Teaching

Telefon | (0931) 31-88150 |
Telefax | (0931) 31-86632 |
nikolas.wehner@informatik.uni-wuerzburg.de | |
Raum | B208 |
Anschrift | Lehrstuhl für Informatik III Am Hubland D-97074 Würzburg |
Open Theses and Student Projects
Supervised Theses
-
Rduch, T. Investigation of Fundamental Differences in the Perception of Web Browsing and Video Streaming Quality of Experience [Master thesis]. University of Würzburg.
-
Pham, T. T. Quantifying the Influence of Consent Banners on Web QoE with Crowdsourcing [Master thesis]. University of Würzburg.
-
Amir, M. Relating Google’s Web Vitals and Web QoE in a Crowdsourcing Approach [Master thesis]. University of Würzburg.
-
Frieling, M. Evaluating the Interaction between Web and Video QoE with Crowdsourcing [Master thesis]. University of Würzburg.
-
Engelbrecht, T. Investigating the Relationship of Network Data Arrival and the Rendering Process in Chrome [Master thesis]. University of Würzburg.
-
Oesen, E. Machine Learning Based Web QoE Monitoring for Encrypted Network Traffic [Master thesis]. University of Würzburg.
-
Arslanian, A. QoE Study for Compatible Video and Web Browsing QoE Models [Master thesis]. University of Würzburg.
-
Hofmann, J. Deep Reinforcement Learning for Configuration of Time-Sensitive-Networking [Master thesis]. University of Würzburg.
-
Berani, S. Fingerprinting Websites in Encrypted Network Traffic [Master thesis]. University of Würzburg.
-
Fehler, H. Comparison of Web QoE Algorithms on Different Devices [Master thesis]. University of Würzburg.
-
Mertinat, N. Impact of Content Selection on Crowdsourced QoE Studies of HTTP Adaptive Streaming on Mobile Devices [Master thesis]. University of Würzburg.
Lectures (Teaching)
- Rechnernetze und Informationsübertragung (WS20/21)
- Simulationstechnik zur Systemanalyse (SS 2022)
Seminar Talks (Tutor)
- Website Fingerprinting (WS 21/22)
- Application Fingerprinting (WS 21/22)
- QoE and UX/Usability (SS 21)
- QoE and Sustainability (SS 21)
- Reinforcement Learning for Rate Control/DASH (WS 20/21)
- Reinforcement Learning for Scheduling (WS 20/21)
- Internet Access in High Speed Trains (SS 20)
- QoE Monitoring of Internet Applications (WS 19/20)
- QoE Monitoring from Encrypted Internet Traffic (WS 19/20)