DF when the coefficient of theservice time is
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cvar[B]= 0. Forcvar[B]= 1 it yields exactly the analytical results. Therefore, we

omitted this figure. The different values for the system utilization ρ = E[B]
E[A]

=

{0.7; 0.9; 0.95} within a single figure are obtained by varying the mean service

timeE[B].

The DTA-approximation is very good for low values of the system utilizationρ

and the solid lines of the Gamma-approximation coincides with the dashed lines

of the DTA-approximation in all figures forρ = 0.7 whereas the exponential

approximation shows significant deviations. It is known from [27] that the

accuracy of the exponential approximation is only good for large values ofρ.

Thus, the Gamma-approximation yields very good approximation results for

small and medium system utilization. The DTA-approximation is quite accurate

for low coefficients of variation like0 ≤ cvar[B] ≤ 1 and the solid lines of the

Gamma-approximation coincide with the dashed lines of the DTA-approximation

for cvar[B]=0.05. For larger values ofcvar[B] and large values ofρ, the accuracy

εc = 10−8 of the DTA-approximation does not suffice to produce accurate

results since the respective CCDFs deviate significantly from a straight line in

the logarithmic plot. In these cases, the correspondence ofthe solid lines for the

Gamma-approximation and the dotted lines of the exponential approximation is

relatively good. Hence, the Gamma-approximation leads to good approximation

result for a very broad range ofcvar[B] and ρ. The high resolution of our

numerical results proposes that it can be used to calculate even large quantiles

of the waiting time, e.g. the 99.999% percentile.

Impact of the Third Moment of the Service Time

The Takacs formula requires the third moment of the service time to calculate the

second moment of the waiting time of waiting customers (cf. Equation (5.5)).

Therefore, we are interested in the impact of this value on the CCDF of the

waiting time of anM/GI/1 − ∞ and in the approximation accuracy of the

Gamma-approximation regarding this parameter.
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(a) cvar[B]=0.05.
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(b) cvar[B]=1.5.
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(c) cvar[B]=2.0.
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Figure 5.3:The CCDFs of the waiting time from the Gamma-, DTA-, and
exponential approximation for anM/Gamma/1 − ∞ system with
various coefficients of variationcvar[B] at various system utilization
levelsρ.
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Table 5.2:Symmetric and asymmetric distributions, both with a first and second
moment ofE[B]=100 u andE[B2]=18000 u2.

Bsym= i (u) P (Bsym= i) Basym= i (u) P (Bsym= i)

10 40
81

90 80
81

100 1
81

190 40
81

900 1
81

To that end, we consider two distributions with the same firstand second

moment. They are given in Table 5.2. The symmetric distribution has a third

moment ofE[B3
sym]=3.6 · 106 u3 while the asymmetric distribution has a third

moment ofE[B3
asym]=9.72 · 106 u3. We use both service time distributions to

calculate the CCDF of the waiting time for a system utilization ofρ=0.9, i.e., we

set the mean of the inter-arrival toE[A]= E[B]
ρ

. Figure 5.4 shows that the CCDFs

of the waiting times from the service timesBsym andBasym differ notably, but

it also shows that both the DTA and the Gamma-approximation account for this

difference.
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Figure 5.4:The CCDFs of the waiting time from the Gamma- and DTA-
approximation for anM/GI/1−∞ system forρ=0.9.
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5.1.5 Concluding Remarks on Gamma-Approximation

The review of the generalM/GI/1−∞ queueing system and of some approaches

to characterize the waiting time of waiting customers showsthat there is no

explicit expression except for some special cases. The waiting time DF can

only be obtained by a numerical inversion of its Laplace-Stieltjes transform.

Approximation methods are numerically also not simple, or they are specific

to the used service time distribution. The proposed Gamma-approximation

estimates the waiting time DF by a Gamma-distribution basedon the first three

moments of the service time distribution. The computation time for the Gamma-

approximation is negligible while the DTA-analysis takes minutes or hours to

produce sufficiently accurate results, and for large coefficients of variationcvar[B]

and a large utilizationρ it takes even days. This makes the advantage of the new

calculation method obvious: it provides quite accurate estimates very quickly.

Therefore, it is suitable for the implementation in real-time systems. We can use

it to provide a prediction model for the waiting times of messages in a JMS server.

But it can also be used in real-time systems where QoS measures like quantiles

of the waiting time are needed to perform admission control.A good accuracy of

the new Gamma-approximation has been shown, by the study of abroad range

of coefficients of variationcvar[B] of the service time and the system utilization

ρ. The third moment of the service time has a minor impact on theCCDF of the

waiting time, but it is also well covered by the Gamma-approximation.

After all, the Gamma-approximation is very simple to apply if the Gamma-

distribution is available, which is the case in most of today’s mathematical

toolboxes. The fast calculation speed makes it appropriatefor application in

technical control systems, like a JMS server supporting high message throughput

rates. In the next section, we will introduce a model for the message waiting

time of a JMS system based on anM/GI/1−∞ system and apply the Gamma-

approximation to calculate the numerical results.
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5.2 Analytical Performance Evaluation of the JMS

Server Capacity

The models presented in Chapter 4 consider only average values regarding

the message throughput rates. To characterize the server performance in a

broader way, it is necessary to evaluate the time dynamic behavior, which

can be described by internal queuing or even blocking behavior. Based on the

performance model and parameters obtained for the FioranoMQ JMS server in

Section 4.2.2.1, we investigate the server by a message waiting time analysis and

by careful queuing theoretical observations.

5.2.1 JMS Server Capacity

First, we investigate the mean message processing time depending on the number

of filters, to get a first hint concerning for the capacity of the FioranoMQ JMS

server. Second, we introduce an approach to predict the server’s capacity.

Average Message Service Time

With the basic performance model for the message service time in Equation (4.9)

it is clear that the message service time increases linearlywith the number of

filters. Figure 5.5 illustrates the mean message service timeE[B] depending on

the number of filtersnfltr and the average replication gradeE[R]. The results are

shown for correlation ID filtering and application propertyfiltering. For small

values ofnfltr , the mean message service timeE[B] is dominated by the average

replication gradeE[R] but for large values ofnfltr the linear growth clearly

dominates the influence of the message replication grade. Note that both the x-

and the y-axis have a logarithmic scale. Thus, the service time for a message

ranges over several orders of magnitude, which is due to different message

replication grades, due to the linear growth ofE[B] with nfltr , and due to filter

type specific values oftrcv, tfltr, andttx. Hence, it is strongly application scenario

specific.
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Figure 5.5:Impact of the number of filtersnfltr, the average replication grade
E[R], and the filter type on the average message service timeE[B].

Server Capacity

We define the server capacity by the maximum supportable loadin terms of

messages per second. If we allow a server CPU utilization ofρ, we can compute

the server capacity in terms of received message throughputby

λmax =
ρ

E[B]
. (5.31)

Figure 5.6 shows the server capacity for a maximum server CPUutilization of

90% for the same application scenarios like above. It shows the server capacity

λmax depending on the same parameters like above but for the sake of clarity

we omitted the results for correlation ID filtering. Similarto the service time,

the server capacity ranges over several orders of magnitude. It is obvious that

the server capacity decreases both with an increasing number of filtersnfltr and

with an increasing average replication gradeE[R]. Filters protect the subscribers
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Figure 5.6:Impact of the number of filtersnfltr and the average replication
gradeE[R] on the server capacityλmax for a maximum server CPU
utilization ofρ=90%.

from undesired messages, they reduce the replication grade, which limits the

network traffic and improves the server capacity. However, the latter objective

is not always achieved, which is also shown in Figure 5.6. Since the x-axis is

scaled logarithmically, the figure starts with one filter applied. But if we assume a

message replication grade ofE[R]=10 (100) without filters, it leads to the same

capacity reduction like a message replication grade ofE[R] = 1 andnfltr = 22

(240) filters.

This leads to the question: when should a filter be applied to maximize the

server throughput? We consider an information consumerq that has installed

nq
fltr filters on the server. Furthermore, we assume that these filters receive the

proportion pqmatch of all messages. On the one hand, the filters increase the

message processing time bynq
fltr · tfltr but on the other hand, they reduce it by
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(1−pqmatch) · ttx. Thus, these filters increase the server capacity if the following

inequality holds:

nq
fltr · tfltr < (1−pqmatch) · ttx. (5.32)

Taking the values of Table 4.1 into account, a single or two correlation ID

filters (nq
fltr ∈ {1; 2}) should be used if their match probability is smaller than

58.7% or 17.4%, respectively. Three or more filters per consumer slow down

the server more than forwarding any message if no filters are set. A single

application property filter (nq
fltr = 1) should be used if its match probability is

smaller than 9.9%. Like above, two or more filters per consumer cannot lead to a

capacity increase of the JMS server. However, filters are primarily used to protect

the consumers against too many unwanted messages and the network against

overload.

5.2.2 Modeling of the Message Waiting Time

The objective of this section is the investigation of the message waiting time. We

first model the JMS server by a simple queuing system and discuss various dis-

tribution models for the message replication grade which impacts the variability

of the service time. Then, we study the mean, the distribution, and in particular

the 99% and the 99.99% quantiles of the message waiting time depending on the

average server utilization.

A Simple Queuing Model for JMS Servers

For all servers we tested, the major part of the messages are queued at the

publisher site due to a kind of push-back mechanism. As a consequence, we

did not detect any message loss due to buffer overflow at the JMS server. In

the following we consider only the the FioranoMQ server. In our experiments,

we use permanently sending publishers that are only slowed down by the push-

back mechanism of the JMS server. However, in reality, the arrival process is
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Approximation
n Publishers m Subscribers

n m

iλ

∑= iλλ

),( RnB fltr

Figure 5.7:A simple queueing model for a JMS server:M/GI/1−∞.

stochastic, i.e., the publishers do not send in a saturated manner. If the JMS

server is not overloaded and if its message buffer is large enough to absorb all

arriving messages, we can well approximate the complex overall system by a

single message queue at the JMS server site. This is depictedby Figure 5.7.

Furthermore, we assume a Poisson model for the arrival process in the busy hour,

i.e., the inter-arrival times are exponentially distributed and the message arrival

rate is denoted byλ. The arrival rateλ=
∑

0≤i<n λi for that queue is the sum of

the message ratesλi from all publishers. This is a reasonable assumption since

technical processes are often triggered by human beings. Wecan consider busy

hour scenario of a system and assume that the arrival rateλ is constant.

Messages are served sequentially by the server with their processing timeB.

This random variable follows a general distribution. Thus,we can model the

system by anM/GI/1−∞ queue. The firstE[W ] and second momentE[W 2]

of the message waiting time in this queuing system are given by Equation (5.2)
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and Equation (5.3), respectively. The utilization of the server is defined by

ρ = λ · E[B] [140].

Model for the Message Service Time

The equations for the first two moments of the message waitingtime require

the first three moments of the message service time. The service timeB for a

message is composed of a constant partD = trcv+nfltr · tfltr and a variable part

V =R · ttx such that the first three moments can be calculated by:

E[B] = E[D + V ] = D + E[R] · ttx , (5.33)

E[B2] = E[(D + V )2] = D2 +D · ttx ·E[R]

+t2tx · E[R2] , (5.34)

E[B3] = E[(D + V )3] = D3 + 3 ·D2 · ttx · E[R]

+3 ·D · t2tx ·E[R2] + t3tx ·E[R3] . (5.35)

To conduct a parameter study of the waiting time distribution depending on

the meanE[B] of the service timeB and its coefficient of variation

cvar[B] =

√

E[B2]− E[B]2

E[B]
, (5.36)

we calculate the requiredE[R] from Equation (5.33), and useE[R] and

Equation (5.34) to calculateE[R2]. Depending on the appropriate model for

the message replication gradeR, we getE[B3] by using Equation (5.35) and

the third moment of the respective distribution for the replication grade. In the

following, we discuss various distributions to model the replication gradeR.

Deterministic Distribution: If the replication grader is constant, the distribution

of the message processing timeB is also deterministic and its coefficient of
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variation is cvar[B] = 0. Furthermore, the second and third moments of the

message replication grade are

E[R2] = E[R]2 , (5.37)

E[R3] = E[R]3 . (5.38)

This model is very static and probably not appropriate to characterize real world

scenarios.

Scaled Bernoulli Distribution: With a probability of pmatch, a message is

forwarded by allnfltr filters and with a probability of1−pmatch, the message is

not forwarded at all. This can be modeled by a scaled Bernoulli distribution. The

corresponding first two moments are

E[R] = pmatch · nfltr , (5.39)

E[R2] = pmatch · n2
fltr . (5.40)

The model parameters can be calculated vice-versa bynfltr =
E[R2]
E[R]

andpmatch=
E[R]
nfltr

. Furthermore, the third moment is

E[R3] =
E[R2]2

E[R]
. (5.41)

We are interested in the coefficient of variationcvar[B] of the message service

time based on a message replication grade, which is distributed according to this

scaled Bernoulli distribution. This is calculated using Equations (5.36), (5.33),

and (5.34). Figure 5.8(a) showscvar[B] depending on the number of filtersnfltr ,

the match probabilitypmatch, and the filter type. The coefficient of variationcvar[B]

converges for an increasing number of filters to values that depend onpmatch and

the filter type. The coefficient of variation is at mostcvar[B]=0.65 and we cannot

find any larger values for any other parameters ofpmatch.
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message processing timeB.
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Binomial Distribution: The scaled Bernoulli distribution is probably not real-

istic enough to model the distribution of the message replication grade. Now,

we assume that the filtersnfltr match messages independently of each other with

a probability ofpmatch. Then, the resulting replication grade follows a Binomial

distribution:

P (R = k) =

(

nfltr

k

)

· pkmatch· (1− pmatch)
nfltr−k. (5.42)

Furthermore, the second and third moments [130] are

E[R2] = nfltr · pmatch· (1− pmatch) , (5.43)

E[R3] = E[R]2−E[R2]−E[R] ·E[R2]+2 · E[R2]2

E[R]
. (5.44)

We conduct the same study like above and observe in Figure 5.8(b) that the

coefficient of variationcvar[B] decreases quickly for an increasing number of

filtersnfltr to values between 0.064 and 0.033, depending on the filter type.

After all, the second moment of the service time is bound by Equation (5.34)

and the second moment of the replication grade, cf. Equations (5.37), (5.40), and

(5.43), respectively. Realistic coefficients of variations of the message service

time lie between0.0 and0.2 and coefficients larger than0.65 are impossible.

Therefore, we work in the following exemplarily with the values0.0, 0.2, and

0.4 because they cover realistic values in the considered scenarios.
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Figure 5.9:Impact of the server utilizationρ and the coefficient of variation
cvar[B] of the message service time on the average message waiting
timeE[W ].

5.2.3 Analysis of the Message Waiting Time

After evaluating a model for the message waiting time and itsproperties and

limits, we present the analytical results for this model in the following section.

Average Message Waiting Time

The average message waiting time at the JMS server can be calculated using

Equation (5.2). Figure 5.9 depicts this depending on the server utilizationρ in

a specific application scenario withnfltr = 100 application property filters and

a constant replication grade ofR = 1. The left y-axis shows the corresponding

waiting time in ms. It is obvious that the average waiting timeE[W ] increases

with ρ. We can generalize the result by indicating the waiting timeas a multiple

of the average message processing timeE[B] on the right y-axis, which also
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Figure 5.10:Comparison of the exact and approximated CCDF for the waiting
time of anM/D/1−∞ queuing system for different utilization
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approximates the mean queue length in packets. Based on thisnormalized y-

axis, we can easily compare the average message waiting timeE[W ] from

different application scenarios that have different meansE[B] and coefficients of

variationscvar[B]. Figure 5.9 illustrates that the mean waiting time is sensitive to

the coefficient of variation of the message processing timeB and that it increases

with cvar[B]. Note that the normalized diagram in Figure 5.9 provides also a

lookup table for the average message waiting timeE[W ] in any application

scenario with a matching coefficient of variationcvar[B].

Message Waiting Time Distribution

In addition to the mean waiting time, we are also interested in the entire

distribution function. According toM/GI/1−∞ results, the waiting time

probability for a message ispw=ρ. With Equations (5.2) and (5.3) we know the
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first and second moment of the message waiting time such that we can calculate

the first and second moment of the waiting timeWwc regarding only delayed

customers by

E[Wwc] =
E[W ]

ρ
, E[W 2

wc] =
E[W 2]

ρ
. (5.45)

The Gamma-distribution has a positive range and can be viewed as the contin-

uation of the exponential and Erlang-distribution for coefficients of variations

different from cvar[X] = 1√
k

, k ∈ N [127]. We approximate the waiting time

distribution of the delayed callsP (Wwc ≤ t) by fitting their two parameters

α = 1
cvar[Wwc]

and β = E[Wwc]
α

. Thus, we get the waiting time distribution

function regarding all calls by

P (W ≤ t) = (1− ρ) + ρ · P (Wwc ≤ t). (5.46)

This Gamma-approximation is exact for an exponentially distributed service time

and leads to very good approximation results for other service time distributions

as we have shown in [14].

To be aware of the error for other service time distributions, we consider an

M/D/1−∞ system for which the exact waiting time distribution can be calcu-

lated [131]. However, numerical instabilities arise such that the corresponding

probabilities can be calculated only for small time values [146]. Figure 5.10

shows a comparison of the exact and the approximated CCDFs ofwaiting time

for M/D/1−∞ for various system utilization valuesρ. The approximation is

good enough to sufficiently estimate exact delay quantiles,in particular for large

values of the utilizationρ. As the approximation works well forcvar[B] = 0 and

cvar[B]=1, we use it also in the following for0<cvar[B]< 1.

Figure 5.11 shows the CCDF of the message waiting timeW for a server

utilization of ρ = 0.9 and for a coefficient of variation ofcvar[B] = 0.0, 0.2,

and0.4 on a normalized (toE[B]) x-axis. The distribution functions are clearly

shifted towards larger waiting time values with increasingcvar[B], which is
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Figure 5.11:Impact of the coefficient of variationcvar[B] and the distribution type
of the message replication gradeR on the CCDF of the message
waiting timeW for a server utilization ofρ=0.9.

consistent with the results obtained in Section 5.2.3. The deterministic, the scaled

Bernoulli, and the Binomial distribution coincide forcvar[B]=0 and thus lead to

the same waiting time distribution of the messages. Furthermore, we can hardly

see any difference between the waiting time distribution function for the binomial

and the Bernoulli distribution of the replication gradeR. Thus, we can neglect

the exact distribution type of the message service time and work with its first two

moments instead. In the following, we assume a messages service time based on

a binomially distributed message replication gradeR.

Message Waiting Time Quantile

The p-quantile orp-percentileQp[W ] specifies the lowest duration for which

P (W ≤ Qp[W ]) ≥ p holds. It says “p · 100% of all messages wait shorter than

Qp[W ]” and yields thereby a “quasi upper bound” onW if p is large. Figure 5.12
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shows the 99% and 99.99% quantile of the waiting time on a normalized y-axis

depending on the server utilizationρ and the coefficient of variationcvar[B] of the

message service time. The 99.99% quantile of the waiting time is substantially

larger than the 99% quantile. The quantiles increase with the server utilization

ρ and they are substantially larger than the means of the waiting timeE[W ] in

Figure 5.9. The impact of the coefficient of variationcvar[B] is notable but the

impact of the server utilizationρ is much larger. If the probability for immediate

processing1− pw(ρ) is significantly smaller than the quantile valuep, the

quantilesQp[W ] are significantly larger than the corresponding meansE[W ]

(cf. Figure 5.9) and they are more sensitive to the coefficient of variationcvar[B]

of the message service timeB.

If we limit the server utilization toρ= 0.9, the message waiting time is less

than50 ·E[B], i.e., a waiting time of50 ·E[B] is not exceeded with a probability
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of 99.99%. With that probability a maximum waiting time of atmost 1 s is

guaranteed as long asE[B] is smaller than 20 ms. For this time limit and an

average replication grade ofE[R]=1 for the above scenario, up to 1369 or 2845

filters may be installed on the JMS server for application property or correlation

ID filtering, respectively. However, in this case, the maximum server capacity is

only λmax
ρ=0.9 = 45 messages per second which is very low. Hence, for a system

designer the message waiting time can be neglected as long as1 s is acceptable

for a server utilization ofρ=0.9 or less. Thus, if a sufficiently high throughput

is achieved, the waiting time is small.
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5.3 Performance Comparison of Distributed JMS

Server Architectures

The capacity of a JMS server is bounded by the performance of its CPU. If it does

not suffice to support a certain message rate fromn publishers tom subscribers, a

distributed architecture might be useful to alleviate the problem. We consider two

basically different simple architectures:publisher-side JMS server replication

(PSR) andsubscriber-side JMS server replication(SSR).

5.3.1 Publisher-Side JMS Server Replication

With PSR, each publisher has its own local JMS server, for which subscribers can

register. The concept is visualized in Figure 5.13. Each publisher-sideM/GI/1−
∞ system supports a message rateλi and their average message replication

grade isE[Ri]. Since the messages are filtered already at the publishers, the

traffic load imposed on the network interconnecting publishers and subscribers is
∑

0≤i<n λi ·E[Ri].

][ 11 RE⋅λ

][ nn RE⋅λ

1λ

nλ

n Publishers and JMS Servers m Subscribers

Figure 5.13:Publisher-side JMS server replication (PSR).

A drawback of this distributed PSR architecture is the fact that all subscribers

have to register in parallel forn JMS servers at distributed publisher sites instead
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Figure 5.14:Subscriber-side JMS server replication (SSR).

of a single one. This disturbs the elegant communication interface of JMS over a

single server. Thus, additional entities must be introduced to allow a transparent

communication like with a single server, but this is not scope of this work.

5.3.2 Subscriber-Side JMS Server Replication (SSR)

With SSR, each subscriber has its own JMS server for which publishers can

register. The concept is visualized in Figure 5.14. Since the messages are filtered

only at the subscribers, the message rate for each subscriber-sideM/GI/1−∞
system isλ=

∑

1≤i≤n λi. Thus, the overall traffic carried in the network ism ·λ.

Sincem is an upper bound onRi, SSR produces significantly more traffic in

the network than PSR. Like with PSR, the elegant communication interface of

JMS is also compromised by the SSR architecture because every publisher needs

to multicast its messages to all JMS servers atm different subscriber sites instead

of to a single one. However, this problem is not our present concern.

5.3.3 Capacity Comparison of PSR and SSR

For the performance comparison of both architectures, we consider the following

scenario. All nodes have the same computation power. In particular, we assume
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that they have the same capacity as the machines in our experiments in Chapter 3

because our numerical study relies on the valuestrcv, tfltr, and ttx that were

obtained for these machines. Furthermore, the message ratesλi of all publishers

are equal and the average replication gradesE[Ri] for their messages are the

same such that we can denote them uniformly byE[R]. In addition, each

subscriber hasnfltr =10 different filters.

For PSR, the capacity of the distributed JMS system

λmax
PSR = n · min

1≤i≤n
(λmax

i ) (5.47)

is then-fold multiple of the minimum of all individual JMS server capacities

λmax
i . Similarly to Equation (5.31), it can be calculated under the above stated

assumptions by

λmax
PSR = ρ · n ·

(

trcv +m · nfltr · tfltr + E[R] · ttx
)−1

. (5.48)

Thus, the system capacity depends onn and m and is thereby application

scenario specific. In case of subscriber-side JMS server replication, the capacity

of the distributed JMS systemλmax = min0≤i<m(λmax
i ) is the minimum of

all individual JMS server capacitiesλmax
i . It can be calculated under the above

stated assumptions by

λmax
SSR = ρ ·

(

trcv + nfltr · tfltr + E[R] · ttx
)−1

. (5.49)

In contrast toλmax
PSR, the expression forλmax

SSR is independent ofn andm.

Figure 5.15 illustrates the impact of the parametersn andm on the capacities

λmax
PSR andλmax

SSR of both distributed JMS systems. The results are calculatedfor

an average replication grade ofE[R] = 1, a maximum server utilization ofρ =

0.9, and correlation ID filtering. The capacityλmax
SSR for SSR yields a horizontal

line since it is independent of the parametersn andm. The capacity for PSR

increases linearly withn and decreases almost reciprocally for large values ofm.

PSR outperforms SSR for medium or large values ofn and for small or medium
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Figure 5.15:Capacity comparison of PSR and SSR scenario for a server
utilization of ρ = 0.9, an average replication grade ofE[R] = 1,
andm subscribers.

values ofm. Note that a largem can reduce the capacity of a single JMS server

so much that waiting time problems arise. For example, form=104 and a large

n the distributed system has still a large capacity but the capacity of a single

publisher-side server is only 7 msgs/s leading to average waiting times of 1 s and

to 99.99% quantiles of 10 s. We get similar results for correlation ID filtering.

The capacity lines in Figure 5.15 intersect where both Equations (5.48)

and (5.49) yield the same results. Thus, we conclude that PSRoutperforms SSR

if the following inequality holds

n >
trcv +m · nfltr · tfltr +E[R] · ttx

trcv + nfltr · tfltr + E[R] · ttx
. (5.50)

It gives a recommendation under which circumstances PSR or SSR should be

implemented to cope with a large number of publishers or subscribers.
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In conclusion, PSR achieves system capacity scalability with respect to an

increasing number of publishers, but the capacity degradeswith an increasing

number of subscribers. In contrast, SSR provides system capacity scalability

for an increasing number of subscribers but its capacity does not scale with an

increasing number of publishers. Since both architecturesrepresent an artificial

bound of the system architecture, the real system design considers something in

between, as done in practical systems, by clustering JMS server machines. The

performance evaluation of such a system is out-of-scope of this work. Although,

the methodology and models presented in this section can be used as a first step

for evaluating JMS servers arranged in a cluster based architecture.

5.4 Concluding Remarks

The overall focus of the previous chapter is to analyze the queuing behavior

of a JMS server in addition to our models based on mean values for the

message throughput. While developing the system models we consider a real-

time scenario which imposes time constraints on the numerical evaluation of our

prediction model. We fitted anM/GI/1−∞ queuing system for calculating the

message waiting times of the FioranoMQ JMS server.

However, there are no explicit expressions except for some special cases. The

waiting time distribution function can only be obtained by anumerical inversion

of its Laplace-Stieltjes transform which is not numerically feasible in our

scenario. We identified also other numerical approximations as not appropriate

for our scenario. Thus, we proposed the Gamma-approximation that estimates

the waiting time distribution function by a Gamma-distribution based on the first

three moments of the service time distribution. We showed the accuracy of the

Gamma-approximation and proved that it is very accurate even for the calculation

of 99.999% quantiles of the waiting times. Overall, the Gamma-approximation

is not restricted to our scenario, but can be used in general for technical control

systems where fast numerical results for the waiting times are necessary.

We observed from our experimental analytical parameter study in Chapter 4
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that the values for both the message processing time and the corresponding server

capacityλmax in messages per second range over several orders of magnitude

depending on the application scenario. Both additional filters and unnecessarily

sent messages reduce the JMS server capacity. Thus, we studied this phenomenon

and gave a recommendation for the configuration of subscribers to maximize

the JMS server capacity based on the message match probability of filters. We

modelled the JMS server by anM/GI/1−∞ queuing system and presented

three different distributions for the message replicationgrade, which lead to a

significantly different variability of the message processing time. We showed that

the average message waiting time is mainly influenced by the server utilization.

The sensitivity analysis showed that the processing time variability plays only a

marginal role. We used a normalized diagram which can be usedas a lookup table

for various application scenarios. The 99.999% quantile gives a “quasi upper

bound” on the waiting time and an estimate on the required buffer space at the

JMS server. Finally, we concluded that extensive waiting times do not occur as

long as the server is not overloaded and as long as its throughput is medium or

high. These results are of general nature and are also valid for other servers than

the FioranoMQ.

Finally, we introduced two distributed JMS server architectures: publisher- and

subscriber-side server replication (PSR, SSR). We compared the capacity of both

alternatives by the use of our simple throughput model. The capacityλmax
PSR of

PSR scales well for an increasing number of publishers and the capacityλmax
SSR of

SSR scales well enough for an increasing number of subscribers. However, none

of them scales well for both requirements. We provided some recommendations

for the usage of PSR or SSR in order to design a real system. Thedecision

which approach is closer to the requirements by the environment depends on

the application scenario.
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In modern software architectures, efficient application-to-application communi-

cation is an important requirement. Introducing amessage-oriented middleware

(MOM) decouples the communicating partners by providing standard interfaces.

This enables a flexible exchange of information even in heterogeneous applica-

tion environments.

In this thesis we investigated a messaging infrastructure as a central entity

in the application communication process. Such a messaginginfrastructure may

become a bottleneck of the overall system. Therefore, we evaluated the scalability

in terms of the overall message throughput. There are several approaches

available, which support an efficient communication of applications. We picked

the publish/subscribecommunication pattern as a widely accepted architecture

which fulfills a large set of requirements of a modern application design,

like one-to-many communication and filtering of information according to

the subscribers’ interests. A key feature is the decouplingof the publisher’s

and subscriber’s communication. Many approaches are available to design and

optimize a publish/subscribe system. However, in practice, a variety of different

implementations and combinations of filtering mechanisms are possible, which

increases the complexity for predicting a resulting systemperformance. We

evaluated the limits of different messaging systems and identified the most

impacting parameters in order to give hints for dimensioning and designing a

messaging system regarding different application scenarios.

Thus, we designed a measurement-based methodology to identify critical

parameters and evaluated them for different realizations of the Java mes-
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saging service(JMS). Also, a categorization of the different parameters is

given according to their system impact regarding server utilization, message

throughput, subscriber utilization, and information granularity. The proposed

measurement method assesses the software capacity of the server with respect

to the maximum achievable message throughput. To that end, we sent messages

to the server in a saturated manner by a test tool. The presented numerical

results are valid for the testbed and the JMS server configurations used in our

environment. Using different hardware components, especially current and future

hardware architectures, e.g., multi-core processor systems and optimized caching

strategies, may cause different behaviors in scalability.A parallel execution of

processes introduces additional overhead to the code in terms of synchronizing

each single thread. Also an optimal configuration of each JMSserver based

on its software capabilities can improve its overall performance. Since these

optimizations typically consider a specific application scenario, a generalized

performance prediction is limited. Therefore, we used the default configuration

for all considered vendors, since it typically is optimizedto the “common

case”. The categorization of critical parameters and the described experimental

methodology is in general a good approach to evaluate a messaging based system

in varying application scenarios. Using our method we conducted a series of

measurements regarding the number of connected clients andthe message size.

For the number of clients, we found that a sufficiently high number of publishers

or subscribers is required to fully utilize the server machine and to obtain a typical

message throughput.

Considering this result, it can be concluded that the maximum system

performance can only be achieved if a sufficiently large number of clients are

connected to the messaging system. In case of information selection, we tested

the coarse-grained design option using topics and message header-based filtering.

Using header-based filtering, we can also differ the fixed header part which is

more efficient for all measured servers but is limited in its applicability. Filtering

for the application header properties has increased flexibility, but – depending

on the filter complexity – impacts the throughput performance significantly. For
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instance, the FioranoMQ servers message throughput performance decreased

most with only activating simple filters. All other tested servers experience a

minor impact by simply activating filters. The impact increases if we introduce

complex filter scenarios where a filter consists of multiple components connected

by a logical operator like “OR” or “AND”. The considered parameters in our

measurements have a different level of impact depending on the server type and

the application scenario. Therefore, parameters should beevaluated during the

design phase of the development of a messaging application.

In addition, we tested three different options for the same application scenario,

using simple filters, complex OR-filters, and IN-filters. TheIN-filter operator is

the best option in terms of throughput performance but cannot be modified while

active. The simple filter option has the lowest performance but is very flexible

for updating the filter parameters. Hence, during the designof an application, the

filter-type has to be chosen carefully. The presented measurements focus on the

binary transmission of a message payload and header-based filtering. In current

and future systems we notice also an increasing number of content-based filtering

approaches, e.g., based on an XML encoded message payload. Considering such

an environment, the expressiveness of a single filter and as aconsequence its

complexity might increase dramatically whereas the performance suffers from

extracting information out of the message payload. For messaging-systems with

a large message throughput we recommend, based on our results, a split of the

message payload and a header containing meta information. The JMS framework,

considered in this work, supports only the header-based filtering approach.

We further considered the impact of network transport protocols and tested the

impact of different connection and session aggregation levels of subscriptions.

We found that there is only a minor impact while choosing grouped TCP-

connections or JMS session aggregation. A major impact can be observed during

setup of the initial connections to a JMS server. This is for example the case in a

busy-hour scenario, where a flash-crowd of clients tries to connect to the server

at the same time. Considering the Bea WebLogic server, it prefers incoming

subscriptions and therefore stalls delivering messages, which might lead to an
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overload scenario. The ActiveMQ server tends to prefer message delivery which

results in large subscription registration times and a possible message loss with

newly connected subscribers. Thus, we suggest to test the impact of network and

subscription handling in the desired application scenario.

In order to dimension an application environment based on a messaging

infrastructure, it is important to predict the required message throughput per-

formance of the message-oriented middleware system. Therefore, we proposed

a measurement-based approach to derive simple prediction models regarding

the impact of filtering and the replication grade. We were able to fit a base

model, which we adapted to special behaving servers, like the SunMQ or

the WebSphereMQ. Using a linear regression method we calculated system-

specific parameters from measurements. We were able to validate our results

and observed a good match of the results of the model and our measurement

results. We also enhanced the models to cover complex filtering scenarios. Thus,

the proposed mathematical approximation models for the message processing

time are accurate enough to predict the message throughput for our application

scenarios. The proposed models consider the average message replication grade,

the overall number of installed filters, and the number of different filters. From

our results we can conclude that all server types have a basically different

performance behavior, but we found individual models for each server following

our measurement based approach. Finally, we illustrated the applicability of our

performance models by applying our models to four simple application scenarios.

Since the message throughput prediction models are based onaverage values

for the message processing time and the replication grade, we introduced an

M/GI/1−∞ queuing system to estimate the message waiting times for the

overall system. This enables the prediction of the server load. Thus, if we try

to predict and avoid failure scenarios, a very fast calculation of the numerical

values of the model is desirable. Since no numerical approximation method is

efficient enough to calculate these numbers sufficiently fast, we proposed our so-

called Gamma-approximationwhich is based on the Gamma-distribution. The

computing effort needed to apply this approximation methodis negligible and
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therefore, the best choice for our scenario. The approximation is also useful in

all other scenarios where a fast and accurate approximationof the numerical

values of anM/GI/1 − ∞ queuing system is necessary. Since the message

processing time and the corresponding message throughput capacity of the server

depends heavily on the application scenario, we gave a recommendation for the

configuration of subscribers to maximize the JMS server capacity based on the

probability a filter matches. We showed that the average message waiting time

is mainly influenced by the server utilization. In contrast,the sensitivity analysis

showed that the processing time variability has only a minorimpact. Finally, we

concluded that extensive waiting times do not occur as long as the server is not

overloaded and as long as its throughput is medium or high.

Since the messaging system represents a central entity, scalability regarding

the overall message throughput can be achieved by distributing the server logic.

Therefore, we compared two diverse design options, thepublisher-side server

replication (PSR) and thesubscriber-side server replication(SSR) considering

our performance models. We found that the choice of the best architecture heavily

depends on the application scenario, but our models can be used to identify the

best choice. To support the choice we gave recommendations for the usage of

PSR or SSR.

In the course of the monograph, we showed that the careful design of

an application-to-application messaging infrastructurehas several application-

specific impact parameters. Thus, we identified the limits and the typical

performance values of such an environment by several measurement series. We

developed a basic and an enhanced model to predict the message throughput per-

formance regarding the publish/subscribe model and using the JMS framework.

The performance models consider the joint impact of filtering and replication

grade. Also deviations of the mean values can be considered by applying our

queuing model. Following our approach, it is possible to determine the critical

parameters regarding the desired scenario and get an estimate for the necessary

equipment needed for the deployment in an application scenario.
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Future Trends

The presented methods and models are also useful in future system scenarios.

The scenarios presented in this work covered only a part of the possible

application scenarios. Our scenarios are sufficient to showthe generic behavior

of a messaging system and its performance limits. However, if we consider

stock trading applications, for example, the message throughput and the time

constraints may be more mission critical and have to rely on faster equipment

and components. To cope with this problem, some vendors try to implement

the messaging infrastructure in hardware. This is a realistic future scenario, if

reconfigurable hardware is powerful enough to be flexible in terms of its possible

communication interfaces and the achievable message throughput.

In addition, the application of the publish/subscribe communication pattern to

lower network layers, as proposed by the PSIRP project [103], is an interesting

approach which requires a careful design of the architecture and the used

algorithms. Although we focused on the JMS framework, our models can be

extended and applied to other frameworks and application scenarios.

A clear trend on application-layer can be seen in combining application-layer

communication protocols considering messaging. Currently, a large group of

vendors and open source developers decided to combine theirefforts to extend the

advanced message queuing protocol (AMQP) as an open standard. This enables a

flexible combination of different messaging approaches by using a standardized

underlying protocol.

Several other models consider already our performance models presented in

this work. Since we focused on the applicability of our approach, the effort to

adapt them to another application scenario and different requirements is low.

Summarizing, messaging based on the publish/subscribe communication pattern

is an efficient and flexible communication architecture for the design of future

applications.
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