piwik-script

Deutsch Intern
Chair of Computer Science III

Katharina Dietz M. Sc.

Telefon (0931) 31-87343
E-Mail katharina.dietz@informatik.uni-wuerzburg.de
Raum A212

Anschrift

Lehrstuhl für Informatik III
Am Hubland
D-97074 Würzburg

Research Interests

Some of my research interests include the following:

  • Everything related to network management, e.g., performance prediction or anomaly detection
  • Machine Learning (ML) in communication networks, including but not limited to
    • Data synthetization via Generative Adversarial Networks (GANs)
    • Transfer Learning mechanisms
    • Active Learning mechanisms
    • Uncertainty in ML
  • Network simulation with OMNeT++ and other tools
  • Statistics evaluation and ML in R and Python

Open theses can be found here. Note that a lot of these topics can be tailored to either bachelor theses, master theses or student projects.

2022

  • 1.
    Dietz, K., Gray, N., Seufert, M., Hoßfeld, T.: ML-based Performance Prediction of SDN using Simulated Data from Real and Synthetic Networks. 33th IEEE/IFIP Network Operations and Management Symposium (NOMS). , Budapest, Hungary (2022).
     

2021

  • 1.
    Dietz, K., Mühlhauser, M., Seufert, M., Gray, N., Hoßfeld, T., Herrmann, D.: Browser Fingerprinting: How to Protect Machine Learning Models and Data with Differential Privacy?. 1st International Workshop on Machine Learning in Networking (MaLeNe). , Lübeck, Germany (Virtual Conference) (2021).
     
  • 2.
    Gray, N., Dietz, K., Seufert, M., Hoßfeld, T.: High Performance Network Metadata Extraction Using P4 for ML-Based Intrusion Detection Systems. 22nd International Conference on High Performance Switching and Routing (HPSR). , Paris, France (Virtual Conference) (2021).
     

2020

  • 1.
    Dietz, K.: Identification and Evaluation of KPIs in SDN via Simulation for Establishing Topology Classifications and Prediction Models, (2020).
     
  • 2.
    Gray, N., Dietz, K., Hoßfeld, T.: Simulative Evaluation of KPIs in SDN for Topology Classification and Performance Prediction Models. 2020 16th International Conference on Network and Service Management (CNSM) (2020).
     

2019

  • 1.
    Dietz, K.: Extending the OpenFlow OMNeT++ Suite, (2019).