Intern
    Lehrstuhl für Informatik V - Technische Informatik

    Seminar: Sensornetze (WS2012/13)

    Übersicht

    Ein drahtloses Sensornetz (engl. wireless sensor network) besteht aus einer Anzahl von Sensorknoten, die drahtlos mtieinander kommunizieren, um eine gemeinsame Aufgabe zu erfüllen. Ein Sensorknoten besteht in der Regel aus eine Mikrocontroller, einer Funkeinheit, zusätzlichem Speicher, sowie diversen Sensoren und Aktoren. Der Mikrocontroller übernimmt dabei die Rolle der zentralen Verarbeitungseinheit: Mit dem Sensorknoten verbundene Sensoren registrieren verschiedenste Phänomene der Umgebung (etwa Temperatur, Luftfeuchtigkeit, Helligkeit, etc.), die dann - je nach Aufgabe des Sensornetzes - vom Mikrocontroller "weiterverarbeitet" (etwa komprimiert, gefiltert, akkumuliert, interpoliert, etc.) werden. Die Sensorknoten tauschen sich untereinander oder mit einer sog. Senke über die Funkeinheit aus, d.h. jegliche Kommunikation läuft über das gemeinsame Medium Luft. Am Sensorknoten angeschlossene Aktoren (etwa Schrittmotoren, Signalgeber, etc.) werden ebenfalls über den Mikrocontroller gesteuert und mit entsprechenden Parametern "gefüttert". Meist besitzt ein Sensorknoten noch zusätzlichen Speicher, um (Sensor-)Daten oder sonstige relevante Informationen dort zwischenzuspeichern oder zu archivieren.

    Da Sensorknoten meist energetisch autark bzw. ohne drahtgebundene Stromversorgung arbeiten, und auch nicht auf eine bestehende (Kommunikations)Infrastruktur angewiesen sind, bieten sie sich für eine Reihe von möglichen Einsatzzwecken an: zur Überwachung von Gebäuden und Industrieanlagen, als Frühwarnsystem zur Waldbrandbekämpfung, als Hilfsmittel zur Verhaltenserforschung von Wildtieren, zur Loklalisierung von Objekten in Lager- und Fabrikhallen, usw. Je nach Anwendungsszenario stehen dabei verschiedene Eigenschaften des Senornetzes im Vordergrund: Präzision und Genauigkeit, Energieverbrauch, Skalierbarkeit, Adaptation, Fehlertoleranz, Robustheit, Wartungsanfälligkeit, oder Kostenersparnis. In diesem Semianr sollen daher hauptsächlich einige Anwendungen von Sensornetzen der REALWSN 2010 vorgestellt werden.

    Organisatorisches

    Das Seminar findet immer montags um 10:00 Uhr in ÜR II statt. Als Vortragsthemen stehen dabei die nachfolgend aufgeführten Themen ab sofort zur Verfügung. Wer Interesse an der Bearbeitung eines der angegebenen Themen hat, kann sich dieses bereits im Vorfeld (per Email oder persönlich bei Clemens Mühlberger) oder auch erst in der Einführungsveranstaltung am 15.10.2012 reservieren lassen.

    Zu jedem Thema soll in Einzelarbeit ein etwa 30- bis 45-minütiger Vortrag sowie eine schriftliche Ausarbeitung im Umfang von ca. 10 Seiten im LCNS-Format erstellt werden. Der Vortrag soll dann zum festgelegten Termin vor den Teilnehmern des Seminars präsentiert werden. Bei den Vorträgen gilt i.Ü. Anwesenheitspflicht für alle Teilnehmer. Zudem ist spätestens eine Woche vor dem jeweiligen Präsentationstermin ein Probevortrag vor dem Betreuer verpflichtend. Der entsprechende Betreuer steht bei Fragen, die während der Einarbeitung und Vortragserstellung auftauchen, gerne zur Verfügung! Die Vorträge und Vorlagen zur Ausarbeitung stehen für die Seminarteilnehmer auf der WueCampus-Seite des Seminars bereit. Der dafür notwendige Zugangsschlüssel wird in der Einführungsveranstaltung bekannt gegeben.

    Um die Einarbeitung in die jeweiligen Vortragsthemen zu erleichtern, werden zusätzlich für jedes Thema Literaturvorschläge zur Verfügung gestellt. Allerdings müssen die Seminarteilnehmer auch eine eigene Literaturrecherche anstrengen! Neben der Uni-Bibliothek können dabei folgende Zitatsammlungen hilfreich sein:

    Die erfolgreiche Teilnahme (d.h. kontinuierliche Anwesenheit, Probevortrag, Vortrag und Ausarbeitung) wird durch einen Leistungsschein bzw. 5 ECTS-Punkte belohnt. Für weitere Auskünfte steht der jeweilige Betreuer gerne zur Verfügung!

    Themen- und Terminübersicht

    Einführungsveranstaltung

    Termin: 15.10.2012
    Vortragender: Clemens Mühlberger

    In dieser Einführungsveranstaltung werden einige, für das Seminar wesentliche Begriffe (z.B. Sensorknoten, Sensornetzwerk, ...) kurz erläutert, sowie die bereitgestellten Themen vorgestellt. Eine Themenreservierung ist ebenso möglich, wie die Erörterung des organisatorischen Ablaufs.

    K2: A System for Campaign Deployments of WSNs  

    Betreuer: C. Mühlberger
    Termin: 19.11.2012

    Abstract Environmental scientists frequently engage in "campaignstyle" deployments, where they visit a location for a relatively short period of time (several weeks to months) and intensively collect measurements with a combination of manual and automatic methods. We present K2, a mote-based system which brings high-quality automated monitoring to deployments of this nature. We identify key application requirements, describe the design and evolution of K2, and present performance results from two field deployments (the largest lasting ~ 5 weeks and including 50 sensing nodes). Our results indicate that K2 is a viable scientific tool, achieving data yield > 99% and producing accurately time-stamped data, even in the absence of a persistently available reliable clock source. These results point a path towards WSN deployments managed by non-CS specialists.

    TigerCENSE: Wireless Imaging Sensor Network to Monitor Tiger Movement 

    Betreuer: C. Mühlberger
    Termin: 03.12.2012  

    Abstract Wireless Sensor Network (WSN) in combination with image sensors opens plethora of opportunities in the wildlife tracking. It provides a glimpse into previously unseen, remote and inaccessible world of some of the most endangered species on earth. tigerCENSE is such an attempt to put sensor network technology in conserving one of the rarest and most elusive big cat species. The node, triggered by the Passive Infrared (PIR) sensor, captures the image of tiger using a CMOS image sensor and stores it in an external memory chip. To avoid any disturbance to animal, the node uses an Infrared (IR) flash, instead of white flash, to illuminate the target at night. The stored images get transferred to the base station via radio transceiver. This is transferred to the database server through Internet links for analysis by wildlife researchers. A solar energy harvesting system for recharging node's batteries is being added to avoid frequent human visit to change the batteries, making it highly non-intrusive system. 

    Motes in the Jungle: Lessons Learned froma Short-Term WSN Deployment in the Ecuador Cloud Forest  

    Betreuer: C. Mühlberger
    Termin: 

    Abstract We study the characteristics of the communication links of a wireless sensor network in a tropical cloud forest in Ecuador, in the context of a wildlife monitoring application. Thick vegetation and high humidity are in principle a challenge for the IEEE 802.15.4 radio we employed. We performed experiments with stationary-only nodes as well as in combination with mobile ones. Due to logistics, all the experiments were performed in isolation by the biologists on our team. In addition to discussing the characteristics of links in this previously unstudied environment, we also discuss the lessons we learned from operating under peculiar constraints in a peculiar deployment scenario.   

    Deploying Wireless Sensor Networking Technology in a Rescue Team Context

    Betreuer: C. Mühlberger
    Termin: 12.11.2012 

    Abstract The computing department at Lancaster University are currently involved in the ongoing deployment of an advanced communications system designed to support the requirements of search and rescue teams. This system is based around the concept of using an all IP infrastructure to provide multi-functional data communications (such as group voice calling, live video streaming and location updates) to highly mobile vehicles and personnel in challenging environments. In addition to these types of data communications there is also a requirement to reliably transmit different types of sensor data information from the individual rescue team members, their vehicles and the casualties they locate and rescue. In this paper we describe the work we have carried out to incorporate an IP based sensor networking approach into our existing communications system deployment that we have in place with the Morecambe Bay Search and Rescue Team, in order to support Mobile Sensor Networks. In addition, we present results from our experimentation with our deployment that is specifically focused on the issue of wireless interference that our Mobile Sensor Networking solution is potentially subjected to.

    Location Based Wireless Sensor Services in Life Science Automation

    Betreuer: C. Mühlberger
    Termin:  

    Abstract Over the last years Wireless Sensor Networks (WSN) have been becoming increasingly applicable for real world scenarios and now production ready solutions are available. In the same period the upcoming combination of Service-oriented Architectures and Web Service technology demonstrated a way to realize open standardized, flexible, service component based, loosely coupled and interoperable cross domain enterprise software solutions. But those solutions have been too resource-intensive and complex to be applicable for limited devices like wireless sensor nodes or small-sized embedded systems. Thus, more and more research investigations have been launched to bring the aspect of cross domain interoperability to the field of embedded battery powered devices. The proposed laboratory assistance solution in this paper demonstrates the benefits of Web Service enabled WSNs for process monitoring and disaster management by extending an existing system in the Life Science Automation domain. Especially, the capability to provide location based services in industrial automation environment represents a beneficial feature of the presented integration approach and results in high-quality information delivery bundled with specific data about the locational origin of the capturing sensor.   

    Hallway Monitoring: Distributed Data Processing with Wireless Sensor Networks

    Betreuer: C. Mühlberger
    Termin:  26.11.2012   

    Abstract We present a sensor network testbed that monitors a hallway. It consists of 120 load sensors and 29 passive infrared sensors (PIRs), connected to 30 wireless sensor nodes. There are also 29 LEDs and speakers installed, operating as actuators, and enabling a direct interaction between the testbed and passers-by. Beyond that, the network is heterogeneous, consisting of three different circuit boards—each with its specific responsibility. The design of the load sensors is of extremely low cost compared to industrial solutions and easily transferred to other settings. The network is used for in-network data processing algorithms, offering possibilities to develop, for instance, distributed target-tracking algorithms. Special features of our installation are highly correlated sensor data and the availability of miscellaneous sensor types.  

    senSebuddy: A Buddy to Your Wireless Sensor Network

    Betreuer: C. Mühlberger
    Termin:   

    Abstract The sensor data are used by end users using various IT applications. The typical application for monitoring, querying and controlling the deployed Wireless Sensor Network is complex in nature from application development point of view, owing to various resource limitations. Post-deployment nuances like firmware update, addition of new nodes or replacement of others are not so easy task, either. In recent past, efforts have been made to minimize the complexity of end user through desktop and web-based application. However, so far, instant messaging has not been tried for communication between an end user and physical mote, where an individual sensor node (or group of them) appearing as a buddy in the instant messaging contact list and one can talk to it. In this paper we are describing a system that we developed recently with the name senSebuddy, based on instant messaging technique to monitor, query and control the deployed WSN applications. We also describe the functionality of the prototype implementation of the system with Smack XMPP API and Openfire XMPP server. We have carried out series of experiments to prove that one can chat with sensor mote like a normal human being, and mote can be programmed using gtalk without experiencing any delay. 

    ISOMAC: Toward In-Band Self-Organization in Energy-Efficient MAC Protocols for Sensor Networks

    Betreuer: C. Mühlberger
    Termin: 17.12.2012   

    Abstract This paper presents a self-organizing Medium Access Control (MAC) protocol framework for distributed sensor networks with arbitrary mesh topologies. The novelty of the proposed In-band Self-Organized MAC (ISOMAC) protocol lies in its in-band control mechanism for exchanging Time-Division Multiple Access (TDMA) slot information with distributed MAC scheduling. A fixed-length bitmap vector is used in each packet header for exchanging relative slot timing information across immediate and up to two-hop neighbors. It is shown that, by avoiding explicit timing information exchange, ISOMAC can work without networkwide time synchronization, which can be prohibitive for severely cost-constrained sensor nodes in very large networks. A slot-clustering effect, caused by in-band bitmap constraints, enables ISOMAC to offer better spatial channel reuse compared to traditional distributed TDMA protocols. ISOMAC employs a partial node wake-up and header-only transmission strategy to adjust energy expenditure based on the instantaneous nodal data rate. Both analytical and simulation models have been developed for characterizing the proposed protocol. Results demonstrate that, with in-band bitmap vectors of moderate length, ISOMAC converges reasonably quickly, that is, approximately within a four to eight TDMA frame duration. Also, if the bitmap header duration is restricted within 10 percent of packet duration, then the energy penalty of the in-band information is quite negligible. It is also shown that ISOMAC can be implemented in the presence of network time synchronization, although its performance without synchronization is just marginally worse than that with synchronization.

    Periodic-MAC: Improving MAC Protocols for Biomedical Sensor Networks Through Implicit Synchronization 

    Betreuer: C. Mühlberger
    Termin:   

    Abstract This paper contributes to understanding and solving several important scheduling problems associated with hybrid protocols based on the assumption of periodic operation. If we assume the nodes in these networks are multi-rate and inhomogeneous, close to optimal scheduling can be determined as a dynamic process by considering a limited number of transmission periods. We describe the Periodic-MAC algorithm, which utilizes this property by iteratively running through a set of solutions that have previously resulted in successful transmissions. However, to simplify the analysis of a network with periodic operation, we will assume that the nodes can only store one such solution. We also look at possible improvements of the algorithm.

    M-DWARF: Multi-Hop Physicomimetics Desynchronization Algorithm

    Betreuer: C. Mühlberger
    Termin: 10.12.2012    

    Abstract We extend the artificial force field concept to multi-hop networks. We begin by applying DWARF directly to a simple multi-hop topology and indicate how the algorithm fails on such a topology. Then, we propose two simple but elegant resolutions to extend DWARF for multi-hop networks. We further explain the algorithm that applies such resolutions. Then, we evaluate and compare our algorithm to other algorithms. We also propose the optimization to reduce communication overhead and present the robustness to message loss of the algorithm. 

    PB-TRMA: Periodic Broadcast Type Timing Reservation MAC Protocol for Inter-Vehicle Communications

    Betreuer: C. Mühlberger
    Termin:   

    Abstract The present study investigates a Medium Access Control (MAC) protocol for reliable inter-vehicle communications (IVC) to support safe driving with the goal of reducing road traffic accidents. A number of studies have evaluated the performance of the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. However, the communication quality provided by the CSMA/CA protocol is degraded seriously by the hidden terminal problem in IVC. Therefore, we propose a new MAC protocol, referred to as Periodic Broadcast- Timing Reservation Multiple Access (PB-TRMA), which can autonomously control transmission timing and avoid packet collisions by enhancing the Network Allocation Vector (NAV) for periodic broadcast communications. The simulation results show that the proposed protocol can resolve the hidden terminal roblem and mitigate data packet collisions. Moreover, the behavior of PB-TRMA is similar to that of Time-Division Multiple Access (TDMA).